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1 Introduction

Many geophysical and engineering applications, including, for example, fluid-structure interaction,
crack and wave propagation phenomena, and flow in fractured porous media, are characterized by a
strong complexity of the physical domain, possibly involving faults and/or fractures, heterogeneous media,
moving geometries/interfaces and complex topographies. Whenever classical finite element methods are
employed to discretize the underlying differential model, the process of mesh generation can represent a
severe bottleneck for the simulation process, as classical finite element methods (in three-dimensions)
typically only support computational grids composed of tetrahedral/hexahedral/prismatic/pyramidal
elements. To overcome this limitation, in the last decade a wide strand of literature has focused on the
design of numerical methods that support computational meshes composed of general polygonal and
polyhedral (polytopic, for short) elements. In the conforming setting, we mention, for example, the
Composite Finite Element Method, see, e.g., [99, 98], the Mimetic Finite Difference (MFD) method, see,
e.g., [101, 53, 52, 51, 40, 10, 21], the Polygonal Finite Element Method, see, e.g., [135], the eXtended
Finite Element Method, see, e.g., [82, 136, 92], and, more recently, the Virtual Element Method (VEM),
see, e.g., [39, 145, 11, 42, 12, 41, 141, 140, 142, 144, 143]. In the setting of non-conforming/discontinuous
polygonal methods, we mention, for example, Composite Discontinuous Galerkin Finite Element methods
[23, 22], Hybridizable Discontinuous Galerkin methods [69, 70, 71, 72], the Hybrid High-Order (HHO)
method [80, 66, 79, 78, 1, 49, 47, 65, 81, 48], the non-conforming VEM [8, 35, 58], and Gradient Schemes
[84]. This article focuses on discontinuous Galerkin methods on polytopic grids (PolyDG), which represent
the natural extension of the classical discontinuous Galerkin method on tetrahedral/hexahedral grids to
meshes composed of arbitrarily-shaped polytopic elements. Due to the fact that the discrete space is
constructed based on employing piecewise discontinuous polynomials, DG methods are naturally suited to
robustly support polytopic meshes. In fact, in the last few years intensive research has been undertaken
on this topic; in particular, we refer here to the pioneering works [15, 36, 37, 38, 62], the more recent
results [59, 25, 9, 7, 30, 13, 14], and refer to [6, 61], and the reference therein, for a comprehensive review.

This article focuses on two challenging applications in geophysics, namely, seismic wave propagation
and fractured reservoir simulations and presents a review of PolyDG methods for this class of problems,
as well a detailed discussion on the development of efficient quadrature rules on polytopic elements that
allows a massively-parallel implementation of PolyDG methods on parallel architectures. From the
mathematical and modeling viewpoints, these two paradigmatic applications share a number of challenges.
For example, they both require, at the same time i) a flexible description of the domain involving
multiple scales, interfaces, network of fractures, and strongly heterogeneous media; and ii) an accurate
representation of the solution field, particularly for wave propagation phenomena, where a sufficiently
high number of nodes per wavelength is needed to keep numerical dispersion and dissipation errors low.
PolyDG methods are perfectly suited to tame all these mathematical and numerical challenges, indeed i)
they are naturally oriented towards high-order approximations, in any space dimension, and feature a
high-level of intrinsic parallelism; ii) the dimension of the local approximation space only depends on the
local approximation order, and is independent of the shape of an element and the number of faces/edges
of an element. As a consequence, in contrast to other polytopic finite element methods, on agglomeration
based meshes the dimension of the local space remains under control; iii) they can handle mesh elements
with possibly an unbounded number of faces and face/edge degeneration can be supported. We point out
that the last feature is very important in practical applications, since it allows for hybrid mesh algorithms
that efficiently deal with heterogeneous media, localized geological/topographic irregularities, faults
and fractures characterizing geophysical applications. The main idea consists in generating an initial
(hexahedral/tetrahedral in three dimensions, for example) mesh, based on employing standard mesh
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Figure 1: A three-dimensional example of hybrid hexahedral/polyhedral grid of the Acquasanta railway bridge on the
Genoa-Ovada railway (Italy). The mesh is obtained by exploiting the flexibility of polyhedral elements near the Acquasanta
bridge (cf. the region delimitated by the red line of the zoom) while keeping a regular structure elsewhere.

generators; then elements intersecting the geological irregularities are suitably cut and/or agglomerated,
thus generating polytopes, while keeping a regular structure elsewhere, cf. Figure 1 for an illustrative
example. Beyond the simplicity of generating the computational hybrid grids based on a convenient
combination of hexahedral/tetrahedral/polyhedral elements, one of the other advantages of polytopic
decompositions over standard simplicial/hexahedral grids is that, even on relatively simple geometries,
the average number of elements needed to discretize complicated domains is substantially smaller [23, 22],
without enforcing any domain approximation. This advantage becomes even more evident whenever the
domain contains complex geometrical features (large number of fractures, fractures intersecting with
small angles, etc.) and the underlying grid is chosen to be matching with the interfaces.

In the following we provide a brief description of the contents of each of the following sections, and
highlight their scientific importance within the community. In Section 2 we introduce the notation and
the key theoretical results needed to analyze PolyDG approximations. In particular, we summarize the
main theoretical results concerning this class of methods outlined in [62, 6, 59, 61]. Following [59, 61],
we start from the generalization of the standard shape-regularity property to polytopic elements and
introduce some trace and inverse inequalities and polynomial approximation properties of the underlying
discrete spaces. These results represent the main tools for handling elements with a degenerating and/or
unlimited number of faces/edges. The contents of this section form the basis for the theoretical analysis
of the discretization schemes for seismic wave propagation and flow in fractured porous media presented
in the second part of the manuscript.

Section 3 focuses on the construction and outline of a new technique for the efficient computation of
integrals of polynomial functions over convex and non-convex polytopic domains, and its application to
the numerical computation of the terms appearing in the weak formulation of PolyDG methods. The
classical (and most widely employed) approach for the integration of polynomial functions over polytopes
is the so called sub-tessellation method: here, the domain of integration is sub-divided (sub-tessellated)
into d-simplices, whereby standard quadrature rules are employed, cf. [132, 112, 151, 117, 134, 96]
and also [110, 152] for a similar quadrature approach where the polytopic domain of integration is
sub-tessellated into d−parallelograms. However, the sub-tessellation method is generally computationally
expensive as it leads to a very large number of function evaluations, particularly when the integrand is a
high order polynomial. For this reason, the development of quadrature rules that avoid sub-tessellation
and optimize the number of function evaluations is an active research field. Several approaches have been
proposed; in particular, we mention [146, 121, 100, 147], for example. Other approaches are represented
by the Moment Fitting Equation technique, firstly proposed in [111], for the construction of quadrature
rules on polygons featuring the same symmetry as the regular hexagon. The key idea here is, starting
from a quadrature rule on the integration domain which integrates exactly a class of basis functions for
a desired function space, an iterative node elimination procedure is then applied under an exactness
constraint. This leads to the definition of a new quadrature rule where the number of function evaluations
is optimized. Further improvements of the moment fitting equation algorithm can also be found in
[118] and [133], see also [119] for a generalization to more general convex and non-convex polytopic
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domains. The main drawback of the moment fitting approach is the need to store the resulting nodes
and weights for every polytope, which severely affects memory efficiency when applied to finite element
approximations. An alternative approach designed to overcome the limitations of the sub-tessellation and
the moment fitting equation methods is based on employing the generalized version of Stokes’ theorem;
with this approach, the integral over a generic domain is reduced to an integration over its boundary;
we refer to [138] for further details. Following this idea, Sommariva and Vianello proposed in [130] a
quadrature rule where, if an x- or y-primitive of the integrand is available (as for bivariate polynomial
functions), the integral over the polygon is reduced to a sum of line integrations over its edges, each
of which is then computed exactly with a Gaussian one dimensional quadrature rule. The authors
also generalized this approach to the more general case when the primitive is not known. While this
algorithm does not directly require a sub-tessellation of the polygon, a careful choice of the parameters in
the proposed formula leads to a quadrature rule that can be viewed as a particular sub-partition of the
polygon itself. Moreover, in this case it is not possible to guarantee that all of the quadrature points
lie inside the domain of integration. An alternative approach, proposed by Lassere in [109], provides a
very efficient formula for the integration of homogeneous functions over convex polytopes. Here, the
essential idea is to exploit the generalized Stokes’ theorem together with Euler’s homogeneous function
theorem, cf. [129], in order to reduce the integration over a polytope only to boundary evaluations. The
main difference with respect to the work presented in [130] is the possibility to apply the same idea
recursively, leading to a quadrature formula which exactly evaluates integrals over a polygon/polyhedron
by employing only point-evaluations of the integrand and its partial derivatives at the vertices of the
polytope. This technique has been recently extended to general convex and non-convex polytopes
in [68]. In Section 3 we present an efficient quadrature free algorithm for the numerical approximation of
integrals of polynomial functions over general polygonal/polyhedral elements that do not require an
explicit construction of a sub-tessellation. The method extends the idea of [109, 68] and is based on
successive application of Stokes’ theorem; thereby, the underlying integral may be evaluated using only
the values of the integrand and its derivatives at the vertices of the polytopic domain. To demonstrate the
practical performance of this quadrature free method we present some numerical results obtained by the
numerical computation of the stiffness and mass matrices arising from hp-version PolyDG discretization
of second-order elliptic partial differential equations.

Section 4 focuses on the analysis of PolyDG methods for the numerical discretization of seismic wave
propagation; that is the ground motion phenomenon induced by the passage of body waves radially
from the source of earthquake energy released into the surrounding soil medium. In the context of
numerical modeling of direct and inverse wave propagation phenomena, many contributions can be
found in the literature, stimulated not only by geophysical problems but also from vibroacoustics,
aeroacoustic, acoustics, and electromagnetics engineering applications [45, 44, 64, 105, 76, 150, 139,
74, 83, 97]. Here, our target are large-scale seismological phenomena and ground-motion induced by
seismic events. Seismic waves are elastic waves propagating within the Earth and along its surface as a
result of an earthquake, or of an explosion. Seismic waves induce a vibratory ground–motion in the area
surrounding the seismic source. From the mathematical viewpoint, the propagation of seismic waves
in a (visco)elastic heterogeneous material can be modeled by means of the elastodynamics equation.
In order to solve the elastodynamics equation based on employing a finite element based numerical
scheme, a number of distinguishing challenges have to simultaneously be taken into account which
reflect the key features required by the numerical scheme: accuracy, geometric flexibility and scalability.
High-order accuracy is mandatory in order to correctly approximate wave velocities, i.e., to keep as
low as possible both the numerical dissipation and dispersion. Geometric flexibility is mandatory since
within earthquake engineering the computational domain usually features complicated geometrical details,
as well as sharp contrasts in the media. Finally, for real earthquake models, the size of the excited
body is very large compared to the wave lengths of interest: this typically leads to numerical models
featuring hundred of millions of unknowns, and therefore massively parallel scalable algorithms are
required. Within the context of numerical methods for the approximation of the elastodynamics equation
in computational seismology, spectral element methods are one of the most successfully employed tools,
in particular for large scale applications; see, for example, [107, 108, 46, 88, 95]. To enhance the flexibility
of spectral element methods, in recent years DG and DG spectral element (DGSE) methods has been
extensively used for elastic waves propagation, see e.g. [127, 126, 77, 106, 85, 29, 116, 16, 87, 120,
26, 14, 86], and [20] for an overview on the numerical modeling of seismic waves by DGSE methods.
Given their local nature, DG methods are particularly well suited to deal with highly heterogeneous
media, or in soil-structure interaction problems, where local refinements are needed to resolve the
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different spatial scales [115]. In the context of time integration of the (second-order) ordinary differential
systems stemming from spatial discretization of second-order hyperbolic partial differential equations
we also mention the DG time-integration scheme of [27]. Very recently, also PolyDG methods have
been shown to be perfectly suited to reduce the complexity of modelling wave propagation problems.
Indeed, on the one hand they further enhance the geometric flexibly offered by ‘classical’ DG schemes
on simplicial/tensor-product meshes, allowing for grids composed by arbitrarily shaped elements, with
possibly degenerating faces, thus reducing the computational costs related to the process of grid generation,
while maintaining the same degree of accuracy. On the other hand, they guarantee lower dispersion er-
rors compared to classical DG schemes on simplicial/tensor-product grids of comparable granularity, see [9].

Section 5 is concerned with the numerical approximation of Darcy flows through porous media enclosing
networks of fractures. The focus is on presenting a unified design and analysis of PolyDG methods on
general polytopic meshes with possibly degenerating edges/faces. The problem of developing efficient
numerical methods for fractured reservoir simulations has received increasing attention in the past decades,
being fundamental in many energy and environmental engineering applications, such as water resources
management, oil migration tracing, isolation of radioactive waste and groundwater contamination, for
example. Fractures are regions of the porous medium featuring a different porous structure, so that they
usually have a strong impact on the flow, possibly acting as barriers for the fluid (when they are filled
with low permeable material), or as preferential paths (when their permeability is higher than that of
the surrounding medium). Moreover, fractures are characterised by a very small width compared to
their length and to the size of the domain. For this reason, one popular modelling choice consists in
treating them as (d− 1)-dimensional interfaces between d-dimensional porous matrices, d = 2, 3. The
development of this kind of reduced models has been addressed for single-phase flows in several works,
see, e.g., [3, 2, 113, 93]. We will refer mainly to the model described in [113], see also [75], which considers
the simplified case of a single, non-immersed fracture. Here, the flow in the porous medium (bulk) is
assumed to be governed by Darcy’s law and a suitable reduced version of the law is formulated also on
the surface modelling the fracture. Physically consistent coupling conditions are then added (in strong
form) to account for the exchange of fluid between the fracture and the porous medium. We remark
that this model is able to handle both fractures with low and large permeability. Even if the use of this
kind of dimensionally reduced models avoids the need for extremely refined grids inside the fracture
domains, in realistic cases, the construction of a computational grid aligned with the fractures is still a
major issue. For example, fractured oil reservoirs can feature thousands of fractures, which are often
intersecting with small angles or nearly coincident [91]. In line with the discussion above, our aim is
then to take advantage of the intrinsic geometric flexibility of PolyDG methods for the approximation
of the coupled bulk-fracture problem, thus avoiding the limitations imposed by standard finite element
methods. We also point out that various other numerical methods supporting polytopic elements have
been employed in the literature for the approximation of this problem. In particular, we mention [21,
91], where a mixed approximation based on Mimetic Finite Differences has been explored; the works [42,
41], where a framework for treating flows in Discrete Fracture Networks based on the Virtual Element
Method has been introduced, and [65], where the Hybrid High-Order method has been employed. We
also mention that an alternative strategy consists in the use of non-conforming discretizations. Here, the
bulk grid can be chosen fairly regular since fractures are allowed to arbitrarily cut it. We refer to [75, 94,
89] for the use of the eXtended Finite Element Method and to [55] for the Cut Finite Element Method.
Notice that the geometric flexibility of PolyDG methods illustrated above is not the only motivation
to employ these kinds of techniques for addressing this problem. Another important issue is that the
discontinuous nature of the solution at the matrix-fracture interface is intrinsically captured in the choice
of the discrete spaces. Moreover, coupling conditions between bulk and fracture can be easily reformulated
using jump and average operators (basic tools for the construction of DG methods) and then naturally
embedded in the variational formulation. Furthermore, employing the abstract setting, based on the
flux-formulation, introduced in [33] for the unified analysis of all DG methods present in the literature, it
is possible to introduce a unified framework where, according to the desired approximation properties of
the model, one may resort to either a primal or mixed approximation for the problem in the bulk, as
well as to a primal or mixed approximation for the problem in the fracture network. In particular, the
primal discretizations are obtained using the Symmetric Interior Penalty DG method [149, 32], whereas
the mixed discretizations are based on employing the Local DG (LDG) method of [73], both in their
generalization to polytopic grids. Finally, we point out that, even if not addressed here, our formulation
can be extended to the case of networks of intersecting fractures, cf. [18] and Section 5.4.
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2 Theoretical framework of PolyDG methods

In this section we introduce the necessary notation and key analytical results required for the
definition and analysis of PolyDG approximations. In particular, we summarize the main theoretical
results concerning this class of methods contained in [62, 56, 6, 59, 56], where an hp-version interior
penalty PolyDG method for the numerical approximation of elliptic problems on polytopic meshes has
been proposed and analysed. The exploitation of grids consisting of general polytopic elements poses a
number of key challenges. Indeed, in contrast to the case when standard-shaped elements are employed,
polytopes may admit an arbitrary number of faces/edges and the measure of these faces/edges may
potentially be much smaller than the measure of the element itself. In [5, 62, 6] it is assumed that
the number of edges/faces of each mesh element is uniformly bounded. In [59, 56] this assumption is
no longer required (i.e., elements with an arbitrary number of possibly degenerating faces/edges are
admitted). However, this comes at the cost of adding an assumption (see Section 2.1 below) that may be
regarded as the natural generalization to polytopic grids of the classical shape-regularity assumption
[56]. For ease of presentation, we adopt the setting of [59, 56]; for the generalization to other classes
of polytopic meshes, we refer to the recent article [57]. In particular, in Section 2.1, we introduce the
notation related to the discretization of domains using polytopic elements and state the regularity
assumptions on the meshes. In Section 2.2 we define the DG discrete spaces and introduce standard
jump and average operators. Finally, in Section 2.3, starting from the mesh assumption of Section 2.1,
we state trace inverse inequalities and approximation results for general polytopic elements that are
sensitive to the type of edge/face degeneracy described above. We also remark that the capability of the
method of handling faces with arbitrarily small measure is intimately related to the correct choice of the
discontinuity-penalization function, which will be introduced in the following sections.

We will employ the following notation. For an open, bounded domain D ⊂ Rd, d = 2, 3, we denote
by Hs(D) the standard Sobolev space of order s, for a real number s ≥ 0. For s = 0, we write L2(D)
in lieu of H0(D). The usual norm on Hs(D) is denoted by || · ||Hs(D) and the usual seminorm by
| · |Hs(D). We denote the corresponding Sobolev spaces of vector-valued functions and symmetric tensors

by Hm(Ω) = [Hm(D)]d, Hm(D) = [Hm(D)]d×dsym , d = 2, 3, respectively. We also introduce the standard

space Hdiv(D) = {v : D → Rd : ||v||L2(D) + ||∇ · v||L2(D) <∞}. Given a decomposition of the domain
into a computational mesh Th, we denote by Hs(Th) the standard broken Sobolev space, equipped with
the broken norm || · ||s,Th . Furthermore, we denote by Pk(D) the space of polynomials of total degree
less than or equal to k ≥ 1 on D. The symbols . and & will signify that the inequalities hold up to
multiplicative constants that are independent of the discretization parameters, but might depend on the
physical parameters of the underlying problem.

2.1 Grid assumptions

Following [62, 56, 6], we introduce the notation related to the subdivision of the computational domain
Ω ⊂ Rd, d = 2, 3, by means of polytopic meshes. We consider classes of meshes Th made of disjoint open
polygonal/polyhedral elements E. For each element E ∈ Th, we denote by |E| its measure, hE its diameter
and we set h = maxE∈Th hE . With the aim of handling hanging nodes, we introduce the concept of mesh
interfaces, which are defined as the intersection of the (d − 1)-dimensional facets of two neighbouring
elements. We need now to distinguish between the case when d = 3 and d = 2:

• when d = 3, each interface consists of a general polygon, which we assume may be decomposed into
a set of co-planar triangles. We assume that a sub-triangulation of each interface is provided and
we denote the set of all these triangles by Fh. We then use the terminology face to refer to one of
the triangular elements in Fh;

• when d = 2, each interface simply consists of a line segment, so that the concepts of face and
interface are in this case coincident; however, we still denote by Fh the set of all faces.

Here, we note that Fh is always defined as a set of (d − 1)-dimensional simplices (triangles or line
segments).

In order to introduce the PolyDG formulation, it is useful to further subdivide the set Fh into

Fh = FIh ∪ FBh ,
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Figure 2: Two examples of polytopic-regular elements as in Definition 2.1.
Here, all the triangles SFE (coloured in teal) have height of size comparable
to the diameter hE . Note also that the element on the right is not covered
by the union of the simplices.

F

Figure 3: Example of an element
that violates polytopic-regularity: the
shape of the polygon does not allow
for the definition of a triangle SFE with
base F whose height is comparable to
the diameter hE .

where FIh is the set of interior faces and FBh is the set of faces lying on the boundary of the domain ∂Ω.
Moreover, if ∂Ω is split into the Dirichlet boundary ΓD and the Neumann boundary ΓN , we will further
decompose the set FBh = FDh ∪ FNh , where FDh and FNh are the boundary faces contained in ΓD and ΓN ,
respectively. Implicit in this definition is the assumption that the mesh Th conforms to the partition of ∂Ω.

Finally, given an element E ∈ Th, for any face F ⊂ ∂E, with F ∈ Fh, we define nF as the unit normal
vector on F which points outwards from E.

Next, we outline the key assumptions that the underlying polytopic mesh Th needs to satisfy in order
to derive suitable inverse inequalities and approximation results. To this end, we write SFE to denote a
d-dimensional simplex contained in E which shares a specific face F ⊂ ∂E, F ∈ Fh. With this notation
we introduce the following definition.

Definition 2.1. A family of meshes {Th}h is said to be polytopic-regular if, for any h and for any E ∈ Th,
there exists a set of non-overlapping (not necessarily shape-regular) d-dimensional simplices {SFE}F⊂∂E
contained in E, such that for all faces F ⊂ ∂E, the following condition holds

hE .
d|SFE |
|F |

, (1)

where the hidden constant is independent of the discretization parameters, the number of faces of the
element, and the face measure.

We remark that the union of simplices {SFE}F⊂∂E does not have to cover, in general, the whole
element E, that is ∪F⊂∂ES̄FE ⊆ Ē, see Figure 2 for an example. We also stress that this definition
does not require any restriction on either the number of faces per element or their relative measure. In
particular, it allows the size of a face |F |, F ⊂ ∂E, to be arbitrarily small compared to the diameter of
the element hE , provided that the height of the corresponding simplex SFE is comparable to hE . Figure 2
shows two examples of elements belonging to a polytopic-regular mesh, while Figure 3 shows an element
which may not satisfy the definition, for example, when the length of the vertical section of the boundary
in the lower right-hand corner tends to zero at a faster rate than the mesh size h. We refer to [56] for
more details.

Assumption 2.1. We assume that the family of meshes {Th}h is uniformly polytopic-regular.

This assumption will allow us to state the inverse trace estimate (2.4) below. The next definition and
assumption are instrumental for the validity of the approximation results (2.5) below.

Definition 2.2. [62, 56, 6, 59, 56] A covering T# = {TE} related to the polytopic mesh Th is a set of
shape-regular d-dimensional simplices TE , such that for each E ∈ Th, there exists a TE ∈ T# such that
E ( TE .

Assumption 2.2. [62, 56, 6, 59, 56] There exists a covering T# of Th (see Definition 2.2) and a positive
constant OΩ, independent of the mesh parameters, such that

max
E∈Th

card{E′ ∈ Th : E′ ∩ TE 6= ∅, TE ∈ T# s.t. E ⊂ TE} ≤ OΩ,
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and hTE . hE for each pair E ∈ Th and TE ∈ T#, with E ⊂ TE.

Assumption 2.2 implies that, when the computational mesh Th is refined, the amount of overlap
present in the covering T# remains bounded.

2.2 PolyDG discrete spaces

Given a polytopic mesh partition Th of the domain Ω, the corresponding scalar, vector-valued and
symmetric tensor-valued discontinuous finite element spaces are defined as

QDGh = {qh ∈ L2(Ω) : q|E ∈ PpE (E) ∀E ∈ Th}, (2)

WDG
h = {w ∈ [L2(Ω)]d : w|E ∈ [PpE (E)]d ∀E ∈ Th},

WDG
h = {w ∈ [L2(Ω)]d×dsym : w|E ∈ [PpE (E)]d×dsym ∀E ∈ Th},

where we assume that pE ≥ 1 for all E ∈ Th. To avoid technicalities, for the analysis, we assume that a
local bounded variation property holds for both the polynomial approximation degrees and the local mesh
sizes, cf. [122].

Remark 2.3. From the implementation point of view, an essential feature of DG methods is that the
local elemental polynomial spaces can be defined in the physical space, without the need to introduce a
mapping to a reference element, as is typically necessary for classical finite element methods. This allows
DG methods to naturally deal with general polytopic elements with polynomial degrees varying from one
element to the other. A possible approach for the definition of the basis functions was first proposed
in [62], based on the definition of the polynomial spaces over suitably defined bounding boxes of each
polytopic element. More precisely, given an element E ∈ Th, we can define its (for example) Cartesian
bounding box BE , such that the sides of BE are aligned with the Cartesian axes and Ē ⊆ B̄E . On the
Cartesian bounding box BE , we can then define a standard polynomial space, employing, for example,
tensor-product Legendre polynomials. Finally, the polynomial basis over the general polytopic element
may be defined by simply restricting the support of the basis functions to E; we refer to [56] for further
details. We also mention that another key aspect related to the implementation of DG methods is the
design of efficient numerical integration schemes over polytopic elements; this issue will be addressed in
detail in the forthcoming Section (3.1), where a quadrature-free approach for the efficient integration of
polynomial functions over polytopic domains will be discussed, following the recent work [7].

In order to efficiently deal with discontinuous functions, we now introduce average and jump operators
on a face, which play a central role in the design and analysis of all DG methods [33]. Let F ∈ FIh be
an interior face shared by the elements E±. We define n± to be the unit normal vectors on F pointing
exterior to E±, respectively. Then, for sufficiently regular scalar-valued, vector-valued, and tensor-valued
functions q, v, and τ , respectively, we define the standard average {·} and jump J·K operators on F as

{q} =
1

2
(q+ + q−), JqK = q+n+ + q−n−,

{v} =
1

2
(v+ + v−), JvK = v+ · n+ + v− · n−,

{τ} =
1

2
(τ+ + τ−), Jτ K = τ+n+ + τ−n−,

(3)

where the subscript ± on q, v, and τ denote the respective traces of the functions on F restricted to E±,
respectively. To tackle elastic wave propagation phenomena, we also need the following jump operator for
a sufficiently regular vector-valued function v:

J[v]K = v+ � n+ + v− � n−,

where v� n = (vn> + nv>)/2. Notice that with the above definition J[v]K is a d× d symmetric tensor.
On a boundary face F ∈ FBh we set analogously {q} = q, JqK = qn, {v} = v, JvK = v · n, J[v]K = v� n,
{τ} = τ , and Jτ K = τn, where n is the outward unit normal vector on ∂Ω, cf. [34, 33]. For future use,
we remark that on every F ∈ FIh we can use the definition of jump and average operators to write

JqvK = JvK{q}+ {v} · JqK.
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We also recall the identity: ∑
E∈Th

∫
∂E

qv · nE =

∫
FIh∪F

B
h

{v} · JqK +

∫
FIh

JvK{q}, (4)

cf. [32], where we have used the compact notation
∫
Fh =

∑
F∈Fh

∫
F

.

2.3 Trace inverse estimates on polytopic elements

Trace inverse estimates are one of the key tools employed to study the stability and error analysis
of DG-methods: they bound the norm of a polynomial on an element’s face/edge by the norm on the
element itself. In particular, Lemma 2.4 is required to establish the stability of the PolyDG approximation
of second-order elliptic partial differential equations. Trace inverse estimates on polytopic elements are
obtained under the polytopic-regular Assumption 2.1 as in [59], Lemma 4.1, and [25, 56]; the proof is
reported here for completeness.

Lemma 2.4. Let E be a polytope satisfying Assumption 2.1 and let q ∈ PpE (E). Then, we have

||q||2L2(∂E) .
p2
E

hE
||q||2L2(E), (5)

where the hidden constant depends on the dimension d, but it is independent of the discretization parameters,
i.e. the local mesh size hE and the local polynomial approximation degree pE, and the number of faces
that the element possesses.

Proof. The proof follows immediately if we apply ‘classical’ hp-version inverse estimate valid for generic
simplices, see, e.g., [148], to each simplex SFE ⊂ E, cf. Assumption 2.1, together with (1), i.e.,

||q||2L2(∂E) =
∑
F⊂∂E

||q||2L2(F ) . p2
E

∑
F⊂∂E

|F |
|SFE |

||q||2L2(SFE )

.
p2
E

hE
||q||2L2(

⋃
F⊂∂E S

F
E ) ≤

p2
E

hE
||q||2L2(E).

2.4 Polynomial approximation over polytopic elements

A crucial mathematical tool needed to study the a priori error analysis of PolyDG methods are
hp-interpolation estimates. In [62, 56, 6] standard results on simplices are extended to polytopic elements,
based on considering appropriate coverings and submeshes consisting of d-dimensional simplices (where
standard results can be applied) and using an appropriate extension operator. In [59] these results are
further extended in order to be successfully applied also in the case when the number of edges/faces is
unbounded. Here, we recall the results contained in [62, 56, 6, 59, 56].

Let E : Hs(Ω)→ Hs(Rd), s ≥ 0, be the continuous extension operator introduced by Stein in [131],
such that E (q)|Ω = q and ||E q||Hs(Rd) . ||q||Hs(Ω). Based on the existence of a suitable covering of the
polytopic mesh (see Definition 2.2)), we can state the following approximation result.

Lemma 2.5. [62, 6, 59, 56] Assume that Assumptions 2.1 and 2.2 are satisfied. Given E ∈ Th, let
TE ∈ T# be the corresponding simplex such that E ⊂ TE (see Definition 2.2). For q ∈ L2(Ω), such
that E q|TE ∈ HrE (TE), for some rE ≥ 0, there exists a sequence of approximations ΠpE

E q ∈ PpE (E),
pE = 0, 1, 2, . . ., of q satisfying

||q −ΠpE
E q||Hm(E) .

hsE−mE

prE−mE

||E q||HrE (TE), 0 ≤ m ≤ rE . (6)

Moreover, if rE ≥ 1 + d/2,

||q −ΠpE
E q||L2(∂E) .

h
sE−1/2
E

p
rE−1/2
E

||E q||HrE (TE). (7)

Here, sE = min(pE + 1, rE) and the hidden constants depend on the shape-regularity of TE, but are
independent of q, hE, pE and the number of faces per element.
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Proof. See [62] for a detailed proof of (6) and [59] for the proof of (7).

We note that the inequalities (5) and (7) hold on the whole boundary of E, and not just on one of its
edges/faces; this is of fundamental importance in the analysis when considering elements that contain an
arbitrary number of faces.

3 Computing integrals over polytopic mesh elements and mesh
interfaces

In this section we review the quadrature free approach for the efficient computation of the volume/face
integral terms appearing in PolyDG methods. We point out that our approach is completely general
and can be directly applied to other discretization schemes, such as VEM, HHO, Hybridizable DG, and
MFD, for example. We present the main idea of the algorithm and show that our integration approach
leads to a considerable improvement in the computational performance compared to classical quadrature
algorithms based on sub-tessellation, in both two– and three–dimensions.

3.1 Quadrature free algorithm

First, we recall the idea introduced by Chin, Lasserre, and Sukumar in [68] for the integration of
homogeneous function g over a polytopic domain P, where

• P ⊂ Rd,= 2, 3, is a closed polytope, whose boundary ∂P is defined by m (d − 1)–dimensional
faces Fi, i = 1, . . . ,m, cf. Figure 4. Each face Fi lies in a hyperplane Hi identified by a vector
ai ∈ Rd and a scalar number bi, such that

x ∈ Hi ⇐⇒ ai · x = bi, i = 1, . . . ,m.

We observe that ai, i = 1, . . . ,m, can be chosen as the unit outward normal vector to Fi, i = 1, . . . ,m,
respectively, relative to P.

• g : P → R is a homogeneous function of degree q ∈ R, i.e., for all λ > 0, g(λx) = λqg(x) for all
x ∈P.

Euler’s homogeneous function theorem [129] states that, if g is a homogeneous function of degree q ≥ 0,
then the following identity holds:

q g(x) = ∇g(x) · x ∀x ∈P. (8)

We point out that, in view of the application to polygonal/polyhedral finite element methods, we
are interested in the integration of a particular class of homogeneous functions, namely polynomial
homogeneous functions of the form

g(x) = xk1
1 x

k2
2 · · ·x

kd
d , where kn ∈ N0, for n = 1, . . . , d, (9)

that is a homogeneous function of degree q = k1 + · · ·+ kd, and the general partial derivative ∂g
∂xn

is still
a homogeneous function of degree q − 1.

Next we recall the generalized Stokes’ theorem, cf. [138]: given a generic vector field X : P → Rd, we
have that ∫

P

(∇ ·X(x))g(x) +

∫
P

∇g(x) ·X(x) =

∫
∂P

X(x) · n(x)g(x), (10)

where n is the unit outward normal vector to P. Selecting X = x in (10), and employing (8), gives∫
P

g(x) =
1

d+ q

∫
∂P

x · n(x)g(x) =
1

d+ q

m∑
i=1

bi

∫
Fi

g(x) . (11)

Equation (11) states that the integral of a homogeneous function g over a polytope P can be computed
by integrating the same function over the boundary faces Fi ⊂ ∂P, i = 1, . . . ,m. By recursion, we can
further reduce each term

∫
Fi
g(x), i = 1, . . . ,m, to the integration over ∂Fi, i = 1, . . . ,m, respectively.

To this end, Stokes’ theorem needs to be applied on the hyperplane Hi, i = 1, . . . ,m, in which each
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Figure 4: Left: Example of a two–dimensional polytope P and its face Fi. The hyperplane Hi is defined by the local
origin x0,i and the vector ei1. Right: the dodecahedron P with pentagonal faces and the face Fi ⊂ ∂P with unit outward
normal vector ni. Here, Fi has five edges Fij , j = 1, . . . , 5, and five unit outward normal vectors nij , j = 1, . . . , 5, lying on
the plane Hi. The hyperplane Hi is identified by the local origin x0,i and the orthonormal vectors ei1, ei2. Figure taken
from [7].

Fi, i = 1, . . . ,m, lies, respectively. In order to proceed, let γ : Rd−1 → Rd be the function which expresses
a generic point x̃ = (x̃1, . . . , x̃d−1)> ∈ Rd−1 as a point in Rd that lies on Hi, i = 1, . . . ,m, i.e.,

x̃ 7−→ γ(x̃) = x0,i +

d−1∑
n=1

x̃nein, with ein ∈ Rd, ein · eim = δnm.

Here, x0,i ∈ Hi, i = 1, . . . ,m, is an arbitrary point which represents the origin of the coordinate system
on Hi, and {ein}d−1

n=1 is an orthonormal basis on Hi, i = 1, . . . ,m; see Figure 4. We observe that x0,i

does not have to lie inside Fi, i = 1, . . . ,m. By defining F̃i ⊂ Rd−1 such that γ(F̃i) = Fi, i = 1, . . . ,m,
we obtain ∫

Fi

g(x) =

∫
F̃i

g(γ(x̃)), i = 1, . . . ,m.

It is easy to prove that, writing Fij ⊂ ∂Fi j = 1, . . . ,mi, to denote the vertices/edges of Fi, i = 1, . . . ,m,
for d = 2, 3, respectively, the following identity holds

ñij = E>nij , i = 1, . . . ,m, j = 1, . . . ,mi,

where nij is the unit outward normal vectors to Fij lying in Hi, E ∈ Rd×(d−1), whose columns are the

vectors {ein}d−1
n=1, i = 1, . . . ,m, F̃ij ⊂ ∂F̃i is the preimage of Fij with respect to the map γ, and ñij

are the corresponding unit outward normal vectors; we refer to [7] for more details. Next we recall the
following result.

Proposition 3.1. [7, Proposition 1] Let Fi, i = 1, . . . ,m, be a face of the polytope P, and let Fij,
j = 1, . . . ,mi, be the planar/straight faces/edges such that ∂Fi = ∪mij=1Fij for some mi ∈ N. Then, for
any homogeneous function g, of degree q ≥ 0, the following identity holds∫

Fi

g(x) =
1

d− 1 + q

(mi∑
j=1

dij

∫
Fij

g(x) +

∫
Fi

x0,i · ∇g(x)
)
,

where dij denotes the Euclidean distance between Fij and x0,i, x0,i ∈ Hi, is arbitrary, i = 1, . . . ,m.

Using Proposition 3.1, together with equation (11), we obtain the following identity∫
P

g(x) =
1

d+ q

m∑
i=1

bi
d− 1 + q

(mi∑
j=1

dij

∫
Fij

g(x) +

∫
Fi

x0,i · ∇g(x)
)
, (12)

where we recall that ∂P = ∪mi=1Fi and ∂Fi = ∪mij=1Fij , for i = 1, . . . ,m. We point out that in two-
dimensions, i.e., d = 2, then Fij is a point and (12) states that the integral of g on P can be computed
by vertex-evaluations of the integrand plus a line integration of the partial derivative of g. If d = 3 we
can apply Stokes’ Theorem recursively to

∫
Fij

g(x). We point out that, whenever g is a homogeneous

polynomial function of the form (9), so that the derivatives of g(·) are homogeneous polynomial functions
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Algorithm 1 I(N, E , k1, . . . , kd) =
∫
E x

k1
1 . . . xkdd

if N = 0 (E = (v1, . . . , vd) ∈ Rd is a point)

return I(N, E , k1, . . . , kd) = vk1
1 · · · v

kd
d ;

else if 1 ≤ N ≤ d− 1 (E is a point if d = 1 or an edge if d = 2 or a face if d = 3)

I(N, E , k1, . . . , kd) =
1

N +
∑d
n=1 kn

( m∑
i=1

di I(N − 1, Ei, k1, . . . , kd)

+ x0,1 k1 I(N, E , k1 − 1, k2, . . . , kd)

+ · · ·+ x0,d kd I(N, E , k1, . . . , kd − 1)
)

;

else if N = d (E is an interval if d = 1 or a polygon if d = 2 or a polyhedron if d = 3)

I(N, E , k1, . . . , kd) =
1

N +
∑d
n=1 kn

( m∑
i=1

bi I(N − 1, Ei, k1, . . . , kd)
)
.

end if

N = 3 N = 2 N = 1 N = 0

d = 3
E = P E = Fi ⊂ ∂P E = Fij ⊂ ∂Fi E = Fijk ⊂ ∂Fij

is a polyhedron is a polygon is an edge is a point

d = 2
E = P E = Fi ⊂ ∂P E = Fij ⊂ ∂Fi

is a polygon is an edge is a point

d = 1
E = P E = Fi ⊂ ∂P

is an interval is a point

Table 1: Polytopic domains of integration E as a function of the dimension d, cf. Algorithm 1.

as well, it is possible to recursively apply formula (12) to the terms involving the integration of the
derivatives of g. With this observation in mind, we define the function that returns the integral of the
polynomial xk1

1 . . . xkdd over E as

I(N, E , k1, . . . , kd) =

∫
E
xk1

1 . . . xkdd ,

where E ⊂ Rd, d = 2, 3, can be a N -polytopic domain of integration, with N = 1, . . . , d, ∂E = ∪mi=1Ei,
where each Ei ⊂ Rd is a (N − 1)-polytopic domain. When N = d and d = 2, 3, Ei, i = 1, . . . ,m, will
be an edge or a face, respectively; see Table 1 for details. According to Proposition 3.1, the recursive
definition of the function I(·, ·, . . . , ·) is given in Algorithm 1. We point out that the computational
complexity of Algorithm 1 depends in general on the number of recursive calls of the function I(·, ·, . . . , ·);
a detail discussion on the FLOPS required by Algorithm 2 and on optimization strategies to improve the
computational complexity of Algorithm 1 are discussed in [7]. Here, we just remark that in the context of
employing the quadrature free approach within a polygonal finite element method, we are not interested
in integrating a single monomial function, but instead an entire family of monomials, which, for example,
form a basis for the space of polynomials of a given degree over a given polytopic element E ∈ Th. For
example, when d = 2, let us consider the evaluation of∫

E

xk1yk2 ∀ k1, k2 ≥ 0, k1 + k2 ≤ p. (13)

As shown in [7], when employing Algorithm 1 with an with an optimal choice of the points which define
the origin of the coordinate system on each element facet, the total number of FLOPs required for
the computation of (13) is approximately O(p3), as p increases. To improve efficiency, an alternative
approach, cf. Algorithms 2 and 3, are based on the observation that, using the notation of Algorithm 1, if
the values of I(N − 1, Ej , k1, . . . , kd), j = 1, . . . ,m, I(N, E , k1 − 1, . . . , kd) . . . I(N, E , k1, . . . , kd − 1), for
1 ≤ N ≤ d− 1, in Algorithm 1, have already been computed, then the computation of I(N, E , k1, . . . , kd)
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Algorithm 2 Algorithm for integrating all monomials up to order p over E
∂E = {E1, . . . , Em} where Ei ⊂ ∂E ;
F = FaceIntegrals(d− 1, E1, . . . , Em, k1, . . . , kd);, cf. Algorithm 3
for a1 = 0 : k1, . . . , ad = 0 : kd; k1 + k2 + . . .+ kd ≤ p do

V (a1, . . . , ad) = 1
d+

∑d
n=1 an

∑m
i=1 biF (a1, . . . , ad, i);

end for

Algorithm 3 Algorithm F = FaceIntegrals(N, E1, . . . , Em, k1, . . . , kd);

F (−1 : k1, . . . ,−1 : kd, 1 : m) = 0;
for i=1:m do

choose x0 as the first vertex of Ei;
∂Ei = {Ei1, . . . , Eimi} where Eij ⊂ ∂Ei, j = 1, . . . ,mi;
if N − 1 > 0 then

E = FaceIntegrals(N − 1, Ei1, . . . , Eimi , k1, . . . , kd);
else if N-1=0 (Eij = (v1, . . . , vd) ∈ Rd is a point) then

E(a1, . . . , ad, j) = va1
1 . . . vadd ∀ 0 ≤ an ≤ kn, n = 1, . . . , d, j = 1, . . . ,mi;

end if
for a1 = 0 : k1, . . . , ad = 0 : kd; k1 + k2 + . . .+ kd ≤ p do

F (a1, . . . , ad, i) =
1

N +
∑d
n=1 an

(mi∑
j=1

dijE(a1, . . . , ad, j) + x0,1k1F (a1 − 1, . . . , ad, i)

+ · · ·+ x0,dkdF (a1, . . . , ad − 1, i)
)

;

end for
end for

is extremely cheap. Indeed, since we must store the integrals of all the monomials on E anyway, we can
start by computing and storing

∫
E
xk1yk2 related to the lower degrees k1, k2 and N = 1, then exploit

these values in order to compute the integrals with higher degrees k1, k2 and higher dimension N of the
integration domain E . We remark that, in Algorithm 3, dij represents the Euclidean distance between Eij
and x0, j = 1, . . . ,mij .

3.2 Volume and interface integrals over polytopic mesh elements

To fix the ideas, we restrict our discussion to the two-dimensional scalar case, but note that the
three-dimensional and vector-/tensor-valued cases follow in a completely analogous manner. Let {φi}Nhi=1

be a basis for the discrete space QDGh defined as in (2) whose dimension is Nh. For the construction of
the discrete space QDGh we can exploit, for example, the approach presented in [62], based on employing
polynomial spaces defined over the bounding box of each element, cf. Remark 2.3. More precisely, given
an element E ∈ Th, we first construct the Cartesian bounding box BE , such that E ⊂ BE and define a
linear map between FE : B̂ → BE such that

FE : x̂ ∈ B̂ 7−→ FE(x̂) = JEx̂+ tE , (14)

where B̂ = (−1, 1)d and JE ∈ Rd×d is the (diagonal) Jacobi matrix of the transformation, and tE ∈ Rd is
the translation between the point 0 ∈ B̂ and the baricenter of the bounded box BE , see Figure 5.

We first discuss the application of Algorithm 2 for the efficient computation of the local volume
integrals over polytopic mesh elements, focusing on the local mass and stiffness volume matrices defined
as

ME
i,j =

∫
Ω

φi,Eφj,E , VE
i,j =

∫
Ω

∇φi,E · ∇φj,E , i, j = 1, . . . , NpE , (15)

respectively, for all E ∈ Th. Here, NpE is the dimension of the local discrete space, and φi,E and φj,E are
the restriction to E of φi and φj , respectively. Employing the transformation FE given in (14) we have
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Figure 5: Example of a polygonal element E ∈ Th, the relative bounding box BE , the map FE and Ê = F−1
E (E). Figure

taken from [7].

for the mass matrix

ME
i,j =

∫
E

φi,Eφj,E =

∫
Ê

φ̂iφ̂j |JE |, i, j = 1, . . . , NpE ,

where Ê = F−1
E (E) ⊂ B̂, see Figure 5, and the Jacobian of the transformation FE is constant and is

given by |JE | = (JE)1,1(JE)2,2, thanks to the definition of the map (14).

In order to employ Algorithm 2, we need to identify the coefficients of the homogeneous polynomial
expansion for the function φ̂i(x̂, ŷ)φ̂j(x̂, ŷ). We can write, for example, any shape function φ̂ = φ̂i(x̂, ŷ) as

the product of one–dimensional Legendre polynomial Li, i.e., φ̂i(x̂, ŷ) = Li1(x̂)Li2(ŷ), and each Legendre
polynomial can be expanded as

Li1(x̂) =

i1∑
m=0

Ci1,m x̂m, Li2(ŷ) =

i2∑
n=0

Ci2,n ŷ
n.

Therefore, we have

ME
i,j =

∫
Ê

( i1∑
m=0

Ci1,mx̂
m
)( i2∑

n=0

Ci2,nŷ
n
)( j1∑

s=0

Cj1,sx̂
s
)( j2∑

r=0

Cj2,rŷ
r
)
|JE |

=

∫
Ê

(i1+j1∑
k=0

Ci1,j1,kx̂k
)(i2+j2∑

l=0

Ci2,j2,lŷl
)
|JE |

=

i1+j1∑
k=0

i2+j2∑
l=0

Ci1,j1,k Ci2,j2,l |JE |
∫
Ê

x̂kŷl,

where we have defined the compact notation

Ci,j,k =
∑

n+m=k

(
Ci,n Cj,m

)
, for 0 ≤ i, j ≤ pE , 0 ≤ k ≤ i+ j, (16)

and where we stress that the coefficients Ci,j,k can be evaluated, once and for all, independently of the
polygonal element E.

Concerning the general element of the volume matrix VE
i,j , cf. (15), we can proceed as before; indeed,

following [7], we obtain

VE
i,j =

i1+j1−2∑
k=0

i2+j2∑
l=0

C′i1,j1,k Ci2,j2,l (J−1
E )2

1,1|JE |
∫
Ê

x̂kŷl

+

i1+j1∑
k=0

i2+j2−2∑
l=0

Ci1,j1,k C′i2,j2,l (J−1
E )2

2,2|JE |
∫
Ê

x̂kŷl,
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where Ci,j,k is defined in (16), and

C′i,j,k =
∑

n+m=k

C ′i,n C
′
j,m, 1 ≤ i, j ≤ pE , for 0 ≤ k ≤ i+ j − 2.

Here, C ′i,n = (n+ 1)Ci,n+1, C ′j,m = (m+ 1)Cj,m+1 are the expansion coefficients of the derivatives of the
Legendre polynomials which are again computable independent of the element E, E ∈ Th, i.e.,

L′0(x̂) = 0, L′i(x̂) =

i−1∑
m=0

(m+ 1)Ci,m+1 x̂
m =

i−1∑
m=0

C ′i,m x̂m, for i > 0.

We next recall how to compute the key terms that arise in the interface integrals when PolyDG
methods are employed for the numerical approximation of second-order partial differential equations. As
before, we can transform the integral over a physical face F ⊂ ∂E to the corresponding integral over the
face F̂ = F−1

E (F ) ⊂ ∂Ê on the reference rectangular element Ê. From the definition of the jump and
average operators, cf. (3), on each face F ∈ FIh shared by the elements E+ and E− we need to assemble
contributions of the form

S
±/∓
i,j =

∫
F

(φi,E±n±) · (φj,E∓n∓), i = 1, . . . , NpE± , j = 1, . . . , NpE∓ ,

I
±/∓
i,j =

1

2

∫
F

(∇φi,E± · n±) φj,E∓ , i = 1, . . . , NpE± , j = 1, . . . , NpE∓ .

Analogously, on the boundary face F ∈ FBh belonging to E+ ∈ Th we only have to compute

S
+/+
i,j =

∫
F

φi,E+ φj,E+ , I
+/+
i,j =

∫
F

(∇φi,E+ · n+) φj,E+ ,

for i, j = 1, . . . , NpE+ . We next recall how to efficiently compute terms of the form

S
+/+
i,j =

∫
F

(φi,E+n+) · (φj,E+n+) =

∫
F

φi,E+φj,E+ ,

S
+/−
i,j =

∫
F

(φi,E+n+) · (φj,E−n−) = −
∫
F

φi,E+φj,E− ,

and refer to [7] for further details and discussion on the efficient computation of the terms I
±/∓
i,j . Reasoning

as before, we obtain

S
+/+
i,j =

i1+j1∑
k=0

i2+j2∑
l=0

Ci1,j1,k Ci2,j2,l JF+

∫
F̂+

x̂kŷl,

S
+/−
i,j = −

i1+j1∑
k=0

i2+j2∑
l=0

X̃i1,j1,k Ỹi2,j2,l JF+

∫
F̂+

x̂kŷl,

(17)

where JF+ is defined as JF+ = ‖J−>E+ n̂F̂+‖|JE+ | and n̂F̂+ is the unit outward normal vector to F̂+. In

(17), the coefficients Ci,j,k are defined as in (16), whereas X̃ and Ỹ are defined as

X̃i,j,k =
∑

n+m=k

(
Ci,n X̃j,m

)
Ỹi,j,k =

∑
n+m=k

(
Ci,n Ỹj,m

)
 for 0 ≤ i ≤ pE+ , 0 ≤ j ≤ pE− , 0 ≤ k ≤ i+ j.

Here, as before, Ci,n are the coefficients of the homogeneous function expansion of the Legendre polynomials

in (−1, 1), while X̃j,m and Ỹj,m are defined by

X̃j,m =

j∑
r=m

Cj,r

(
r

m

)
(J̃1,1)m (t̃1)r−m

Ỹj,m =

j∑
r=m

Cj,r

(
r

m

)
(J̃2,2)m (t̃2)r−m


for 0 ≤ m ≤ pE− , m ≤ j ≤ pE− .
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Figure 6: Example of a polygonal elements E± ∈ Th, together with the bounded boxes BE± , and the local maps

FE± : Ê → E± for the common face F ⊂ E±. Figure taken from [7].

Pa Pb

Figure 7: Example 1. Domains of integration P: triangle (Pa, left) and an irregular polygon with 15 faces (Pb, right).

Finally, in the definition above t̃1 and t̃2 are the two components of the vector t̃ of the composite map
F̃(x̂) = F−1

E−(FE+(x̂)), cf. Figure 6, defined as

F̃(x̂) = J−1
E−(JE+ x̂ + tE+)− J−1

E−tE− = J−1
E−JE+︸ ︷︷ ︸

J̃

x̂ + J−1
E−(tE+ − tE−)︸ ︷︷ ︸

t̃

.

We conclude this section by observing that for the computation of the local forcing term∫
E

f(x)φi,E(x)dx, i = 1, . . . , NpE , (18)

the quadrature free method allows to exactly evaluate (18) when f is a polynomial function. If f is a
general function, an explicit polynomial approximation of f is required.

3.3 Numerical results

The aim of this section is to present some numerical computations to assess the practical performance
of the quadrature free algorithm.

3.3.1 Example 1: Integration of bivariate polynomials over a given polygon

We first present some numerical results in order to test the performance of the method proposed in
Algorithm 1 for the integration of bivariate polynomials over a given polygon P ⊂ R2 based on employing
the recursive algorithm described in Section 3.1, i.e.,

∫
P xk yl = I(2,P, k, l). For the sake of comparison,

we also present the analogous computations carried out based on employing the sub-tessellation technique.
In this case, the domain of integration P is firstly decomposed into triangles; then on each sub-triangle
we employ a tensor product Gauss quadrature rule consisting of N 2 nodes and weights, which is defined
based on application of the Duffy transformation. In order to guarantee the exact integration of xkyl,
we select N =

⌈
k+l

2

⌉
+ 1. In order to compare both approaches, we integrate bivariate polynomials of

different degrees on the triangle and the irregular polygon depicted in Figure 7; see Table 2 for the list of
vertex coordinates for both domains.

In Figures 8 and 9 we compare the CPU time (in seconds) taken to evaluate the underlying integral
(on Pa and Pb, respectively) up to machine precision, using the quadrature free algorithm and the sub-
tessellation method. We remark that the times for the quadrature free algorithm include the computation
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vertex (x, y)-coordinates

Pa

1 (−1.000000000000000, −1.000000000000000)
2 (1.000000000000000, 0.000000000000000)
3 (−1.000000000000000, 1.000000000000000)

Pb

1 (0.413058522141662 , 0.781696234443715)
2 (0.024879797655533 , 0.415324992429711)
3 (−0.082799691823524, 0.688810136531751)
4 (−0.533191422779328, 1.000000000000000)
5 (−0.553573605852999, 0.580958514816226)
6 (−0.972432940212767, 0.734117068746903)
7 (−1.000000000000000, 0.238078507228890)
8 (−0.789986179147920, 0.012425068086110)
9 (−0.627452906935866, −0.636532897516109)
10 (−0.452662174765764, −1.000000000000000)
11 (−0.069106265580153, −0.289054989277619)
12 (0.141448047807069, −0.464417038155806)
13 (1.000000000000000, −0.245698820584615)
14 (0.363704451489016, −0.134079689960635)
15 (0.627086024018283, −0.110940423607648)

Table 2: Example 1. Vertex coordinates of polygons Pa and Pb of Figure 7.
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Algorithm 1 Sub-tessellation

Figure 8: Example 1. CPU times as a function of the integrand. Integration domain Pa of Figure 7.

of bi, ni, and dij , j = 1, . . . ,mi, i = 1, . . . ,m. The times for sub-tessellation method include the one-time
computation of the N 2 nodes and weights on the reference triangle, the time required for sub-tessellation,
as well as the time needed for numerical integration on each sub-triangle. From the results reported
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Figure 9: Example 1. CPU times as a function of the integrand. Integration domain Pb of Figure 7.

in Figures 8 and 9 it is clear that the quadrature free algorithm outperforms sub-tessellation; indeed,
for both domains of integration, we observe an improvement in the CPU-time required to evaluate the
underlying integral of between one- to two-orders of magnitude when the former approach is employed.
Moreover, even when the integration domain consists of a triangle (Pa), the quadrature free algorithm
still outperforms classical quadrature rules, even though in this case no sub-tessellation is undertaken.

3.3.2 Example 2: Computation of the PolyDG stiffness and mass matrices in three-
dimensions

We now compare the performance of the quadrature free algorithm and the sub-tessellation method
when employed to assemble the stiffness and mass matrices for the PolyDG approximation of a second-order
elliptic diffusion-reaction problem in three-dimensions. Here, the polyhedral grids have been obtained
by agglomeration starting from a partition Ω consisting of hexahedral elements. The agglomeration is
performed based on employing the METIS library for graph partitioning, cf., for example, [103, 104] so
that each polyhedral element is typically non-convex. In Figure 10 we show three typical examples of
polyhedral elements generated from the agglomeration process.

We now compare the CPU time required by the quadrature free method with the quadrature
integration/sub-tessellation approach to assemble the volume and mass matrices, denoted by V and M,
respectively, as well for the computation of the interface matrices S and I; cf. Section 3.2. We point
out that, to assemble the volume and mass matrices based on employing the sub-tessellation algorithm,
we exploit the fact that the polyhedral mesh is obtained by agglomeration of hexahedral elements, so
that the sub-tessellation into hexahedra of each polyhedral mesh element is already given. In Figure 11
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Figure 10: Example 2: Typical agglomerated element shapes.
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Figure 11: Example 2. Comparison of the CPU time needed to assemble the volume matrices M and V (left) and the
interface matrices S and I (right) for a three–dimensional problem by using the proposed quadrature free method and the
classical sub-tessellation method. Each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3, 4, 5} and
measuring the CPU time by varying the number of elements (Ne) of the underlying mesh.
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Figure 12: Example 2. Comparison of the CPU time needed to assemble the volume matrices M and V (left) and the
interface matrices S and I (right) for a three–dimensional problem by using the proposed quadrature free method and the
classical sub-tessellation method. Each line is obtained by fixing the polynomial approximation degree p ∈ {1, 2, 3, 4, 5} and
measuring the CPU time by varying the number of elements (Ne) of the underlying mesh.

(left) we report the CPU time needed for the computation of the volume matrices V and M, for a set of
agglomerated polyhedral grids where we fix the polynomial approximation degree p ∈ {1, 2, 3, 4, 5} and
we vary the number of elements Ne ∈ {5, 40, 320, 2560, 20480}; in all cases the agglomerated elements
are formed from approximately 10 (fine) hexahedral elements. The analogous results obtained based
on computing the interface matrices S and I (right) are shown in Figure 11 (right); furthermore, these
timings are compared on a log-log plot in Figure 12. From the computations shown in Figures 11
and 12, we clearly observe that the quadrature free method substantially outperforms the sub-tessellation
quadrature approach, both for the computation of the volume and the face integrals. We refer to [7] for
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additional numerical computations, where the issue of computational complexity is also addressed.

4 PolyDG methods for seismic wave propagation

In this section we present an overview of high-order PolyDG methods for the approximate solution of
wave propagation problems modeled by the elastodynamics equations on computational meshes consisting
of polytopic elements. In particular, we discuss the model problem, analyze the well-posedness of the
semidiscrete formulation and derive an hp–version a priori error bound. The theoretical estimates are
then validated through two-dimensional numerical computations carried out on both benchmark, as well
as real test cases. The dispersion analysis, in two-dimensions, is not reported here, for the sake of brevity,
and can be found in [9], where it has been shown that polygonal meshes behave similarly to classical
simplicial/quadrilateral grids in terms of dispersion errors. For the sake of brevity, we focus here on
the elastodynamics equation; more sophisticated model problems can be successfully treated as well,
for example, see [14, 86] and [28], respectively, for elasto-acoustic coupling and non-linear sound waves
phenomena.

4.1 Model problem and its PolyDG semidiscretization

We consider an elastic body occupying an open, bounded polyhedral domain Ω ⊂ Rd, d = 2, 3,
and denote by n the outward normal unit vector to its boundary. The boundary ∂Ω is assumed to be
composed of two disjoint portions ΓD 6= ∅ and ΓN , i.e., ΓD ∩ ΓN = ∅. For a final observation time T > 0,
let u : Ω× [0, T ]→ Rd be the displacement vector. The equations of the initial/boundary-value problem
of (linear) elastodynamics are given by

ρü−∇ · σ = f, in Ω× (0, T ],

u = 0, on ΓD × (0, T ],

σn = 0, on ΓN × (0, T ],

u = u0, in Ω× {0},
u̇ = u1, in Ω× {0}.

(19)

Here, f ∈ L2((0, T ]; L2(Ω)) is the (given) external load and u0 ∈ H1
0,ΓD

(Ω) and u1 ∈ L2(Ω) are (given)

initial data, where H1
0,ΓD

(Ω) denotes the space of vector-valued functions in H1(Ω) whose trace vanishes on
ΓD. Finally, ρ ∈ L∞(Ω) is the medium density. As constitutive law for the stress tensor σ : Ω× [0, T ]→ S,
S being the space of d×d symmetric real-valued matrices, d = 2, 3, we assume the generalized Hooke’s law,
i.e., σ(u) = Dε(u), where the fourth order stiffness tensor D : S→ S is defined as Dτ = 2µτ + λtr(τ )I
for any τ ∈ S, and ε(u) is the symmetric gradient of u, i.e., ε(u) = 1

2

(
∇u + ∇u>

)
. Here, I is the

identity tensor, tr(·) represents the trace operator, and λ, µ ∈ L∞(Ω) are the first and the second Lamé
parameters, respectively. We assume that D is symmetric, positive definite and uniformly bounded over Ω.
We recall that the compressional (P) and shear (S) wave velocities can be obtained through the relations
cP =

√
(λ+ 2µ)/ρ and cS =

√
µ/ρ, respectively. The weak formulation of problem (19) reads as follows:

for all t ∈ (0, T ] find u = u(t) ∈ H1
0,ΓD

(Ω) such that:
∫

Ω

ρü · v +

∫
Ω

Dε(u) : ε(v) =

∫
Ω

f · v ∀v ∈ H1
0,ΓD (Ω),

u(·, 0) = u0, u̇(·, 0) = u1.
(20)

Problem (20) is well posed and its unique solution u ∈ C((0, T ]; H1
0,ΓD

(Ω)) ∩ C1((0, T ]; L2(Ω)), see [125,
Theorem 8-3.1].

Based on employing the notation of Section 2, we introduce the PolyDG semidiscretization of
problem (20): for all t ∈ (0, T ], find uh = uh(t) ∈WDG

h such that∫
Ω

ρ üh · v + B(uh,v) =

∫
Ω

f · v ∀v ∈WDG
h , (21)

supplemented with the initial conditions uh(0) = u0
h and u̇h(0) = u1

h, where u0
h,u

1
h ∈W

DG
h are suitable

approximations of u0 and u1, respectively. Here, we also assume that D and ρ are element-wise constant
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over the mesh Th. The bilinear form B(·, ·) : WDG
h ×WDG

h → R is defined as

B(u,v) =

∫
Ω

σ(u) : ε(v) +

∫
Ω

σ(u) : R(J[v]K) +

∫
Ω

R(J[u]K) : σ(v) +

∫
FIh∪F

D
h

η J[u]K : J[v]K (22)

for all u,v ∈ WDG
h . Here, R(·) : L1(FIh ∪ FDh ) →WDG

h is the lifting operator of the traces of d × d
symmetric tensors defined as∫

Ω

R(J[w]K) : σ(v) = −
∫
FIh∪F

D
h

J[w]K : {σ(v)} ∀v ∈WDG
h . (23)

The penalization function η : Fh → R+ in (22) is defined face-wise as

η = σ0DE


max

E∈{E1,E2}

(
p2
E

hE

)
, F ∈ FIh , F ⊂ ∂E1 ∩ ∂E2,

p2
E

hE
, F ∈ FDh , F ⊂ ∂E ∩ ΓD.

(24)

where DE = |(D|E)1/2|22 for any E ∈ Th (here | · |2 is the operator norm induced by the l2-norm on Rn,
where n denotes the dimension of the space of symmetric second-order tensors, i.e., n = 3 if d = 2, n = 6
if d = 3), and σ0 is a positive parameter at our disposal.

4.2 Well-posedness, stability and error analysis of the semidiscrete formula-
tion

In this section we prove stability and error estimates for the PolyDG semidiscretization defined in

(21). To this end, we define the space W̃
DG

h = WDG
h ⊕H1

0,ΓD
(Ω) endowed with the following DG norm

‖v‖2DG =
∥∥∥D 1

2 ε(v)
∥∥∥2

L2(Ω)
+
∥∥∥η 1

2 J[v]K
∥∥∥2

L2(FIh∪F
D
h )

∀v ∈ W̃
DG

h ;

here, we have used the compact notation ‖ · ‖2
L2(FIh∪F

D
h )

=
∑
F∈FIh∪F

D
h
‖ · ‖2L2(F ). From the preliminary

results of Section 2 we immediately have the following estimates; we refer to [9] for more details.

Lemma 4.1. Assume that Th satisfies Assumption 2.1. Then, for any w ∈WDG
h we have that∥∥∥η−1/2{w}

∥∥∥2

L2(FIh∪F
D
h )

.
1

σ0
‖w‖L2(Ω) ,

where the hidden constant is independent of pE, |E|, and w, and where σ0 is the constant appearing in
the definition of the penalty function, cf. (24).

Lemma 4.2. Assume that Th satisfies Assumption 2.1. For any v ∈ W̃
DG

h we have that

‖R(J[v]K)‖2L2(Ω) .
1

σ0
‖η 1

2 J[v]K‖2L2(FIh∪F
D
h ),

where σ0 is the constant appearing in the definition of the penalty function, cf. (24).

Proof. The proof follows by observing that if v ∈ H1
0,ΓD

(Ω), then J[v]K = 0 and the estimate is trivial. If

v ∈WDG
h , by using the definition of the lifting operator (23) together with Lemma 4.1 the result follows

immediately.

Based on employing the above results and standard DG arguments, the well-posedness of the PolyDG
formulation (21) can be established.

Lemma 4.3. Assume that Th satisfies Assumption 2.1,and that the constant σ0 appearing in the definition
(24) of the penalization function is chosen sufficiently large. Then,

B(v, v) & ‖v‖2DG , B(v,w) . ‖v‖DG ‖w‖DG ∀v,w ∈ W̃
DG

h .
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We next provide a stability result of the semidiscrete PolyDG formulation (21) in the following energy
norm

‖uh(t)‖2E = ‖ρ 1
2 u̇h(t)‖2L2(Ω) + ‖uh(t)‖2DG ∀t ∈ (0, T ]. (25)

Proposition 4.4. Let f ∈ L2((0, T ];L2(Ω)) and uh ∈ C2((0, T ];WDG
h ) be the approximate solution

of (21) obtained with the stability constant σ0 defined in (24) chosen sufficiently large. Then,

‖uh(t)‖E . ‖u0
h‖E +

t∫
0

‖f(τ)‖L2(Ω), 0 < t ≤ T.

Proof. Selecting v = u̇h ∈ WDG
h in (21), integrating in time between 0 and t, employing Lemma 4.1

together with the arithmetic-geometric inequality, and choosing σ0 large enough, we get

‖uh‖2E + 2

∫
Ω

R(J[uh]K) : σ(uh) & ‖uh‖2E.

Moreover, from Lemma 4.2 it also follows that

2

∣∣∣∣∫
Ω

R(J[uh]K0) : σ(u0
h)

∣∣∣∣ . 1
√
σ0
‖η 1

2 J[u0
h]K‖L2(FIh∪F

D
h )

∥∥σ(u0
h)
∥∥
L2(Ω)

.
1
√
σ0
‖u0

h‖2E.

Therefore, substituting these inequalities, and applying the Cauchy-Schwarz inequality yields

‖uh‖2E . ‖u0
h‖2E + 2

t∫
0

‖uh‖E‖f‖L2(Ω).

The statement of the proposition now follows by employing Gronwall’s lemma [124].

Before providing hp-version error bounds, we observe that formulation (21) is not strongly-consistent,
due to the presence of the lifting operator. It is easy to see that the error u− uh satisfies the following
error equation ∫

Ω

ρ (ü− üh) · vh + B(u− uh,vh) +Rh(u− uh,vh) = 0 ∀vh ∈WDG
h , (26)

where the residual Rh(·, ·) : W̃
DG

h ×WDG
h → R is defined by

Rh(w,vh) = −
∫
FIh∪F

D
h

{σ(w)} : J[vh]K−
∫

Ω

σ(w) : R(J[vh]K) ∀w ∈ W̃
DG

h ∀vh ∈W
DG
h ,

and where we have used also that Rh(wh,vh) = 0 whenever wh ∈WDG
h , cf. (23).

In order to derive a priori error bounds for the semidiscrete scheme, we assume that Assumption 2.2
is satisfied; we define, component-wise, the extension operators E : Hs(Ω) → Hs(Rd×d), s ∈ N0, as
in Section 2.4, cf. also [131]; we employ the tensorial and vectorial counterpart of the approximation
estimates outlined in Section 2.4, cf. also [59, 9], to obtain the following bound

‖u−Πu‖2E .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−3/2)
E

(
‖Eu‖2HrE (TE) +

h2
E

p3
E

‖Eu̇‖2HrE (TE)

)
, (27)

where sE = min(pE + 1, rE). The hidden constant depends on the material parameters and on the
shape-regularity of TE , but is independent of q, hE , pE and the number of faces per element. Moreover, the
global interpolant Π is defined elementwise as Πu|E = ΠpE

E u for any E ∈ Th, where ΠpE
E is vector-valued

counterpart of the interpolant defined in Lemma 2.5.
The last ingredient we need is the following bound on the residual; we refer to [9] for the proof.

Lemma 4.5. For any w ∈ W̃
DG

h and vh ∈WDG
h , the following bound holds

|Rh(w, vh)| .

(∑
E∈Th

h
2(sE−1)
E

p
2(rE−3/2)
E

‖Eσ(w)‖2HrE (TE)

)1/2

‖vh‖DG ,

where sE = min(pE + 1, rE) for all E ∈ Th. The hidden constant depends on the material parameters and
the shape-regularity of TE, but is independent of q, hE, pE, and the number of element faces.
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We can now state the main result of this section.

Theorem 4.6. Let Assumption 2.1 and Assumption 2.2 be satisfied. Moreover, assume that the analytical
solution u of (19) is sufficiently regular. For any time t ∈ [0, T ], let uh ∈WDG

h be the PolyDG solution
of problem (21) obtained with a penalty parameter σ0 appearing in (24) sufficiently large. Then, for any
time t ∈ (0, T ] the following bound holds

‖u− uh‖2E .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−3/2)
E

(
‖Eu‖2HrE (TE) +

h2
E

p3
E

‖Eu̇‖2HrE (TE) + ‖Eσ(u)‖2HrE (TE)

)
+

h
2(sE−1)
E

p
2(rE−3/2)
E

∫ t

0

(
‖Eu̇‖2HrE (TE) +

h2
E

p3
E

‖Eü‖2HrE (TE) + ‖Eσ(u̇)‖2HrE (TE)

)
,

with sE = min(pE + 1,mk) for all E ∈ Th. The hidden constants depends on the material parameters and
the shape-regularity of TE, but is independent of q, hE, pE and the number of element faces.

Proof. We recall the main steps of the proof and refer to [9] for more details. Let Π be defined as (27).
We write the error as u − uh = eh − eI with eh = uh −Πu and eI = u −Πu, and rewrite the error
equation (26) for vh = ėh, to obtain∫

Ω

ρ ëh · ėh + B(eh, ėh) =

∫
Ω

ρ ëI · ėh + B(eI , ėh) +Rh(eI , ėh),

where we have also used that Rh(eh, ėh) = 0 since eh, ėh ∈WDG
h . Using the definition of the energy

norm (25), integrating in time between 0 and t, and exploiting that eh(0) = 0, and reasoning as in the
proof of Proposition 4.4 yields

‖eh‖2E + 2

∫
Ω

R(J[eh]K) : σ(eh) & ‖eh‖2E,

provided the penalty parameter is chosen sufficiently large. Therefore, we get

‖eh‖2E .

t∫
0

∫
Ω

ρ ëI · ėh +

t∫
0

B(eI , ėh) +

t∫
0

Rh(eI , ėh)

=

t∫
0

∫
Ω

ρ ëI · ėh + B(eI , eh)−
t∫

0

B(ėI , eh)−Rh(eI , eh) +

t∫
0

Rh(ėI , eh),

where in the second step we have used integration by parts for the second and third term on the right
hand side together with eh(0) = 0. Employing Jensen and Cauchy-Schwarz inequalities for first term on
the right hand side, the fact that Rh(eI , eh) = Rh(u, eh), Lemma 4.3, the definition of the energy norm
(25), and Lemma 4.5, we get

‖eh‖2E . ‖eI‖E‖eh‖E +

t∫
0

‖ėI‖E ‖eh‖E + I(u)‖eh‖E +

t∫
0

I(u̇)‖eh‖E,

where

I(u) =

(∑
E∈Th

h
2(sE−1)
E

p
2(mE−3/2)
E

‖Eσ(u)‖2HmE (TE)

)1/2

,

cf. Lemma 4.5. Applying the arithmetic-geometric inequality with δ > 0 we have

(1− δ)‖eh‖2E .
1

δ
(‖eI‖2E + I2(u)) +

t∫
0

(‖ėI‖E + I(u̇))‖eh‖E.

Choosing δ small enough and applying Gronwall’s lemma [124] we get

‖eh‖2E . ‖eI‖2E + I2(u) +

t∫
0

(‖ėI‖2E + I2(u̇)).

The proof is completed by employing (27) and the definition of I(u).
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Figure 13: Example 1. Mesh configurations considered with increasing number of polygonal elements:
Nel = 100, 200, 300, 500.

4.3 Numerical results

Before presenting some numerical experiments, we first discuss the algebraic formulation of the
semidiscrete formulation and the time integration of the corresponding system of second-order ordi-
nary differential equations. We suppose that Ω is partitioned into Nel disjoint polytopic elements Er,
r = 1, ..., Nel, and denote by npE = dim(PpE ), and set Ndof =

∑Nel
r=1 npE to be the dimension of each

component of a function in WDG
h . We introduce a basis {Φ1

i , . . . ,Φ
d
i }
Ndof
i=1 , d = 2, 3, for the finite element

space WDG
h . By expressing uh ∈WDG

h as a linear combination of the basis functions, i.e.,

uh(x, t) =

d∑
s=1

Ndof∑
j=1

Φs
j(x)Usj (t),

and writing equation (21) for any test function Φs
i (x) ∈ WDG

h , s = 1, . . . , d, we obtain the following
system of second order differential equations

MÜ(t) +BU(t) = F(t) ∀t ∈ (0, T ), (28)

for the displacements U(t) = (U1(t), . . . ,Ud(t))T . Here, F = (F1(t), . . . ,Fd(t))T represents the external
applied load, M and B are the (symmetric and positive definite) mass and stiffness matrices, respectively.
To integrate the system (28) in time we consider the explicit, second-order accurate, and conditionally
stable leap-frog scheme: we subdivide the interval (0, T ] into NT equal subintervals of size ∆t = T/NT
and at every time level tn = n∆t we solve the system

MU(tn+1) =
[
2M −∆t2B

]
U(tn)−MU(tn−1) + ∆t2F(tn), for n = 1, ..., NT ,

with

MU(t1) =
[
M − ∆t2

2
B
]
U(t0)−∆tMU̇(t0) +

∆t2

2
F(t0),

supplemented with the initial conditions. We recall that to ensure stability, the explicit time integration
leap-frog scheme must satisfy the usual Courant–Friedrichs–Levy (CFL) condition that imposes a
restriction on ∆t of the form

∆t ≤ CCFL(cP , σ0)
h

p2
,

where h is the maximum mesh size and p is the polynomial approximation degree (supposed to be
uniform here, for the sake of simplicity). The constant CCFL depends on the compressional wave velocity
cP =

√
(λ+ 2µ)/ρ and on the stability parameter σ0, cf. (24), and can be estimated as in [9], cf., also,[29].

4.3.1 Example 1: Smooth problem with a known analytical solution

We first consider the wave propagation problem in Ω = (0, 1)2, where ΓN = (0, 1)×{1}, ΓD = ∂Ω\ΓN ,
λ = µ = ρ = 1 and boundary conditions, initial conditions and the forcing term f are selected so that the
analytical solution of (19) is given by

u(x, t) = cos(
√

2πt)

[
− sin(πx) sin(πy)2

cos(πx) sin(πy)2

]
.
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Figure 14: Example 1. Computed error ‖u(T ) − uh(T )‖E versus the polynomial degree p, fixing Nel = 300 (left) and
versus the mesh size h = 1/Nel, Nel = 100, 200, 300, 500 (right) fixing p = 2, 3, 4, 5. Results are obtained choosing as
observation time T = 0.6 with ∆t = 10−5.

Figure 15: Example 2. Unstructured polygonal grid. The mesh spacing varies from hE ≈ 160 m for material 1 to
hE ≈ 1500 m for material 7; cf. Table 3. The source location xs = (19.4, 7.8) km is indicated by a white circle.

For the proceeding computations we set the final time T = 0.6 and time step ∆t = 10−5. Firstly, we
consider the convergence of the PolyDG method with p-refinement. To this end, in Figure 14 (left) we
plot ‖u(T )− uh(T )‖E versus the polynomial degree pE = p, for all E ∈ Th, on a fixed polygonal mesh
Th consisting of 300 elements; cf. Figure 13. Here, on a semi-logarithmic scale, we observe that the
convergence line is approximately straight, thereby indicating exponential convergence of the PolyDG
method as p is uniformly enriched. Secondly, we consider the h-convergence of the PolyDG approximation
computed on the sequence of meshes depicted in Figure 13. In Figure 14 (right), we observe that
‖u(T )− uh(T )‖E behaves like O(hp) as h tends to zero, for each fixed p; this is in agreement with the a
priori error bound stated in Theorem 4.6.

4.3.2 Example 2: Elastic wave propagation in a heterogeneous medium

For an application of the presented PolyDG method, we study the elastic wave propagation in the
computational domain Ω = (0, 38.4) km × (0, 10) km representing an idealized bidimensional Earth’s
cross section, see Figure 15. The bottom and the lateral boundaries are set far enough from the point
source (white dot in Figure 15) in order to prevent any reflections from the boundaries of the waves of
interest. At the top of the model a free-surface boundary condition is imposed, i.e., σn = 0, whereas
homogeneous Dirichlet conditions are set in the remaining part of the boundary. We simulate a point
source load of the form

f(x, t) =
(

0, Ae−10−4‖x−xs‖2(1− 2π2f2
0 (t− t0)2)e−π

2f2
0 (t−t0)2

)
,

with A = 103 N, f0 = 2 Hz and t0 = 2 s applied at the point xs = (19.4, 7.8) km. We assign constant
material properties within each region as described in Table 3. The computational domain is discretized
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Material ρ [kg/m3] cp [m/s] cs [m/s]
1 1800 1321 294
2 1800 2024 450
3 2050 1920 600
4 2050 1920 650
5 2050 2000 650
6 2400 3030 1515
7 2450 3200 1600

Table 3: Example 2. Material properties used for the computational domain in Figure 15.

Figure 16: Example 2. Snapshots of the computed displacement magnitude |u| =
√

u2
1 + u2

2 at different time

t = 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 s. Due to the material heterogeneities, high oscillations and perturbations of the wave
front can be observed. Waves moving leftwards with respect to the point source location are clearly visible. The displacement
magnitude is measured in meters.

using an unstructured grid consisting of 4870 (agglomerated) polygonal elements, with a mesh size
varying from hE ≈ 160 m for material 1 to hE ≈ 1500 m for material 7; cf. Table 3. The grid spacing is
chosen small enough not only to describe with sufficient precision the physical profile of the submerged
topography, but also to guarantee that over the whole domain there is at least 5 points per wavelength
with polynomial degree equal to 4 to keep numerical dispersion and dissipation errors sufficiently small,
i.e., of order of machine precision, see [9]. In Figure 16 we report a set of snapshots of the diplacement
magnitude |u| =

√
u2

1 + u2
2 computed with the proposed method (with σ0 = 10 and polynomial degree

equal to 4) coupled with the leap-frog scheme, fixing the final observation time T = 5 s and time step
∆t = 10−4 s. The discontinuities between the mechanical properties of the materials produce oscillations
and perturbations on the wave front. In particular, due to the stratigraphy of the model, the energy is
focussed towards the left of the domain, reaches the surface of the model and (most of it) remains trapped
within the first layer. All these complex and relevant phenomena are well captured by the proposed
PolyDG method, see Figure 16.

5 PolyDG methods for flow in fractured porous media

The aim of this section is to present an overview of the results presented in [19], where a unified
formulation and analysis of PolyDG approximations of flows in fractured porous media is provided
for all primal-primal, primal-mixed, mixed-primal and mixed-mixed formulations. More precisely, a
primal-primal setting consists of having the pressure as only unknown for both the bulk and fracture
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problems. When dealing with the approximation of Darcy’s flow, one may also resort to a mixed-mixed
approach, where the flow is described through an additional unknown representing the (averaged) velocity
of the fluid in both the bulk and the fracture. This variable, often referred to as Darcy’s velocity, is of
primary interest in many engineering applications [114, 54], so that the mixed setting is often preferred
to the primal one, which may only return the velocity after post-processing the computed pressure, thus
entailing a potential loss of accuracy. On the other hand, the primal-primal approach is easier to solve,
featuring a smaller number of degrees of freedom. For this reason, our aim is to design a unified setting
where, according to the desired approximation properties of the model, one may resort to either a primal
or mixed approximation for the problem in the bulk, as well as to a primal or mixed approximation for
the problem in the fracture. In particular, for the primal discretizations we employ the Symmetric Interior
Penalty discontinuous Galerkin method [149, 32], whereas for the mixed discretizations we employ the
local DG (LDG) method of [73], both in their generalization to polytopic grids [62, 60, 6, 59, 61]. Our
main reference for the design of such a setting is the work by Arnold et al. [33], where a unified analysis of
all DG methods present in the literature is undertaken. This framework is based on the flux-formulation,
where the so-called numerical fluxes are introduced on elemental interfaces as approximations of the
analytical solution. Different choices of the numerical fluxes affect the stability and the accuracy of the
underlying PolyDG method and provide conservation properties of desired quantities such as, for example,
mass, momentum, and energy [61]. In the particular context of flow in fractured porous media, we also
show that the coupling conditions between bulk and fracture problems may be imposed through a suitable
definition of the numerical fluxes on the fracture faces. Such an abstract setting allows us to analyze
theoretically, in a unified manner, all the possible combinations of primal-primal (PP), mixed-primal
(MP), primal-mixed (PM) and mixed-mixed (MM) formulations for the bulk and fracture problems,
respectively.

The rest of the section is organized as follows. In Section 5.1 we introduce the model problem;
the discretization based on employing PolyDG methods is presented, in the unified setting of [33], in
Section 5.2. In Section 5.3, we revise the main theoretical results, namely well-posedness and stability,
and present a priori error bounds. Illustrative numerical tests are presented in Section 5.4 to confirm
the theoretical bounds. Moreover, we assess the capability of the method in handling more complicated
geometries, presenting some test cases featuring networks of partially immersed fractures.

5.1 Model problem

To describe the flow, which we assume to be single-phase flow, we adopt the mathematical model of
[113]. This model was first introduced in [3, 2] for fractures with large permeability and is here generalised
to handle also the low permeable case. An extension to two-phase flows can be found in [94, 102]. To
keep the presentation as simple as possible, we assume that the porous medium is cut by a single, non
immersed fracture. We refer to [4] for the extension of the model to totally immersed fractures. Finally, in
order to handle networks of intersecting fractures, some physical conditions need to be added to describe
the behavior of the flow at the intersection points/lines. A possible choice is to impose pressure continuity
and balance of fluxes as in [91, 50]. Other, more general conditions, where the angle between fractures is
taken into account and jumps of pressure across the intersection are allowed, may be found, for example,
in [90, 128].

In the following we assume that the porous matrix is represented by the open, bounded, and
polygonal/polyhedral domain Ω ⊂ Rd, d = 2, 3 and the fracture is described by the (d− 1)-dimensional
C∞ manifold (with no curvature) Γ ⊂ Rd−1, d = 2, 3. Since we are assuming that Γ is not immersed, it
separates Ω into the two connected disjoint subdomains Ω1 and Ω2. We decompose the boundary of Ω
into two disjoint subsets ∂ΩD and ∂ΩN , i.e., ∂Ω = ∂ΩD ∪ ∂ΩN , with ∂ΩD ∩ ∂ΩN = ∅, and we define
∂ΩD,i = ∂ΩD ∩ ∂Ωi and ∂ΩN,i = ∂ΩN ∩ ∂Ωi, for i = 1, 2. For the fracture domain we set ∂Γ = Γ ∩ ∂Ω
with ∂Γ = ∂ΓD ∪ ∂ΓN . Finally, we denote by nΓ the normal unit vector on Γ with a fixed orientation
from Ω1 to Ω2. Our model considers Darcy’s flow in its mixed form for the problem both in the bulk
and the fracture. More precisely, in addiction to the Darcy’s pressure, we take into account an auxiliary
vector-valued variable, called Darcy’s velocity. This quantity is of primary interest in many engineering
applications, such as oil recovery and groundwater pollution modeling. Indeed, in these cases, in order to
be effective, the simulation of the phenomenon requires very accurate approximation of the velocities of
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the involved fluids. The coupled bulk-fracture model problem in mixed form is given by:

ui = νi∇pi in Ωi, (29a)

−∇ · ui = fi in Ωi, (29b)

pi = 0 on ∂ΩD,i, (29c)

ui · ni = 0 on ∂ΩN,i (29d)

uΓ = ντΓ`Γ∇τpΓ in Γ, (29e)

−∇τ · uΓ = `ΓfΓ − JuK in Γ, (29f)

pΓ = 0 on ∂ΓD, (29g)

uΓ · τ = 0 on ∂ΓN , (29h)

−{u} · nΓ = βΓJpK · nΓ on Γ, (29i)

−JuK = αΓ({p} − pΓ) on Γ. (29j)

In the bulk, in each domain Ωi, i = 1, 2, the motion of an incompressible fluid with pressure pi and
velocity ui is described by (29a)–(29b), supplemented by the boundary conditions (29c)-(29d). Moreover,
fi ∈ L2(Ωi) represents a source term, and νi = νi(x) ∈ Rd×d is the bulk permeability tensor, which we
assume to be symmetric, positive definite, uniformly bounded from below and above and with entries that
are bounded, piecewise continuous real-valued functions. Denoting by pΓ and uΓ the fracture pressure
and velocity, respectively, on the manifold Γ representing the fracture, we formulate a reduced version of
Darcy’s law in the tangential direction, cf. equations (29e)-(29f), and assume that the fracture permeability
tensor νΓ, has a block-diagonal structure when written in its normal and tangential components and that
ντΓ ∈ R(d−1)×(d−1) is positive definite and uniformly bounded. Moreover, νΓ satisfies the same regularity
assumptions as those satisfied by the bulk permeability ν. In (29e)–(29f)–(29g)–(29h), fΓ ∈ L2(Γ), τ
is the vector in the tangent plane of Γ normal to ∂Γ and ∇τ and ∇τ · denote the tangential gradient
and divergence operators, respectively. Finally, we close the model providing the interface conditions
(29i)–(29j) where βΓ = 1

2ηΓ
, αΓ = 2

ηΓ(2ξ−1) and ηΓ = `Γ
νnΓ

, `Γ > 0 being the fracture thickness. Finally, in

the definition of αΓ, the closure parameter ξ > 1/2 is related to the pressure profile across the fracture
aperture. We refer to [113] for a rigorous derivation of the model.

To introduce the weak formulation, we first introduce the bulk pressure and velocity spaces:

M b = L2(Ω), Vb = {v ∈ Hdiv(Ω) : JvK|Γ ∈ L2(Γ), {v}|Γ ∈ [L2(Γ)]d,v · n|∂ΩN = 0}.

Similarly, for the fracture pressure and velocity we define the spaces

MΓ = L2(Γ), VΓ = {vΓ ∈ Hdiv,τ (Γ) : vΓ · τ |∂Γ = 0}.

We equip the spaces Vb and VΓ with the norms

||v||2Vb = ||v||2L2(Ω) + ||∇ · v||2L2(Ω) + ||JvK||2L2(Γ) + ||{v}||2L2(Γ),

||vΓ||2VΓ = ||vΓ||2L2(Γ) + ||∇τ · vΓ||2L2(Γ),

respectively. Finally, we define the global spaces for the pressure and the velocity as M = M b ×MΓ

and W = Vb ×VΓ, respectively, equipped with the canonical norms for product spaces. We can now
formulate problem (29) in weak form as follows: find (u,uΓ) ∈W and (p, pΓ) ∈M such that

A((u,uΓ), (v,vΓ)) +B((v,vΓ), (p, pΓ)) = 0,

−B((u,uΓ), (q, qΓ)) = F p(q, qΓ)
(30)

for all (v,vΓ) ∈ W and (q, qΓ) ∈ M , where the bilinear forms A(·, ·) : W × W → R and
B(·, ·) : W×M → R are defined as

A((u,uΓ), (v,vΓ)) = a(u,v) + aΓ(uΓ,vΓ),

B((v,vΓ), (q, qΓ)) = b(v, q) + bΓ(vΓ, qΓ) + d(v, qΓ),

respectively, with

a(u,v) =

∫
Ω

ν−1u · v +

∫
Γ

1

αΓ
JuKJvK +

∫
Γ

1

βΓ
{u} · {v},

aΓ(uΓ,vΓ) =

∫
Γ

(ντΓ`Γ)−1uΓ · vΓ,

28



E

E’

e
F

Ω1

Ω2

Γ

Figure 17: Example of two neighboring elements of a polygonal bulk mesh aligned with the fracture and of the induced
subdivision.

and

b(v, q) =

∫
Ω

∇ · v q, bΓ(vΓ, qΓ) =

∫
Γ

∇τ · vΓ qΓ, d(v, qΓ) = −
∫

Γ

JvKqΓ.

Finally the linear operator F p(·) : M → R is defined as F p(q, qΓ) =
∫

Ω
fq +

∫
Γ
`ΓfΓqΓ.

We next recall the following well-posedness result: we refer to [19] for the proof. Note that the
existence and uniqueness of the problem can be proven only under the condition that the parameter
ξ > 1/2.

Theorem 5.1. Suppose that ξ > 1/2, then problem (30) admits a unique solution.

5.2 PolyDG discretization of flow in fractured porous media: a unified ap-
proach

In this section we present, in a unified setting, a family of discrete formulations for the coupled
bulk-fracture problem (30). In particular, the problem in the bulk and the one in the fracture can be
either discretized in their mixed or primal form. We then derive four formulations that embrace all the
possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed discretizations.
The primal discretizations will be based on the Symmetric Interior Penalty DG method (SIPDG) [32,
149], while the mixed approach will exploit the Local Discontinuous Galerkin method (LDG) [73, 63, 123],
including their extension to polytopic grids [62, 60, 6, 59, 61]. The derivation follows the approach of [33]
based on the introduction of the numerical fluxes, which approximate the trace of the solutions on the
boundary of each mesh element. In particular, the imposition of the coupling conditions (29i)-(29j) will
be achieved through a proper definition of the numerical fluxes on the faces belonging to the fracture.

We consider a sequence of meshes Th that is aligned with the fracture Γ and we denote, as in Section 2,
by Fh the set of all the faces of the mesh Th, that we can decompose as Fh = FIh ∪ FBh ∪ Γh, where now
FIh is the set of interior faces not belonging to the fracture, FBh is the set of faces lying on the boundary
of the domain ∂Ω (which can be further decomposed into FBh = FDh ∪ FNh ) and Γh is the set of fracture
faces. In particular, the induced subdivision of the fracture Γh consists of the faces of the elements of Th
that share part of their boundary with the fracture, so that, according to the definition of Fh given in
Section 2.1, Γh is made up of line segments when d = 2 and of triangles when d = 3. In the latter case,
the triangles are not necessarily shape-regular and they may present hanging nodes, due to the fact
that the sub-triangulations of each elemental interface is chosen independently from the others. For this
reason, we here extend the concept of interface introduced in Section 2.1 also to the (d− 2)-dimensional
facets of elements in Γh, defined again as intersection of boundaries of two neighbouring elements. When
d = 2, the interfaces reduce to points (see Figure 17), while when d = 3 they consists of line segments.
Moreover, since we aim at employing PolyDG methods also for the discretization of the problem in the
fracture, we denote by EΓ,h the set of all the interfaces (that we will also call edges) of the elements in
Γh, and we write, accordingly to the previous notation, EΓ,h = EIΓ,h ∪ EBΓ,h, with EBΓ,h = EDΓ,h ∪ ENΓ,h. For
the forthcoming stability and error analysis, we assume that both the bulk and fracture sequence of
meshes are polytopic-regular, according to Assumption 2.1 and that the covering satisfies Assumption 2.2.
Moreover, we suppose that the permeability tensors ν and νΓ are piecewise constant on mesh elements,
i.e., ν|E ∈ [P0(E)]d×d for all E ∈ Th, and νΓ|F ∈ [P0(F )](d−1)×(d−1) for all F ∈ Γh.

First, to each element E ∈ Th and F ∈ Γh we associate the integers pE ≥ 1 and pF ≥ 1, and introduce
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Method Primal bilinear form Reference equations

Primal-Primal (PP) APb (p, q) +APΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ)) (33), (34), (35)

Mixed-Primal (MP) AMb (p, q) +APΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ)) (41), (34), (35)

Primal-Mixed (PM) APb (p, q) +AMΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ)) (33), (46), (35)

Mixed-Mixed (MM) AMb (p, q) +AMΓ (pΓ, qΓ) + C((p, q), (pΓ, qΓ)) (41), (46), (35)

Table 4: Primal forms for the DG discretizations of the bulk-fracture problems.

the finite-dimensional spaces:

Qbh = {q ∈ L2(Ω) : q|E ∈ PpE (E) ∀E ∈ Th},
Wb

h = {v ∈ [L2(Ω)]d : v|E ∈ [PpE (E)]d ∀E ∈ Th},
QΓ
h = {qΓ ∈ L2(Γ) : qΓ|F ∈ PpF (F ) ∀F ∈ Γh},

WΓ
h = {vΓ ∈ [L2(Γ)]d−1 : vΓ|F ∈ [PpF (F )]d−1 ∀F ∈ Γh}.

We remark that the polynomial degrees in the bulk and fracture discrete spaces are chosen independently
of each other.

We next focus on equations (29a)-(29b) in the bulk and equations (29e) -(29f) in the fracture. We
proceed as in [33], and multiply equations (29a)-(29b) by (sufficiently smooth) vector-valued and scalar-
valued test functions, respectively, integrate by parts over an element E ∈ Th, and sum over all elements.
Analogously, we multiply equations (29e)-(29f) by (sufficiently smooth) test functions, integrate by parts
over an element F ∈ Γh and sum over all the elements in Γh. We then discretize, use identity (4), and
integrate by parts again the first equation in the bulk and the first equation in the fracture, to get the
following general discrete formulation: find ph ∈ Qbh, uh ∈Wb

h, pΓ,h ∈ QΓ
h, and uΓ,h ∈WΓ

h such that∫
Th
ν−1uh · v =

∫
Th
∇ph · v +

∫
FIh∪Γh

{p̂− ph}JvK +

∫
FIh∪F

B
h ∪Γh

Jp̂− phK · {v},∫
Th

uh · ∇q −
∫
FIh∪F

B
h ∪Γh

{û} · JqK−
∫
FIh∪Γh

JûK{q} =

∫
Th
fq,∫

Γh

(ντΓ`Γ)−1uΓ,h · vΓ =

∫
Γh

∇pΓ,h · vΓ +

∫
EIΓ,h
{p̂Γ − p̂Γ,h}JvΓK +

∫
EΓ,h

Jp̂Γ − p̂Γ,hK · {vΓ},∫
Γh

uΓ,h · ∇qΓ −
∫
EΓ,h
{ûΓ} · JqΓK−

∫
EIΓ,h

JûΓK{qΓ} =

∫
Γh

`ΓfΓqΓ −
∫

Γh

JûKqΓ

for all q ∈ Qbh, v ∈Wb
h, qΓ ∈ QΓ

h and vΓ ∈WΓ
h. We point out that, in order to simplify the notation,

we have dropped the subscript τ from the tangent gradient and divergence operators. Here, in the spirit
of [33], the numerical fluxes

p̂ = (p̂E)E∈Th , û = (ûE)E∈Th , p̂Γ = (p̂Γ,F )F∈Γh , ûΓ = (ûΓ,F )F∈Γh ,

are approximations to the analytical solutions u and p, respectively, on the boundary of E and to
pΓ and uΓ, respectively, on the boundary of the fracture face F . The numerical fluxes p̂, û, p̂Γ, ûΓ

must be interpreted as linear functionals taking values in the spaces ΠE∈ThL
2(∂E), [ΠE∈ThL

2(∂E)]d,
ΠF∈ΓhL

2(∂F ), [ΠF∈ΓhL
2(∂F )]d, respectively. By suitably choosing the numerical fluxes, we can obtain

all the possible combinations of primal-primal, mixed-primal, primal-mixed and mixed-mixed formulations
for the bulk and fracture, respectively. In Table 4 we summarize the bilinear forms for all formulations,
whose precise definition will be given in the forthcoming sections.

5.2.1 Primal-Primal formulation

To obtain the primal-primal formulation, based on the symmetric interior penalty Discontinuous
Galerkin (SIPDG) method, we choose the numerical fluxes p̂ = p̂(ph), û = û(ph, pΓ,h), p̂Γ = p̂Γ(pΓ,h), and
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ûΓ = ûΓ(pΓ,h) as follows

p̂ =


{ph} onFIh
0 onFDh
ph onFNh
ph on Γh

û =


{ν∇ph} − σF JphK onFIh
ν∇ph − σF phnF onFDh
0 onFNh
−[αΓ({ph} − pΓ,h)nF

2 + βΓJphK] on Γh

(31)

p̂Γ =


{pΓ,h} on EIΓ,h
0 on EDΓ,h
pΓ,h on ENΓ,h,

ûΓ =


{ντΓ`Γ∇pΓ,h} − σeJpΓ,hK on EIΓ,h
ντΓ`Γ∇pΓ,h − σepΓ,hne on EDΓ,h
0 on ENΓ,h.

Here, we have introduced the discontinuity penalization parameters σ and σΓ ∈ L∞(EIΓ,h ∪ EDΓ,h). In
particular, they are non-negative bounded functions and their precise definitions will be given in Defi-
nition 5.1 below. Moreover, we have used the notation σF = σ|F , for F ∈ FIh ∪ FDh and σe = σΓ|e for
e ∈ EIΓ,h ∪ EDΓ,h. Note also that, with this choice, the numerical flux p̂ is double valued on Γh and single

valued on FIh ∪ FBh . By using the above definitions, and after eliminating the velocities uh and uΓ,h in

an elementwise manner as in [33], based on the fact that ∇Qh ⊆Wh, ∇QΓ
h ⊆WΓ

h and employing the
lifting operators

L SIP

b : [L1(FIh ∪ FDh )]d →Wb
h,

∫
Ω

L SIP

b (ξ) · v = −
∫
FIh∪F

D
h

{v} · ξ ∀v ∈Wb
h,

L SIP

Γ : [L1(EIΓ,h ∪ EDΓ,h)]d−1 →WΓ
h,

∫
Γ

L SIP

Γ (ξΓ) · vΓ = −
∫
EIΓ,h∪E

D
Γ,h

{vΓ} · ξΓ ∀vΓ ∈WΓ
h,

we obtain the following discrete formulation: find (ph, p
Γ
h) ∈ Qbh ×QΓ

h such that

APPh
(
(ph, p

Γ
h), (q, qΓ)

)
= LPPh (q, qΓ) ∀(q, qΓ) ∈ Qbh ×QΓ

h, (32)

where the superscript PP stands for primal-primal and LPPh : Qbh × QΓ
h → R is defined as

LPPh (q, qΓ) = LPb (q) + LPΓ(qΓ) and APPh : (Qbh ×QΓ
h)× (Qbh ×QΓ

h)→ R is given by

APPh
(
(ph, p

Γ
h), (q, qΓ)

)
= APb (ph, q) +APΓ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

with

APb (ph, q) =

∫
Th
ν∇ph · ∇q +

∫
Th
νL SIP

b (JphK) · ∇q

+

∫
Th
νL SIP

b (JqK) · ∇ph +

∫
FIh∪F

D
h

σF JphK · JqK, (33)

APΓ(pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ∇pΓ,h · ∇qΓ +

∫
Γh

ντΓ`ΓL P

Γ (JpΓ,hK) · ∇qΓ

+

∫
Γh

ντΓ`ΓL SIP

Γ (JqΓK) · ∇pΓ,h +

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK, (34)

C((ph, pΓ,h), (q, qΓ)) =

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h)({q} − qΓ,h), (35)

and

LPb (q) =

∫
Th
fq, LPΓ(qΓ) =

∫
Γh

`ΓfΓqΓ. (36)

5.2.2 Mixed-Primal formulation

We next address the choice of the numerical fluxes that leads to a mixed-primal formulation. Here,
the mixed formulation will be based on the use of the LDG method [73, 63, 122, 123]. To this end, we
define the numerical fluxes p̂ = p̂(ph) and û = û(uh, ph, pΓ,h) for the bulk as

p̂ =


{ph}+ b · JphK onFIh ,
0 onFDh ,
ph onFNh ,
ph on Γh,

û =


{uh} − bJuhK− σF JphK onFIh ,
uh − σF phnF onFDh ,
0 onFNh ,
−[αΓ({ph} − pΓ,h)nF

2 + βΓJphK] on Γh,

(37)
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whereas for the numerical fluxes in the fracture we adopt the same definition as in (31). Here,
b ∈ [L∞(FIh)]d is a (possibly null) facewise constant vector-valued function such that ||b||∞,FIh . 1.
With this definition of the numerical fluxes, we obtain the following discrete mixed problem: find(
(ph,uh), pΓ

h

)
∈ Qbh ×Wb

h ×QΓ
h such that

Mb(uh,v) + Bb(ph,v) = 0 ∀v ∈Wb
h,

−Bb(q,uh) + Sb(ph, q) + C1(ph, q, pΓ,h) = LPb (q) ∀q ∈ Qbh, (38)

APΓ(pΓ,h, qΓ) + C2(ph, pΓ,h, qΓ) = LPΓ(qΓ) ∀qΓ ∈ QΓ
h,

where

Mb(uh,v) =

∫
Th
ν−1uh · v,

Bb(ph,v) = −
∫
Th
∇ph · v +

∫
FIh

JphK · ({v} − bJvK) +

∫
FDh

phv · nF ,

Sb(ph, q) =

∫
FIh∪F

D
h

σF JphK · JqK,

C1(ph, q, pΓ,h) =

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ,h){q},

C2(ph, pΓ,h, qΓ) =

∫
Γh

αΓ(pΓ,h − {ph})qΓ,

and APΓ(·, ·) and LPΓ(·) are defined as in (34) and (36), respectively. Also note that we have
C((ph, pΓ,h), (q, qΓ)) = C1(ph, q, pΓ,h) + C2(ph, pΓ,h, qΓ). For the purpose of the analysis, the bulk velocity

uh can be eliminated elementwise by introducing the lifting operator, L LDG

b : [L1(FIh ∪ FDh )]d →Wb
h,

defined by ∫
Th

L LDG

b (ξ) · v = −
∫
FIh

({v} − bJvK) · ξ −
∫
FDh
ξ · v ∀v ∈Wb

h (39)

to obtain the following discrete formulation: find (ph, p
Γ
h) ∈ Qbh ×QΓ

h such that

AMPh
(
(ph, p

Γ
h), (q, qΓ)

)
= LMPh (q, qΓ) ∀(q, qΓ) ∈ Qbh ×QΓ

h, (40)

where the superscript MP stands for mixed-primal and AMPh : (Qbh ×QΓ
h)× (Qbh ×QΓ

h)→ R is defined as

AMPh
(
(ph, p

Γ
h), (q, qΓ)

)
= AMb (ph, q) +APΓ(pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)).

Here, LMPh : Qbh ×QΓ
h → R is given by

LMPh (q, qΓ) = LMb (q) + LPΓ(qΓ),

with

AMb (ph, q) =

∫
Th
ν(∇ph + L LDG

b (JphK)) · (∇q + L LDG

b (JqK)) +

∫
FIh∪F

D
h

σF JphK · JqK

+

∫
Γh

βΓJphK · JqK +

∫
Γh

αΓ({ph} − pΓ){q}, (41)

LMb (q) =

∫
Th
fq.

5.2.3 Primal-Mixed formulation

We next address the choice of the numerical fluxes that lead to a primal-mixed formulation, i.e. we
approximate the problem in the bulk using the SIPDG method, and the problem in the fracture in mixed
form, employing the LDG method. In the bulk we define the numerical fluxes p̂ and û as in (31), whereas
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in the fracture we define the numerical fluxes p̂Γ = p̂Γ(pΓ,h) and ûΓ = ûΓ(uΓ,h, pΓ,h) as follows

p̂Γ =


{pΓ,h}+ bΓ · JpΓ,hK on EIΓ,h,
0 on EDΓ,h,
pΓ,h on ENΓ,h,

ûΓ =


{uΓ,h} − bΓJuΓ,hK− σeJpΓ,hK on EIΓ,h,
uΓ,h − σe(pΓ,hne − gΓne) on EDΓ,h,
0 on ENΓ,h.

(42)

Here, bΓ ∈ [L∞(EIΓ,h)]d−1 is a vector-valued function that is constant on each edge and it is cho-
sen such that ||bΓ||∞,EIΓ,h . 1. This choice leads to the following primal-mixed problem: find(
ph, (p

Γ
h,uΓ,h)

)
∈ Qbh ×QΓ

h ×WΓ
h such that

APb (ph, q) + C1((ph, q), pΓ,h) = LPb (q) ∀q ∈ Qbh,
MΓ(uΓ,h,vΓ) + BΓ(pΓ,h,vΓ) = 0 ∀vΓ ∈WΓ

h, (43)

−BΓ(qΓ,uΓ,h) + SΓ(pΓ,h, qΓ) + C2(ph, (pΓ,h, qΓ)) = LPΓ(qΓ) ∀qΓ ∈ QΓ
h,

where

MΓ(uΓ,h,vΓ) =

∫
Γh

(ντΓ`Γ)−1uΓ,h · vΓ,

BΓ(pΓ,h,vΓ) = −
∫

Γh

vΓ · ∇pΓ,h +

∫
EIh,Γ

JpΓ,hK · ({vΓ} − bΓJvΓK) +

∫
EDh,Γ

pΓ,hvΓ · ne,

Sb(pΓ,h, qΓ) =

∫
EΓ,h

σeJpΓ,hK · JqΓK,

and APb (ph, q) and LPb (q) are defined as in (33) and (36), respectively. The variable uΓ,h can be eliminated

element-wise based on employing the the lifting operator, L LDG

Γ : [L1(EIh ∪ EDh )]d →WΓ
h, defined by∫

Γh

L LDG

Γ (ξΓ) · vΓ = −
∫
EIΓ,h

({vΓ} − bΓJvΓK) · ξΓ −
∫
EDΓ,h

ξΓ · vΓ ∀vΓ ∈WΓ
h, (44)

to obtain the following primal formulation: find (ph, p
Γ
h) ∈ Qbh ×QΓ

h such that

APMh
(
(ph, p

Γ
h), (q, qΓ)

)
= LPMh (q, qΓ) ∀(q, qΓ) ∈ Qbh ×QΓ

h, (45)

where the superscript PM stands for primal-mixed and APMh : (Qbh ×QΓ
h)× (Qbh ×QΓ

h)→ R is defined as

APMh
(
(ph, p

Γ
h), (q, qΓ)

)
= APb (ph, q) +AMΓ (pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)).

Here, LPMh : Qbh ×QΓ
h → R is given by

LPMh (q, qΓ) = LPb (q) + LMΓ (qΓ),

with

AMΓ (pΓ,h, qΓ) =

∫
Γh

ντΓ`Γ(∇pΓ,h + L LDG

Γ (JpΓ,hK)) · (∇qΓ + L LDG

Γ (JqΓK))

+

∫
EIΓ,h∪E

D
Γ,h

σeJpΓ,hK · JqΓK, (46)

LMΓ (qΓ) =

∫
Γh

`ΓfΓqΓ.

5.2.4 Mixed-Mixed formulation

Finally, if we approximate both the problem in the bulk and in the fracture with the LDG method
by choosing the bulk numerical fluxes p̂ = p̂(ph) and û = û(uh, ph, pΓ,h) as in (37) and the fracture
numerical fluxes p̂Γ = p̂Γ(pΓ,h) and ûΓ = ûΓ(uΓ,h, pΓ,h) as in (42), we obtain the following mixed-mixed

formulation: find (ph, pΓ,h) ∈ Qbh ×QΓ
h and (uh,uΓ,h) ∈Wb

h ×WΓ
h such that

Mb(uh,v) + Bb(ph,v) = Fb(v) ∀v ∈Wb
h,

−Bb(q,uh) + Sb(ph, q) + C1(ph, q, pΓ,h) = Gb(q) ∀q ∈ Qbh, (47)

MΓ(uΓ,h,vΓ) + BΓ(pΓ,h,vΓ) = FΓ(vΓ) ∀vΓ ∈WΓ
h,

−BΓ(qΓ,uΓ,h) + SΓ(pΓ,h, qΓ) + C2(ph, (pΓ,h, qΓ)) = GΓ(qΓ) ∀qΓ ∈ QΓ
h.
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Again, based on employing the definition of the lifting operators (39) and (44), the bulk and fracture
velocities can be eliminated, to yield the following equivalent formulation: find (ph, pΓ,h) ∈ Qbh ×QΓ

h such
that

AMMh
(
(ph, p

Γ
h), (q, qΓ)

)
= LMMh (q, qΓ) ∀(q, qΓ) ∈ Qbh ×QΓ

h, (48)

where the superscript MM stands for mixed-mixed and AMMh : (Qbh ×QΓ
h)× (Qbh ×QΓ

h)→ R is defined as

AMMh
(
(ph, p

Γ
h), (q, qΓ)

)
= AMb (ph, q) +AMΓ (pΓ,h, qΓ) + C((ph, pΓ,h), (q, qΓ)),

and LMMh : Qbh ×QΓ
h → R is given by

LMMh (q, qΓ) = LMb (q) + LMΓ (qΓ).

5.3 Well-posedness and error estimates

In this section, we recall the main results that ensure that the primal-primal (PP) (32), mixed-primal
(MP) (40), primal-mixed (PM) (45) and mixed-mixed (MM)(48) formulations are well-posed. We recall
that, for the analysis, we assume the permeability tensors ν and ντΓ to be piecewise constant and that we

employ the following notation ν̄E = |
√
ν|E |22 and ν̄τF = |

√
ντΓ|F |22, where | · |2 denotes the l2-norm. First,

we give an appropriate definition of the discontinuity penalization parameters, so that we can work in a
polytopic framework. Taking as a reference [62, 60, 6, 59, 61], we give the following two definitions for
the bulk and fracture penalty functions.

Definition 5.1. The penalization parameter σ : Fh \ Γh → R+ for the bulk problem is defined facewise
as

σ(x) = σ0


maxE∈{E+,E−}

ν̄Ep
2
E

hE
if x ⊂ F ∈ FIh , F̄ = ∂Ē+ ∩ ∂Ē−,

ν̄Ep
2
E

hE
if x ⊂ F ∈ FDh , F̄ = ∂Ē ∩ ∂Ω̄,

(49)

with σ0 > 0 independent of pE , |E|, and |F |. Analogously, the penalization parameter σΓ : EΓ,h → R+

for the fracture problem is defined edgewise as

σΓ(x) = σ0,Γ


maxF∈{F+,F−}

ν̄τF p
2
F

hF
if x ⊂ e ∈ EIΓ,h, ē = ∂F̄+ ∩ ∂F̄−,

ν̄τF p
2
F

hF
, if x ⊂ e ∈ EDΓ,h, ē = ∂F̄ ∩ ∂Γ̄,

(50)

with σ0,Γ > 0 independent of pF , |F |, and |e|.

Writing Q̃b = {q = (q1, q2) ∈ H1(Ω1)×H1(Ω2)} ∩H2(Th) and Q̃Γ = H1(Γ) ∩H2(Γh), we introduce
the spaces Qb(h) = Qbh + Q̃b and QΓ(h) = QΓ

h + Q̃Γ endowed with the energy norm

|||(q, qΓ)|||2 = ||q||2b,DG + ||qΓ||2Γ,DG + ||(q, qΓ)||2C , (51)

where

||q||2b,DG = ||ν1/2∇q||20,Th + ||σ1/2
F JqK||20,FIh∪FDh ,

||qΓ||2Γ,DG = ||(ντΓ`Γ)1/2∇qΓ||20,Γh + ||σ1/2
e JqΓK||20,EIΓ,h∪EDΓ,h ,

||(q, qΓ)||2C = ||β1/2
Γ JqK||20,Γh + ||α1/2

Γ ({q} − qΓ)||20,Γh .

We remark that all the bilinear forms A∗∗h (·, ·), ∗∗ ∈ {PP,MP,MM,PM}, defined in Section 5.2 are also
well-defined on the extended space Qb(h)×QΓ(h). We now recall the following result, and refer to [19]
for the proof.
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Lemma 5.2. The following bounds hold

APb (q, q) & ||q||2b,DG ∀q ∈ Qbh,
APb (p, q) . ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h),

APΓ(qΓ, qΓ) & ||qΓ||2Γ,DG ∀qΓ ∈ QΓ
h,

APΓ(pΓ, qΓ) . ||pΓ||Γ,DG ||qΓ||Γ,DG ∀pΓ, qΓ ∈ QΓ(h),

AMb (q, q) & ||q||2b,DG ∀q ∈ Qbh,
AMb (p, q) . ||p||b,DG ||q||b,DG ∀p, q ∈ Qb(h),

AMΓ (qΓ, qΓ) & ||qΓ||2Γ,DG ∀qΓ ∈ QΓ
h,

AMΓ (pΓ, qΓ) . ||pΓ||Γ,DG ||qΓ||Γ,DG ∀pΓ, qΓ ∈ QΓ(h).

The first and third estimates hold provided that σ0 and σ0,Γ are chosen sufficiently large.

Employing Lemma 5.2, we can easily prove the well-posedness of all of our discrete problems, as stated
in the following proposition.

Proposition 5.3. Let the penalization parameters σ for the problem in the bulk and in the fracture be
defined as in (49) and (50), respectively, and suppose that for the primal formulations σ0 and σ0,Γ are
chosen sufficiently large. Then, all the formulations (32), (40), (45) and (48) are well-posed.

Next we prove error bounds in the discrete energy norm (51). To this end, for each subdomain Ωi,
i = 1, 2, we denote by Ei the classical continuous extension operator (cf. [131]) Ei : Hs(Ωi)→ Hs(Rd),
for s ∈ N0. Similarly, we denote by EΓ the continuous extension operator EΓ : Hs(Γ)→ Hs(Rd−1), for
s ∈ N0. We then make the following regularity assumptions for the analytical solution (p, pΓ) of problem
(30).

Assumption 5.4. Let T# = {TE} and F# = {TF } denote the associated coverings of Ω and Γ, respec-
tively, cf. Definition 2.2. We assume that the analytical solution (p, pΓ) is such that:

A1. For every E ∈ Th, if E ⊂ Ωi, we have Eipi|TE ∈ HrE (TE), where rE ≥ 1 + d/2 and TE ∈ T#, with
E ⊂ TE;

A2. For every F ∈ Γh, we have EΓpΓ|TF ∈ HrF (TF ), where rF ≥ 1 + (d − 1)/2 and TF ∈ F#, with
F ⊂ TF .

Assumption 5.5. We assume that the normal components of the exact fluxes ν∇p and `Γν
τ
Γ∇pΓ are

continuous across mesh interfaces, that is Jν∇pK = 0 on FIh and J`ΓντΓ∇pΓK = 0 on EIΓ,h.

From Proposition 5.3 and Strang’s second lemma, the following abstract error bound follows directly.

Lemma 5.6. Let the hypotheses of Proposition 5.3 be satisfied. Then, for all the discrete formulations
presented in Section 5.2, the following abstract error bound holds

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)− (q, qΓ)|||+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|R∗∗h ((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||

,

where the residual R∗∗h is defined as

R∗∗h ((p, pΓ), (w,wΓ)) = A∗∗h ((p, pΓ), (w,wΓ))− L∗∗h (w,wΓ),

with ∗∗ ∈ {PP,MP,MM,PM}.

We now recall the following result that provides a bound on the residuals stemming from formulations
(32), (40), (45) and (48).

Lemma 5.7. [19, Lemma 5.6, Lemma 5.7] Let (p, pΓ) be the analytical solution of problem (30) satisfying
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the regularity Assumptions 5.4 and 5.5. Then, for every w ∈ Qb(h) and wΓ ∈ QΓ(h), we have that

|RPb (p, w)|2 .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄2
E

]
· ||w||2b,DG,

|RPΓ (pΓ, wΓ)|2 .
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

||E pΓ||2HrF (TF )

[
(ν̄τF `Γ)2

]
· ||wΓ||2Γ,DG,

|RMb (p, w)|2 .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

||E p||2HrE (TE)

[
ν̄2
E

]
· ||w||2b,DG,

|RMΓ (pΓ, wΓ)|2 .
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

||E pΓ||2HrF (TF )

[
ν̄τF `Γ)2

]
· ||wΓ||2Γ,DG.

The above bounds, together with the observation that, for all the cases, the residual can always be
split into two contributions: one involving the approximation of the problem in the bulk and one involving
the approximation of the problem in the fracture, i.e.,

R∗∗h ((p, pΓ), (w,wΓ)) = R∗b(p, w) +R∗Γ(pΓ, wΓ), (52)

are the key ingredients required to derive main result of this section.

Theorem 5.8. Let T# = {TE} and F# = {TF } denote the associated coverings of Ω and Γ, respectively,
consisting of shape-regular simplices as in Definition 2.2, satisfying Assumption 2.2. Let (p, pΓ) be the
solution of problem (30) and (ph, pΓ,h) ∈ Qbh×QΓ

h be its approximation obtained with the method PP, MP,
MM or PM, with the penalization parameters given by (49) and (50) and σ0 and σ0,Γ sufficiently large
for the primal formulations. Moreover, suppose that the analytical solution (p, pΓ) satisfies the regularity
Assumptions 5.4 and 5.5. Then, the following error bound holds

|||(p, pΓ)− (ph, pΓ,h)|||2 .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

G∗E(ν̄E)||E p||2HrE (TE) +
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

G∗F (ν̄τF )||EΓpΓ||2HrF (TF ),

where E p is to be interpreted as E1p1 when E ⊂ Ω1 or as E2p2 when E ⊂ Ω2. Here, sE = min(pE + 1, rE),
sF = min(pF + 1, rF ), and the constants satisfy

GPE(ν̄E) . ν̄E GPF (ν̄τF ) . ν̄τF , GME (ν̄E) . ν̄E GMF (ν̄τF ) . ν̄τF `Γ.

Proof. From Lemma 5.6 we deduce that the error satisfies the following abstract bound

|||(p, pΓ)− (ph, pΓ,h)||| . inf
(q,qΓ)∈Qbh×Q

Γ
h

|||(p, pΓ)− (q, qΓ)|||︸ ︷︷ ︸
I

+ sup
(w,wΓ)∈Qbh×Q

Γ
h

|Rh((p, pΓ), (w,wΓ))|
|||(w,wΓ)|||︸ ︷︷ ︸

II

.

For the term I, exploiting the approximation results stated in Lemma 2.5, we obtain

I .
∑
E∈Th

ν̄E
h

2(sE−1)
E

p
2(rE−1)
E

||E p||2HrE (TE) +
∑
F∈Γh

ν̄τF `Γ
h

2(sF−1)
F

p
2(rF−1)
F

||E pΓ||2HrF (TF ). (53)

The statement of the theorem follows from (53), together with the bound on Term II deriving from what
observed in (52) and Lemma 5.7.

If the hypotheses of Theorem 5.8 hold, we can also derive error estimates for the velocities u and uΓ

for the mixed-primal, primal-mixed, and mixed-mixed formulations. More precisely, if (u,uΓ) ∈W and
(p, pΓ) ∈M is the solution of problem (30), then, if

(
(ph,uh), pΓ,h

)
∈ Qbh×Wb

h×QΓ
h is the approximation

obtained with the mixed-primal method (38), we have that

||u− uh||20,Th .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

GME ||E p||2HrE (TE) +
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

GPF ||EΓpΓ||2HrF (TF ).
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(a) (b) (c)

Figure 18: Example 1: Three refinements of the polygonal mesh grid conforming to the fracture.

Analogously, if
(
ph, (pΓ,h,uΓ,h)

)
∈ Qbh ×QΓ

h ×WΓ
h is the approximation computed with the primal-mixed

method (43), we deduce that

||uΓ − uΓ,h||20,Γh .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

GPE ||E p||2HrE (TE) +
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

GMF ||EΓpΓ||2HrF (TF ).

Finally, if
(
(ph,uh), (pΓ,h,uΓ,h)

)
∈ Qbh ×Wb

h × QΓ
h ×WΓ

h is the approximation obtained with the
mixed-mixed method (47), then the following bound holds

||u− uh||20,Th + ||uΓ − uΓ,h||20,Γh .
∑
E∈Th

h
2(sE−1)
E

p
2(rE−1)
E

GME ||E p||2HrE (TE) +
∑
F∈Γh

h
2(sF−1)
F

p
2(rF−1)
F

GMF ||EΓpΓ||2HrF (TF ).

Here, the constants GME , GPF , GPE and GMF are defined as in Theorem 5.8. We refer to [19] for further
details.

5.4 Numerical results

In this section we present three sets of two-dimensional numerical experiments employing the paradig-
matic primal-primal and mixed-primal settings. With the first set of experiments we aim to validate
the theoretical convergence results of Section 5.3, by considering a test case with known analytical
solution. With the second and third sets of experiments, we assess the capability of the method of
handling more complicated geometries, namely networks of partially immersed fractures and networks of
intersecting fractures. All the numerical tests have been implemented in Matlab R© and the polygonal
meshes conforming to the fractures have been obtained by suitably modifying the code PolyMesher [137].

5.4.1 Example 1: Problem with a known analytical solution

We consider the domain Ω = (0, 1)2 and the fracture Γ = {(x, y) ∈ Ω : x = 0.5}. Following [67, 17],
we select the analytical solution in the bulk and the fracture as follows

p =

{
sin(4x) cos(πy) if x < 0.5,

cos(4x) cos(πy) if x > 0.5,
pΓ = ξ[cos(2) + sin(2)] cos(πy),

so that they satisfy the coupling conditions (29i)-(29j) with ν = I, provided that βΓ = 2, that is νnΓ/`Γ = 4.
In particular, here we choose the tangential and normal components of the permeability tensor in the
fracture as ντΓ = 102 and νnΓ = 4 · 10−2, respectively, and the fracture thickness `Γ = 10−2. Moreover, in
the experiments we set ξ = 3

4 . We impose Dirichlet boundary conditions on the whole ∂Ω and also on ∂Γ.
Finally the source terms are chosen accordingly as

f =

{
sin(4x) cos(πy)(16 + π2) if x < 0.5,

cos(4x) cos(πy)(16 + π2) if x > 0.5,
fΓ = cos(πy)[cos(2) + sin(2)](ξντΓπ

2 +
4

`Γ
).

In Figure 18, we show three levels of refinement of the polygonal mesh conforming to the fracture
employed in the computations. In order to test the h-convergence properties of our methods, thus
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Figure 19: Example 1: Computed errors as a function of 1/h (loglog scale) and expected convergence rates for uniform
bulk polynomial degrees pE = 1, 2, 3, 4 for all E ∈ Th and fixed uniform fracture polynomial degree pF = 2 for all F ∈ Γh.
Case (PP) on the left and (MP) on the right.

validating the error estimate for the energy norm stated in Theorem 5.8, we compute the quantity
||p− ph||1,Th + ||pΓ − pΓ,h||1,Γh . The plots in Figure 19 show the computed errors as a function of the
inverse of the mesh size h (loglog scale), together with the expected convergence rates. In particular,
Figure 19(a) shows the results obtained with the primal-primal approximation, while Figure 19(b) shows
the analogous results for the mixed-primal method. Each plot consists of four lines: every line shows
the behaviour of the energy norm of the error for a different polynomial degree in the bulk (we consider
uniform polynomial degrees pE = 1, 2, 3, 4 for all E ∈ Th). For the fracture problem we always choose a
uniform quadratic polynomial degree, i.e., kF = 2 for all F ∈ Γh. For both the (PP) and (MP) method
the theoretical convergence rates are clearly obtained, coinciding with min(pE , pF ). In particular, the
convergence rate is equal to 1 in the linear case, i.e., when pE = 1 for all E ∈ Th, and it is equal to 2 in
all the other cases, since the approximation of the fracture problem is always quadratic. Note also that
the (PP) and (MP) methods achieve the same level of accuracy.

5.4.2 Example 2: Immersed fractures

We now investigate the capability of our discretization methods to deal with immersed fractures. To
this end, we take as a reference [4], where the mathematical model [113] is extended to fully immersed
fractures. In particular, we supplement equations (29) with a condition prescribing the behaviour of the
fluid at the fracture tips immersed in the porous medium. As in [4], we impose that ντΓ∇τpΓ · τ = 0 on
∂Γ \ ∂Ω, i.e., that the mass transfer across the immersed tips can be neglected.

We employ again the paradigmatic primal-primal and mixed-primal approximation schemes to re-
produce some numerical experiments already proposed in [4]. We consider the computational domain
Ω = (0, 1)2 cut by four partially immersed fractures, namely Γ1 = {(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.2},
Γ2 = {(x, y) ∈ (0, 1)2 : x ≤ 0.7, y = 0.4}, Γ3 = {(x, y) ∈ (0, 1)2 : x ≥ 0.3, y = 0.6},
Γ4 = {(x, y) ∈ (0, 1)2 : x ≤ 0.7, y = 0.8}. The fractures Γ2 and Γ4 are impermeable (ντΓ = νnΓ = 10−2),
while Γ1 and Γ3 are partially permeable (νnΓ = 10−2, ντΓ ∈ {100, 1} ). With the aim of investigating the
dependence of the flow on the physical properties of the fractures, we consider two different configurations
(A and B), by varying the value of the permeability ντΓ on the partially permeable fractures Γ1 and Γ3

and the boundary conditions as illustrated in Figure 20. At the extremities of the fractures that are
non-immersed, i.e., ∂Γ ∩ ∂Ω, we impose boundary conditions that are consistent with those imposed on
∂Ω at that point. In both cases we consider an isotropic bulk permeability tensor, i.e., ν = I and we
assume that all the fractures have aperture `Γ = 0.01. Moreover, we take the forcing terms f = fΓ = 0,
so that the flow is only generated by the boundary conditions. Finally, we choose the parameter ξ = 0.55.

Our results have been obtained with Cartesian grids aligned with the fractures, consisting of 26243
elements; this is approximately the same as in [4]. We remark that each immersed fracture tips coincides
with a mesh vertex (in the case when the fracture ends at an edge of an element, the tip is considered as
an additional vertex for the quadrilateral, which then becomes a pentagon). For both the (PP) and (MP)
approximations we choose uniform linear polynomial degrees for both the bulk and fracture problems. In
Figure 21 we show the results obtained with the (PP) and (MP) methods for configuration A; in Figure
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(b) Configuration B: ντΓ = 1 on Γ1,Γ3

Figure 20: Example 2: Immersed fractures: configurations and boundary condition for the test cases A and B.

Bulk pressure field and streamlines Bulk pressure along x = 0.65 Pressure in the fractures

Figure 21: Example 2: Immersed fractures; configuration A, primal-primal approximation (top) and mixed-primal
approximation (bottom).

22 we show analogous results for the configuration B. In particular, in both figures, we report the pressure
field in the bulk with the streamlines of the velocity (left), the value of the bulk pressure along the line
x = 0.65 (middle) and the pressure field inside the four fractures (right). The top line of each figure
encloses the results obtained with the (PP) approximation, while the bottom line presents those obtained
with the (MP) method. For both the (PP) and (MP) schemes, our results are in perfect agreement
with those obtained in [4], thus showing that our approximation schemes can be easily extended to the
treatment of more complex situations. Moreover, for this example, we observe that the (PP) and (MP)
methods deliver the same level of accuracy.
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Bulk pressure field and streamlines Bulk pressure along x = 0.65 Pressure in the fractures

Figure 22: Example 2: Immersed fractures; configuration B, primal-primal approximation (top) and mixed-primal
approximation (bottom).

5.4.3 Example 3: Network of intersecting fractures

We conclude with a test case, already presented in [17], that aims at investigating the capability
of our method for dealing with a network of intersecting fractures, which is also totally immersed in
the bulk domain. In order to proceed, we need to complement our mathematical model (29) with some
conditions at the intersection points, prescribing the behaviour of the fluid. In particular, we impose
pressure continuity and flux conservation, as in [91, 43, 50]. At the immersed tips we impose the no flux
condition ντΓ∇τpΓ · τ = 0 as above. We also mention that this numerical experiment was first presented
in [21] employing the mimetic finite difference method. Here, we employ a suitable modification of the
primal-primal scheme, which is able to handle intersecting fractures by virtue of an appropriate definition
of jump and average operators at the intersection points. We refer to [18] for a detailed analysis of this
scheme.

In the numerical simulations, we consider the bulk domain Ω = (0, 1)2 and the network made of 10
intersecting fractures that is shown in Figure 23(a).

We impose homogeneous Dirichlet boundary conditions on the whole ∂Ω and define the source terms
in the bulk and in the fracture as

f(x, y) =

{
10 if (x− 0.1)2 + (y − 0.1)2 ≤ 0.04,

−10 if (x− 0.9)2 + (y − 0.9)2 ≤ 0.04,
fΓ = 0,

respectively. We note that the source term in the bulk is defined so that a source is present in the lower
left corner of the domain and a sink in its top right corner. We assume that the porous medium in
the bulk is isotropic and homogeneous, i.e., ν = Id. With the aim of testing the behaviour of the bulk
pressure depending on the permeability properties of the fracture network, we consider three different
configurations:

1. No fractures are present in the porous medium;

2. Permeable network: all the fractures have high permeability properties with ντΓ = νnΓ = 1000 and
constant thickness `Γ = 0.01;
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(a) Computational domain (b) Mesh detail

Figure 23: Example 3: Network of intersecting fractures: computational domain (left) and zoomed detail of the polygonal
mesh employed for the computations (right). Taken from [17].

(a) No fractures (b) Permeable (c) Impermeable

Figure 24: Example 3: Network of intersecting fractures: discrete pressure in the bulk for the three test cases, no fractures
(left), permeable network ντΓ = νnΓ = 1000 (middle), impermeable network ντΓ = νnΓ = 0.001 (right). Taken from [17].

3. Impermeable network: all the fractures have blocking properties with ντΓ = νnΓ = 0.001 and
constant thickness `Γ = 0.01.

In Figure 23(b) we show a detail of the polygonal mesh conforming to the fracture network that we
employed for the simulations. The discrete pressures for the problem in the bulk, obtained with the
primal-primal approximation, in the three cases outlined above, are presented in Figure 24. In particular,
one may observe that, when the network is permeable, the bulk pressure is only marginally affected by
the presence of the fractures, so that it reaches maximum and minimum values that are only slightly
lower than those of the non-fractured case (see the comparison between Figure 24(a) and Figure 24(b)).
In contrast, in the impermeable case, jumps of the bulk pressure across the fractures are clearly observed,
cf., Figure 24(c). Finally, we note that our results are in good agreement with those obtained in [91].

6 Conclusions

In this work we have provided a comprehensive review of the current development of PolyDG methods
for geophysical applications, addressing as paradigmatic applications the numerical modeling of seismic
wave propagation and fracture reservoir simulations. After having recalled the theoretical background
of the analysis of PolyDG methods (cf. Section 2), in Section 3 we discussed the issue of efficiently
implementing DG methods on polytopic meshes, addressing in detail the issue of numerical quadrature
and recalling the main results contained in [7], where a new quadrature free algorithm for the numerical
evaluation of the integrals required to assemble the mass and stiffness matrices has been proposed. More
precisely, a cubature method, which does not require the definition of a set of nodes and weights on the
domain of integration, and allows for the exact integration of polynomial functions based on evaluating
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the integrand only at the vertices of the polytopic integration domain, is presented and tested in both
two- and three-dimensions. This approach shows a remarkable gain in terms of CPU time with respect
to classical quadrature rules, while maintaining the same degree of accuracy. In Section 4 we presented
PolyDG methods for the approximate solution of the elastodynamics equations on computational meshes
consisting of polytopic elements. We analysed the well-posedness of the numerical formulation and
proved hp-version a priori error estimates for the semi-discrete scheme. The fully discrete method is
then obtained based on employing the leap-frog scheme for the time discretization. To test the numerical
performance and fully exploit the flexibility in the process of mesh design offered by polytopic elements
numerical experiments have been presented. Section 5 focused on the problem of modeling the flow
in a fractured porous medium. For ease of presentation and analysis we have assumed the medium to
be cut by a single non-immersed fracture and have reviewed the unified development and analysis of
PolyDG methods for this class of problems. These error bounds have been validated through numerical
tests. Moreover, we have demonstrated that our approach can be extended to handle networks of
partially immersed fractures and networks of intersecting fractures, cf. [18]. To conclude we mention
that the current developments of PolyDG methods, not discussed here for the sake of brevity, include
the exploitation of agglomeration-based algorithms to design multilevel and multigrid methods for the
efficient iterative solution of the (linear) system of equations stemming from the PolyDG discretization.
Indeed, multigrid/multilevel solvers require the definition of a succession of coarse grids, based on the
original ‘fine’ grid. The process of defining the coarser grids involves what is called agglomeration, i.e.,
the combination of several nodes or control volumes or coefficients from the original grid. In this context,
the flexibility offered by polytopic grids can be fully exploited. Some pioneering works on the analysis of
agglomeration-based multigrid/multilevel solvers and preconditioners can be found in [25, 30, 24]; cf. also
the classical approach based on a sequence of simplicial/quadrilateral meshes [31].
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non-overlapping additive Schwarz preconditioner for high-order discontinuous Galerkin methods
on polytopic grids”. In: Math. Comp. (2019). to appear.

[25] P. F. Antonietti, P. Houston, X Hu, M. Sarti, and M. Verani. “Multigrid algorithms for hp-version
Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes”. In: Calcolo
54.4 (2017), pp. 1169–1198.

[26] P. F. Antonietti, C. Marcati, I. Mazzieri, and A. Quarteroni. “High order discontinuous Galerkin
methods on simplicial elements for the elastodynamics equation”. In: Numer. Algorithms 71.1
(2016), pp. 181–206.

[27] P. F. Antonietti, I. Mazzieri, N. Dal Santo, and A. Quarteroni. “A high-order discontinuous
Galerkin approximation to ordinary differential equations with applications to elastodynamics”.
In: IMA J. Numer. Anal. 38.4 (2018), pp. 1709–1734.

[28] P. F. Antonietti, I. Mazzieri, M. Muhr, V. Nikolić, and B. Wohlmuth. “A high-order discontinuous
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fracture network simulations”. In: Comput. Methods Appl. Mech. Engrg. 280 (2014), pp. 135–156.
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[102] J Jaffré, M Mnejja, and J. Roberts. “A discrete fracture model for two-phase flow with matrix-
fracture interaction”. In: Procedia Computer Science 4 (2011), pp. 967 –973.

[103] G. Karypis and V. Kumar. “A fast and high quality multilevel scheme for partitioning irregular
graphs”. In: SIAM J. Sci. Comput. 20.1 (1998), pp. 359 –392.

[104] G. Karypis and V. Kumar. MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering
System, Version 4.0. http://www.cs.umn.edu/~metis. 2009.
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