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Abstract We analyze the wave-speed of the Proliferation Invasion Hypoxia Necro-
sis Angiogenesis (PIHNA) model that was previously created and applied to sim-
ulate the growth and spread of glioblastoma (GBM), a particularly aggressive
primary brain tumor. We extend the PIHNA model by allowing for different hy-
poxic and normoxic cell migration rates and study the impact of these differences
on the wave-speed dynamics. Through this analysis, we find key variables that
drive the outward growth of the simulated GBM. We find a minimum tumor
wave-speed for the model; this depends on the migration and proliferation rates of
the normoxic cells and is achieved under certain conditions on the migration rates
of the normoxic and hypoxic cells. If the hypoxic cell migration rate is greater
than the normoxic cell migration rate above a threshold, the wave-speed increases
above the predicted minimum. This increase in wave-speed is explored through an
eigenvalue and eigenvector analysis of the linearized PIHNA model, which yields
an expression for this threshold. The PIHNA model suggests that an inherently
faster-diffusing hypoxic cell population can drive the outward growth of a GBM as
a whole, and that this effect is more prominent for faster proliferating tumors that
recover relatively slowly from a hypoxic phenotype. The findings presented here
act as a first step in enabling patient-specific calibration of the PIHNA model.
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1 Introduction

Glioblastoma (GBM) is the highest grade of glioma from the World Health Orga-
nization [14]. It is uniformly fatal with an average survival time from diagnosis of
only 15 months with standard of care treatment [24]. The standard therapy regime
for this disease is a combination of resection, radiation and chemotherapy [24,25].
Magnetic Resonance Imaging (MRI) is the standard imaging modality for GBMs
and is used routinely to monitor tumor growth and development throughout the
progression of the disease. Different MRI sequences such as gadolinium-enhanced
T1-weighted (T1Gd) and T2-weighted (T2) are used to identify the gross tumor
volume. T1Gd shows gadolinium that has leaked into brain tissue, and T2 shows
water that has done the same, which is known as edema. However, these MRI
sequences together do not show a complete picture. Infiltrating tumor cells also
exist beyond the resolution of these MRI sequences. In fact, malignant glioma cells
have been cultured from histologically normal healthy tissue at a distance of 4cm
from the gross tumor volume identified by MRI scans [21].

Hypoxia has been shown to induce more migration in glioma cells [12,36]. There
is also evidence that glioma cells follow a dichotomy of migration and proliferation
[7] and evidence of a lower proliferation marker for cells that exist in hypoxic
regions of GBMs [5]. Tumors in hypoxic conditions release angiogenesis-promoting
factors to encourage vessels to grow towards them and provide nutrients [8,13,37].
This process also occurs in normoxic conditions at a lower level [37]. Necrosis occurs
in the vast majority of GBMs and presents in the core of the tumor [14]. Necrotic
cells can lead to an unfavorable local microenvironment that injures nearby cells
and subsequently spreads cell death [19,35].

Over the past 20 years, there have been many partial differential equation
models that simulate GBM cell density and have provided various insights into this
disease [10,15,16,26–29,29,31,32]. One such model is the Proliferation Invasion
Hypoxia Necrosis Angiogenesis (PIHNA) model, which has been used to analyze
the mechanistic properties of GBMs that lead to observed imaging features and
has shown similar growth and progression patterns to those seen in patient tumors
[31]. We carry out a traveling wave analysis on the PIHNA model to determine
which parameters drive the outward growth of the tumor as a whole, and compare
these analytical predictions with computational simulations in the cases of varying
relative rates of migration between hypoxic and normoxic tumor cells. We find
that the traveling wave dynamics only depend on the equations for the normoxic
and hypoxic tumor cell densities. We find that the normoxic cell migration and
proliferation rates, Dc and ρ, respectively, drive the minimum wave-speed in the
PIHNA model, which is given by

smin = 2
√
Dcρ

(
1− v0

K

)
(1)

and also depends on the initial background vasculature in the model, v0, relative
to the spatial carrying capacity, K. We find that smin holds for published results
using the PIHNA model as they have not allowed for different hypoxic cell and
normoxic cell migration rates. We allow these migration rates to be different in the
model and observe the effect of this variability on simulated tumor growth rates.
We find that a faster-than-minimum wave-speed is achieved when hypoxic cells
migrate sufficiently faster than normoxic cells and find a threshold above which
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these dynamics can occur. This threshold depends on the proliferation rate ρ, the
switching rate back from hypoxic cells to normoxic cells γ, and v0/K. We denote
this threshold k, and it is given by

k = 2 +
γ

ρ(1− v0/K)
. (2)

These results are then confirmed and explored computationally through further
model simulations. The PIHNA model therefore suggests that hypoxic cell migra-
tion, if sufficiently fast, is able to drive the outward growth of the tumor as a
whole.

The PIHNA model has been used in various settings to explore possible mech-
anistic explanations for clinical observations of GBM [10,11,31]. It was built out
of a much simpler model, the Proliferation Invasion (PI) model, a basic diffu-
sion/logistic growth model whose simplicity has allowed for patient-specific cali-
bration [27,28,30]. Despite its simplicity, the patient-specific calibration of the PI
model has proven clinically prognostic for many aspects of clinical care [1–3,9,17,
18,22,32]. The increase in variables and parameters of the PIHNA model enables
it to capture a wider range of clinical scenarios and questions, however, it has
limited the ability for patient-specific calibration. The results presented here rep-
resent a first step in enabling patient-specific calibration of the PIHNA model as
it shows the mathematical relationship between the wave speed and a handful of
critical parameters, the same key relationship used to calibrate the PI model. Fur-
ther, this relationship sheds light on expected tumor behavior based on the degree
of aggressive hypoxia which is imageable through positron emission tomography
(PET) scans, which, with further study, may influence clinical decision making.

We introduce the PIHNA model in the next section before calculating the
expression for the minimum wave-speed in Section 3. In this section, we also find
the threshold, k, on the relative migration between hypoxic and normoxic cells
under which the minimum wave-speed is achieved. We then move onto PIHNA
simulations in Section 4 to computationally validate our findings.

2 The PIHNA Model

The PIHNA model [31] simulates five different species and their interactions:

c - the density of normoxic tumor cells,

h - the density of hypoxic tumor cells,

n - the density of necrotic cells,

v - the density of vascular endothelial cells,

a - the concentration of angiogenic factors.

The dimensions of c, h, v and n are cells/mm3 of tissue. The angiogenic factor, a,
is a diffusing concentration with dimensions µmol/mm3 tissue.

Normoxic cells proliferate with rate ρ and migrate with rate Dc, whereas hy-
poxic cells do not proliferate but migrate with rate Dh. Cells convert between
normoxic and hypoxic phenotypes depending on the ability of the local vascular
density to provide nutrients at their location; hypoxic cells in the model become
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necrotic if they remain in such a region. When any other cell type meets a necrotic
cell, they become necrotic with rate αn. Previous publications on the PIHNA
model have set the migration rate of hypoxic cells to be equal to that of normoxic
cells, such that Dh = Dc. However, hypoxia has been shown to promote GBM cell
migration, so we have allowed for this to be varied in the PIHNA model [12,36].

Angiogenic factors are created by the presence of normoxic and hypoxic cells,
decay naturally and are consumed through the creation and presence of vascular
cells (v). Angiogenic factors are only consumed by vasculature and not tumor or
necrotic cells. Necrotic cells are dead cells and their degradation is not considered
in the model.

The governing partial differential equations for the PIHNA model are

Rate of change
of normoxic
cell density︷︸︸︷

∂c

∂t
=

Net diffusion of
normoxic

glioma cells︷ ︸︸ ︷
∇ · (Dc(1− T )∇c) +

Proliferation
of normoxic
glioma cells︷ ︸︸ ︷
ρc(1− T ) +

Conversion
of hypoxic

to normoxic︷ ︸︸ ︷
γhV −

Conversion
of normoxic
to hypoxic︷ ︸︸ ︷
βc(1− V )−

Conversion
of normoxic
to necrotic︷ ︸︸ ︷
αn

nc

K

Rate of change
of hypoxic
cell density︷︸︸︷

∂h

∂t
=

Net diffusion of
hypoxic

glioma cells︷ ︸︸ ︷
∇ · (Dh(1− T )∇h)−

Conversion
of hypoxic

to normoxic︷ ︸︸ ︷
γhV +

Conversion
of normoxic
to hypoxic︷ ︸︸ ︷
βc(1− V )−

Conversion
of hypoxic
to necrotic︷ ︸︸ ︷(

αhh(1− V ) + αn
nh

K

)

Rate of change
of necrotic
cell density︷︸︸︷

∂n

∂t
=

Conversion
of hypoxic
to necrotic︷ ︸︸ ︷
αhh(1− V ) +

Contact necrosis
of all

living cells︷ ︸︸ ︷
αn

n(c+ h+ v)

K
(3)

Rate of change
of vascular
cell density︷︸︸︷

∂v

∂t
=

Net diffusion of
vasculature︷ ︸︸ ︷

∇ · (Dv(1− T )∇v) +

Net proliferation
of vasculature︷ ︸︸ ︷

µ
a

Km + a
v(1− T )−

Conversion
of vasculature

to necrotic︷ ︸︸ ︷
αn

nv

K

Rate of change
of angiogenic

factor concentration︷︸︸︷
∂a

∂t
=

Net diffusion of
angiogenic factor︷ ︸︸ ︷
∇ · (Da∇a) +

Net production
of angiogenic factor︷ ︸︸ ︷

δcc+ δhh −

Net consumption of
angiogenic factor︷ ︸︸ ︷

qµ
a

Km + a
v(1− T )− ωav−

Decay︷︸︸︷
λa

where

V =
v

v + c+ h
, (4)

and

T = (c+ h+ n+ v)/K. (5)

The term V models the relationship between the vasculature and its effect
on the tumor. Note that V take values in [0, 1] such that it affects the switching
rates between the populations c, h and n. A value of V (c, h, v) ≈ 0 corresponds
to a very inefficient vasculature that cannot provide sufficient nutrients to the
local tumor population; this would increase the conversion of normoxic cells to
hypoxic cells and in turn necrotic cells. A high V (c, h, v) ≈ 1 promotes a normoxic
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Definition Value/Range Units Source

Dc Diffusion rate of normoxic cells 10− 100 mm2

year [9]

Dh Diffusion rate of hypoxic cells (0.1− 100)Dc
mm2

year [9,15]∗

ρ Proliferation rate of normoxic cells 10− 100 1/year [9]

β Switching rate from normoxia to hypoxia 0.1ρ 1/year [31]

γ Switching rate from hypoxia to normoxia 0.005− 0.5 1/day [31]∗

αh Switching rate from hypoxia to necrosis 0.5β 1/year [31]

αn Rate of contact necrosis log(2)/50 1/day [20]

Dv Diffusion rate of endothelial cells 0.18 mm2

year [31]

Da Diffusion rate of angiogenic factors 3.15 mm2

year [31]

δc
Normoxic cell production rate
of angiogenic factors

2.77× 10−13 µmol
cell×year

[31]

δh
Hypoxic cell production rate
of angiogenic factors

5.22× 10−10 µmol
cell×year

[31]

µ Angiogenesis vasculature production rate log(2)/15 1/day [31]

q Consumption of angiogenic factors per cell 1.66 µmol/cell [31]

λ Natural decay rate of angiogenic factors 15.6 1/day [31]

ω
Rate of removal of angiogenic
factors by vasculature

λ/v0
1

cell×year
[31]

K Maximal cell density 2.39× 108 cells/cm3 [31]

Table 1 Parameter definitions and values for the PIHNA model. A justification of parameters
can be found in the supplementary material of [31]. ∗We have altered these rates in this
formulation of PIHNA, which have not been changed previously.

phenotype. It is worth noting that, once necrotic cells are present in a simulation,
they will always increase in population due to the contact necrosis in the model,
which represents the injury of nearby cells and promotion of their necrosis. Further
definitions can be found in Table 1.

The expression for T defined in Equation (5) is a spatiotemporal measure of
the relative density of the cells in a region. It is used to limit growth and migration
and used as a threshold to determine which densities would appear on different
MRI sequences. Substituting the set of equations (3) into Equation (5) gives

K
∂T

∂t
= ∇·((1−T )(Dc∇c+Dh∇h+Dn∇n+Dv∇v))+(1−T )

(
ρc+

µa

Km + a
v

)
,

from which it is clear that at T = 1 the reaction and diffusion terms vanish, which
implies T is restricted by the upper bound of 1 (as long as T (x, 0) ≤ 1). As T is a
sum of non-negative components and K > 0, we have that T ≥ 0. Therefore, we
have that T ∈ [0, 1] for sufficient initial conditions, for all x and t ≥ 0.

Following the literature, we have assumed that a total relative cell density of at
least 80% is visible on a T1Gd MRI, and a total relative density of at least 16% is
visible on a T2 MRI [27,31]. In the PIHNA model, this translates to T ≥ 0.8 being
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Fig. 1 (A) Three example time points (300 days, 400 days and 500 days) of a simulation with
Dc = 101.5mm2/year, ρ = 101.5/year, γ = 0.05/day and Dh/Dc = 10. All cell types are shown
and move outwards over time. Necrosis develops in the core of the tumor. (B) Total cells over
time for the three time points shown in Subfigure A. The dots correspond to the T2 radius
at each time point. (C) The T2 radius shown over time for the same simulation. This radial
growth is non-linear for small tumor sizes, but settles to a linear rate, which is the wave-speed
of the simulation.

visible on T1Gd MRI and T ≥ 0.16 being visible on T2 MRI. By construction the
T1Gd radius is always less than or equal to the T2 radius, which agrees with
patient data [9].

For the purposes of the wave-speed calculations, we consider the PIHNA model
in a one-dimensional spherically symmetric case with zero-flux boundary condi-
tions at the end points, r = 0 and r = rend. This does not take into account the
full anatomy of the brain, but it is useful to gain insight into the behavior of the
PIHNA model. The initial condition is given by

c(r, 0) = 1000e−100r2 , (6)

to simulate a small initiating population of normoxic tumor cells decreasing away
from the core of the tumor. We also have h(r, 0) = 0, n(r, 0) = 0, v(r, 0) = 0.03K
and a(r, 0) = 0. We run the PIHNA simulations with the parameters found in
Table 1.

In all simulations, the tumor and necrotic cell densities spread outwards. A
peak in normoxic cell density leads and is followed by a peak in hypoxic cell
density and then a zone of necrosis develops in the core of the tumor, as can be
seen in Figure 1; this figure also shows how we calculate the wave-speed values
from simulations.
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3 Conditional Minimum Wave-speed for the PIHNA Model

In a similar fashion to the well-established minimum wave-speed of Fisher’s Equa-
tion [6] that has been used for the PI tumor growth model [27], we carried out a
wave-speed analysis to find an analytical expression for the tumor wave-speed in
the PIHNA model. This wave-speed is what has enabled patient-specific calibra-
tion of the PI model for GBM patients, and we expect that this similar analysis will
eventually allow for the patient-specific calibration of the PIHNA model as well.
Note that in spherically symmetric coordinates, the wave-speed asymptotically
approaches that of a planar wave-speed.

We start by linearizing the model ahead of the leading edge of the wave, that
has the initial condition of (c, h, n, v, a) = (0, 0, 0, v0, 0); this gives an expression
of

(c, h, n, v, a) = (0, 0, 0, v0, 0) + (ĉ, ĥ, n̂, v̂, â). (7)

Substituting Equation (7) into the PIHNA model (Equation (3)) and discarding
non-linear terms leads to the following set of equations:

∂ĉ

∂t
= ∇ ·

(
Dc
(

1− v0

K

)
∇ĉ
)

+ ρĉ
(

1− v0

K

)
+ γĥ (8)

∂ĥ

∂t
= ∇ ·

(
Dh

(
1− v0

K

)
∇ĥ
)
− γĥ (9)

∂n̂

∂t
= αnn̂

v0

K
(10)

∂v̂

∂t
= ∇ ·

(
Dv
(

1− v0

K

)
∇v̂
)

+ µ
v0

Km

(
1− v0

K

)
â− αn

v0

K
n̂ (11)

∂â

∂t
= ∇ · (Da∇â) + δcĉ+ δhĥ− qµ

v0

Km

(
1− v0

K

)
â− ωv0â− λâ, (12)

where we have used T = v0/K and V = 1. The equations for ĉ and ĥ decouple
from the system and it is these two equations that dictate the outward growth
rate of the tumor. We will analyze these two equations to look for traveling wave
solutions of the form

(ĉ, ĥ) = (c̄, h̄) exp(λ(r − st)), (13)

where s is the wave-speed. Substituting Equation (13) into Equations (8)-(9), gives
rise to the following equations

−sλc̄ = Dc
(

1− v0

K

)
λ2c̄+ ρ

(
1− v0

K

)
c̄+ γh̄ (14)

−sλh̄ = Dh
(

1− v0

K

)
λ2h̄− γh̄ (15)

Looking for non-trivial solutions to this system of equations yields eigenvalues as
functions of the wave-speed, s. We have four eigenvalues, given by

λ1,2 =
−s±

√
s2 − 4Dcρ

(
1− v0

K

)2
2Dc

(
1− v0

K

) and λ3,4 =
−s±

√
s2 + 4Dhγ

(
1− v0

K

)
2Dh

(
1− v0

K

) .
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We have also found the corresponding eigenvectors for all of our eigenvalues, which
we shall denote Vi for each λi. These are given by the following expressions, up to
a proportional constant:

V1,2 =

1
0
0

 and V3,4 =

 −γ
sλ3,4 + (Dcλ

2
3,4 + ρ)

(
1− v0

K

)
0

 . (16)

The terms λ1,2 are both negative as s > 0 by assumption. Due to positive restric-
tions on the state space (negative populations do not make any biological sense),
a spiral approach around the point (0, 0, 0, v0, 0) cannot occur. Therefore, we need
the discriminant of the set of quadratic λ1,2 solutions to be greater than or equal
to zero. In other words,

s2 − 4Dcρ
(

1− v0

K

)2
≥ 0. (17)

Therefore, we have a minimum wave-speed of

smin = 2
√
Dcρ

(
1− v0

K

)
. (18)

There is no minimum wave-speed associated with the eigenvalues λ3,4.
The PIHNA model will follow this minimum wave-speed if the eigenvalue

λ1 evaluated at this minimum gives the smallest possible negative eigenvalue of
λ1,2,3,4. If there exists some s > smin such that 0 > λi(s) > λ1(smin) for some
i = 1, 2, 3, 4, we will see the emergence of a solution with a larger wave-speed. In
this section we will compute a threshold below which the minimum wave-speed is
achieved but above which other dynamics may emerge.

We will call each eigenvalue evaluated at smin, λmini , for i = 1, . . . , 4. We start
by noting that λ2 ≤ λ1 and λ3 > 0, so neither of those can be negative with
a smaller magnitude than λmin1 to change the PIHNA wave-speed dynamics. As
λ4 becomes less negative for increasing values of Dh, there is a threshold value of
Dh/Dc that leads to λmin1 = λ1 = λmin4 for which the minimum wave-speed is still
achieved. For values of Dh/Dc that are smaller than this threshold, the minimum
wave-speed will still be achieved. However, larger values of Dh/Dc may lead to a
faster wave-speed, as the eigenvalues become smaller than λmin1 . We have

λmin1 =
−smin +

√
s2
min − 4Dcρ

(
1− v0

K

)2
2Dc

(
1− v0

K

) , and (19)

λmin4 =
−smin −

√
s2
min + 4Dhγ

(
1− v0

K

)
2Dh

(
1− v0

K

) . (20)

Setting λmin1 = λmin4 and using the expression for smin (Equation (18)) leads to

λmin1 =

√
ρ

Dc
=

√
Dcρ+

√
Dcρ+Dhγ/(1− v0/K)

Dh
= λmin4 . (21)

Solving for Dh/Dc gives the non-trivial solution

Dh
Dc

= 2 +
γ

ρ(1− v0/K)
. (22)
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We will define this threshold of Dh/Dc as k. Note that as v0 ≤ K, k ≥ 2. So
for the faster wave-speeds to occur, the hypoxic cell migration rate needs to be
at least twice as fast as the normoxic cell migration rate. For Dh/Dc = 1, as is
the case in previous PIHNA publications, we do not expect faster wave-speeds to
occur, regardless of other simulation parameters.

4 Simulation Results

To calculate the simulated wave-speed in numerical simulations, we thresholded
the total cell density at T = 0.16, which is a commonly assumed cell density
threshold for visible tumor-related abnormalities on T2 MRI [27]. Following the
establishment of a wave front, the simulated wave-speed levels out to a fixed value,
see Figure 1. We analyze the wave-speed of large tumors to ensure we are analyz-
ing established wavefronts while minimizing numerical error. We are particularly
interested in the effect on the wave-speed of varying hypoxic cell migration rates,
more specifically the change in their migration rate compared with normoxic cells
(Dh/Dc), which has been allowed to vary in the PIHNA model for the first time.
We also want to observe the effect of the Dh/Dc threshold, k, that allows for
faster wave-speeds. Although we have already observed that the equations for the
normoxic and hypoxic cell densities decouple in the linearized form of the PIHNA
model, simulations presented here are for the full PIHNA model. Numerical sim-
ulations are run on a spherically symmetric domain, with a step size of 0.01mm.
All simulations were run in Matlab 2018a using the inbuilt solver pdepe.m.

4.1 Relatively Fast Hypoxic Cell Diffusion Rates Increase Wave-speed

The wave-speed for PIHNA simulations with Dh/Dc ≤ k converges towards smin.
However, if we compute the wave-speed for simulations where Dh > kDc, we see
that the wave-speed can be faster, and continues to increase for larger Dh/Dc
values; an example of this can be seen in Figure 2. Computing the corresponding
eigenvalues shows a change in behavior for values of Dh/Dc > k. We also plot
k on Figure 2, in which case k = 2.60 (three significant figures). These values of
Dc and ρ are biologically realistic and based on the mean of previous migration
and proliferation rate estimates from the PI model applied to patient-specific MRI
data [33].

From these observations and our analysis in Section 3, we can deduce that if the
hypoxic cell migration is sufficiently faster than the normoxic cell migration (such
that Dh/Dc > k), the hypoxic cell population drives the outward growth of the
tumor in the PIHNA model. This behavior intuitively agrees with the biological
cell movement patterns that the model is trying to capture; cells moving faster
dominate the growth outwards as they search for nutrients.

Focusing on the eigenvectors corresponding to the least negative eigenvalues,
V1 and V4, we see that they influence the dynamics of the model. By plotting the
normoxic cell density across space against the hypoxic cell density across space
for a fixed time point where each simulation has converged to a stable wave-
speed, together with V1 and V4, we can see how the traveling wave trajectory
approaches the state ahead of the wave front. We present two simulations with
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Fig. 2 As Dh/Dc is increased with Dc = 101.5mm2/year, ρ = 101.5/year and γ = 0.05/day,
we see an increase in the converged numerical wave-speed past the threshold on Dh/Dc of
k = 2.60. Wave-speeds taken as the average speed between 8 and 8.5cm of growth on simulated
T2 MRI (16% total cell density threshold).

their corresponding V1 and V4 eigenvectors in Figure 3, one for Dh/Dc = 10−1 and
another for Dh/Dc = 101. For Dh/Dc = 10−1, where the wave-speed follows the
predicted minimum value, we see that the model approaches along (c, h) = (0, 0)
along the eigenvector V1, whereas for Dh/Dc = 101, the approach is along V4. In
the linearized regime, we expect that ĉ = c̄ exp(λ(r − st)), such that

∂(log(c))

∂r
∼ λ. (23)

To provide further evidence concerning the traveling wave trajectory, we compared
the gradient of the log of normoxic cells (c) with the eigenvalues λ1 and λ4. We see
that for low values of Dh/Dc, the gradient more closely follows λ1 and for large
values of Dh/Dc, the gradient closely follows λ4. We present examples of these
results in the Appendix (Figure 6).

4.2 Low switching rate from hypoxia to normoxia, γ, amplifies wave-speed
increase for large values of Dh/Dc

The switching rate from a normoxic cell to a hypoxic cell (β) is not present in the
eigenvalues that dominate the behavior of the wave-speed, nor in the expression for
k. We do however note that the switching rate from a hypoxic cell phenotype back
to a normoxic cell phenotype, γ, is present in the expression for λ4 (Equation (19))
and subsequently in the expression for the Dh/Dc threshold, k (Equation (22)).
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Fig. 3 (A) We show the normoxic and hypoxic cell densities across space for a fixed snapshot
in time. For Dh/Dc = 10−1, we see the dynamics follow V1 near (c, h) = (0, 0), which corre-
sponds to the predicted minimum wave-speed, smin. For Dh/Dc = 101, the dynamics have
shifted towards V4, corresponding with the faster numerical wave-speed we have observed. Here
Dc = 101.5mm2/year, ρ = 101.5/year. Eigenvectors and simulations are shown for large sim-
ulated T2 sizes, to ensure convergence of numerical eigenvectors (29.5 - 30cm T2 radius, with
corresponding time points of 1421 and 1910 days for V4). (B) The snapshot of the simulation
with Dh/Dc = 0.1 used for subfigure A. The cross corresponds with the cross on subfigure
A. (C) Corresponding snapshot with Dh/Dc = 10, with the triangle corresponding with the
triangle on subfigure A.

Fig. 4 As Dh/Dc is increased for varying γ values, we see an increase in the converged
numerical wave-speed that is more pronounced for smaller values of γ; the corresponding
thresholds k for wave-speeds faster than smin are indicated. The values used are γ = 0.005,
0.05 and 0.5/day, with corresponding k values of 2.06, 2.60 and 7.95, respectively. Wave-speeds
taken as the average speed between 8 and 8.5cm of growth on simulated T2 MRI (16% total
cell density threshold) and presented relative to smin.
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We ran a similar set of simulations as in Section 4.1 with a higher value of γ = 0.5
and a lower value of γ = 0.005 to verify that the wave-speed increase, relative to
smin, would be affected for varying γ. As expected, higher values of γ increase k
and correspond to a lower wave-speed for equivalent Dh/Dc values. We present
these wave-speed results in Figure 4 where we also mark the corresponding values
of k. For γ = 0.005, 0.05, and 0.5/day, we find k = 2.06, 2.60 and 7.95, respectively.

4.3 Wave-speed increase is more pronounced for faster-proliferating tumors

We also varied ρ to explore its effects on the increase in wave-speed for large
values of Dh/Dc. We chose two more values of ρ = 101.25/year (lower ρ), and
ρ = 102/year (higher ρ) and refer to the previous simulations with ρ = 101.5/year
as a mid-range ρ. Throughout all simulations, we set Dc = 101.5mm2/year and
γ = 0.05/day, leading Equation (22) to give threshold values of k = 2.19, 2.60 and
3.06 for higher, medium and lower ρ simulations, respectively.

We present the wave-speeds normalized against their predicted values of smin
(Equation (18)) in order to compare the simulation results across different values
of ρ. We see for values of Dh/Dc below their respective thresholds that the wave-
speeds all follow their predicted minimum values. For simulations where Dh/Dc
is above the respective threshold k, we see an increased wave-speed, as expected
(see Figure 5). This relative increase in wave-speed is more pronounced for larger
values of ρ. Simulated tumors with larger ρ values are also faster-growing tumors
as they have a faster minimum wave-speed (Equation (18)).

Fig. 5 As Dh/Dc is increased for varying Dc and ρ values, we see an increase in the relative
wave-speed s/smin that is more pronounced for larger values of ρ. The observed trend agrees
with the expectation given by the corresponding values of k, which are also indicated. The
values used are ρ = 101.25, ρ = 101.5 and 102/year, with corresponding k values of 2.19, 2.60
and 3.06, respectively. Wave-speeds taken as the average speed between 8 and 8.5cm of growth
on simulated T2 MRI (16% total cell density threshold) and normalized against smin.
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5 Discussion

We have found an expression for the minimum wave-speed for the PIHNA model
given by

smin = 2
√
Dcρ

(
1− v0

K

)
(24)

and shown that this predicted wave-speed is attained when normoxic cell diffusion
is greater than or equal to the diffusion of hypoxic cells. We therefore have shown
that the predicted minimum wave-speed is valid for previous publications of the
PIHNA model [31]. However, due to the in vitro evidence indicating that hypoxia
can increase migration [12,36], we are interested in increasing the migration rate of
hypoxic cells compared with normoxic cells in our extension of the PIHNA model.
In the case that the hypoxic cells diffuse sufficiently faster than the normoxic cells,
we see that the outward growth of the tumor is faster than the predicted minimum
wave-speed value. In fact, we have quantified the value at which these faster rates
of growth can occur through the threshold

k = 2 +
γ

ρ(1− v0/K)
(25)

and note that the hypoxic cell diffusion has to be at least twice as fast as the
normoxic cell diffusion. The threshold of hypoxic to normoxic cell migration rates
is increased if the hypoxic cells can easily convert back to normoxia, and decreased
for faster proliferating normoxic cell populations. This result suggests that faster-
proliferating tumors that can only slowly recover from hypoxia are pushed to grow
even faster by a highly migratory hypoxic subpopulation, more so than slower-
proliferating tumors that can easily recover from hypoxia. The γ parameter en-
coding this recovery from hypoxia is the inherent ability of hypoxic tumor cells
to adapt to a nutrient-rich microenvironment, switch off any hypoxia-related pro-
cesses and reinitiate those related to a normoxic cell phenotype. This change in
microenvironment is represented through the spatial variation in vasculature as
the simulated tumors grow. As hypoxic cells migrate (in some cases faster than
normoxic cells) they reach regions of more abundant vasculature and convert back
to a normoxic phenotype. This recovery from hypoxia would likely also be influen-
tial in model dynamics if an initial condition of varying vasculature or treatment
effects such as ischemia were introduced into the PIHNA model. The behavior of
the PIHNA model suggests that limiting the lasting impact of hypoxia on pheno-
typic expression may slow the outward growth of GBM as would decreasing the
motility of hypoxic tumor cells. Similarly, decreasing the motility and prolifera-
tion rates of normoxic cells would decrease the minimum wave-speed, the latter of
which is already a widely exploited treatment mechanism through chemotherapy
and radiation.

Of course the spherical symmetry assumed in the model does not fully capture
the complex heterogeneity present in GBM. Inherent differences in vasculature
and nutrient abundance are present in the healthy human brain [34] and spatial
heterogeneity in hypoxia is observed in GBM [4,23]. Genetic differences within
GBM could drive heterogeneity in all of the tumor-related parameters influenc-
ing the PIHNA wave-speed. This environmental and genetic heterogeneity could
lead to varying wave-speeds of GBM growth within individual tumors. Even so,
we anticipate eventual patient-specific calibration of this model to provide better
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clinical insights into individual tumor behaviors beyond what the PI model can
do. As quantification of aggressive hypoxic volumes becomes more readily avail-
able through PET scans, we anticipate this wave-speed estimate to play a critical
role in estimating patient-specific parameters for this model.

The analysis presented here shows that the wave-speed dynamics do not de-
pend on the vascular efficiency term, V , as long as V = 1 in its linearized form.
We also do not see a dependence on the switching rate from the normoxic cell
density to the hypoxic cell density, β. All of the results presented here are dictated
by the equations for normoxic cell density and hypoxic cell density due to their
independence from the other three equations in the linearized model. Necrosis, an-
giogenesis and vascular growth dynamics play no role in the outward growth rate
in the PIHNA model. We have shown that this is the case both through theory and
model simulations. This concept would hold for similar tumor growth models that
decouple in their linearized forms and have different motilities between hypoxic
and normoxic cell phenotypes.

Mathematically, the increase in simulated wave-speed corresponds to a change
in the asymptotic traveling wave trajectory as Dh/Dc is increased, which causes
an eigenvector associated with the hypoxic cell density characteristics to dominate
the behavior of the PIHNA model. Biologically, this suggests that the faster mi-
gration of hypoxic cells can drive the growth of the whole tumor, as they migrate
towards nutrient-rich environments and convert back to normoxic cells. If this con-
version rate is high, the model suggests that the outward growth rate of the whole
tumor is lower. The model does not predict that the wave-speed is affected by the
proportions of hypoxic and normoxic cells. However, a reduction in vasculature
ahead of the wave (v0) does increase the invasion speed of the tumor due to the
appearance of v0 in the minimum predicted wave-speed. It would be interesting in
future work to see how including a normal cell density affects these dynamics.
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A Appendix

As discussed in the main body of this work, we wanted to show that our PIHNA simulations
were following different eigenvalues depending on the value of Dh/Dc. In the linearized regime
ahead of the wave, we expect that ĉ = c̄ exp(λ(x− st)), such that

∂(log(c))

∂r
∼ λ. (26)

In Figure 6 we present simulations at a T2 radius of 30cm. We see for the simulation with
Dh/Dc = 0.1, ∂(log(c))/∂r follows λ1 ahead of the traveling wave, whereas for Dh/Dc = 10,
∂(log(c))/∂r follows λ4.

Fig. 6 The gradient of the log of the normoxic cells is plotted for a T2 radius of 30cm. As
described in the main text, the leading edge of this simulated gradient (ignoring boundary
effects present close to the edge of the domain) should follow the eigenvalue that controls the
dynamics of the PIHNA model. Simulations presented here correspond with those presented
in Figure 3. The simulation with Dh/Dc = 0.1 agrees more closely with λ1, whereas the
simulation with Dh/Dc = 10 follows λ4. The results of these support the eigenvalue and
eigenvector analysis in the main body of this work.
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