
An hp–Adaptive Iterative Linearization

Discontinuous-Galerkin FEM for Quasilinear

Elliptic Boundary Value Problems

Paul Houston and Thomas P. Wihler

Abstract In this article we consider the a posteriori error analysis of hp–version

discontinuous Galerkin finite element methods for the numerical solution of a

second–order quasilinear elliptic boundary value problem of strongly monotone

type. In particular, we employ and analyze a practical solution scheme based on

exploiting a discrete Kačanov iterative linearization. The resulting a posteriori error

bound explicitly takes into account the three sources of error: discretization, lin-

earization, and linear solver errors. Numerical experiments are presented to demon-

strate the practical performance of the proposed hp-adaptive refinement strategy.

1 Introduction

In this article, we consider the a posteriori error analysis, in a natural mesh-

dependent energy norm, for a class of interior-penalty hp-version discontinuous

Galerkin finite element methods (DGFEMs) for the numerical solution of the fol-

lowing quasilinear elliptic boundary value problem:

−∇ · (µ(xxx, |∇u|)∇u) = f in Ω , u = 0 on Γ . (1)

Here, Ω ⊂ R2 is a bounded polygon with a Lipschitz continuous boundary Γ , and

f ∈ L2(Ω), where for an open set D ⊆ Ω , we signify by L2(D) the space of all

square integrable functions on D. Additionally, we assume that the nonlinearity µ
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satisfies the following assumptions: (A1) µ ∈ C0(Ω × [0,∞)); (A2) there exist pos-

itive constants mµ and Mµ such that mµ(t − s) ≤ µ(xxx, t)t − µ(xxx,s)s ≤ Mµ(t − s),
t ≥ s≥ 0, xxx∈ Ω̄ . We remark that, if µ satisfies (A2), there exist constants β ≥α > 0,

such that for all vectors vvv,www ∈ R2, and all xxx ∈Ω ,

|µ(xxx, |vvv|)vvv− µ(xxx, |www|)www| ≤ β |vvv−www|,

α|vvv−www|2 ≤ (µ(xxx, |vvv|)vvv− µ(xxx, |www|)www) · (vvv−www);
(2)

see [14, Lemma 2.1]. For ease of notation, in the sequel, we will simply write µ(s)
instead of µ(xxx,s), thereby suppressing the explicit dependence of µ on xxx ∈Ω .

The weak formulation of (1) is to find u ∈ H1
0(Ω) such that

A(u;u,v) = ( f ,v)L2(Ω) ∀v ∈ H1
0(Ω), (3)

where, given w ∈ H1
0(Ω), we define the bilinear form A(w;u,v) =

∫
Ω µ(|∇w|)∇u ·

∇vdxxx, u,v ∈ H1
0(Ω), as well as the L2(Ω)-inner product (v,w)L2(Ω) =

∫
Ω vwdxxx,

v,w ∈ L2(Ω). Here, H1
0(Ω) is the standard Sobolev space of first order, with zero

trace along Γ , equipped with the norm ‖v‖H1
0(Ω) = ‖∇v‖L2(Ω), v∈H1

0(Ω). Under the

assumptions (A1)–(A2) above, it is elementary to show that the form A is strongly

monotone and Lipschitz continuous in the sense that

A(u;u,u− v)−A(v;v,u− v)≥ α‖u− v‖2
H1

0(Ω)
∀u,v ∈ H1

0(Ω), (4)

and

|A(u;u,v)−A(w;w,v)| ≤ β‖u−w‖H1
0(Ω)‖v‖H1

0(Ω) ∀u,v,w ∈ H1
0(Ω),

respectively. From these properties, classical monotone operator theory implies ex-

istence and uniqueness of a solution of (3); see, e.g., [17, Theorem 3.3.23].

The exploitation of automatic adaptive hp-refinement algorithms has the poten-

tial to compute numerical solutions to partial differential equations (PDEs) in a

highly efficient manner, often leading to exponential rates of convergence as the

underlying finite element space is enriched; see, e.g., [9, 16]. The key tool required

to design such strategies is the derivation of a posteriori estimates for the Galerkin

discretization errors; in recent years such bounds have been extended to the context

of linearization and/or linear solver errors, cf. [1, 2, 4, 5, 7, 12]. In the present article

we consider the derivation of an hp-version a posteriori error bound for the DGFEM

approximation of the second-order quasilinear elliptic PDE problem stated in (1). To

this end, we employ the interior penalty DGFEM proposed in [8], cf. also [11], to-

gether with a discrete Kačanov iterative linearization scheme, cf. [6]. Based on the

analysis undertaken in [11], together with the use of a suitable reconstruction opera-

tor, cf. [13,15], we derive a fully computable bound for the error, measured in terms

of a suitable DGFEM energy norm, which separately accounts for the three main

sources of error: discretization, linearization, and linear solver errors. On the ba-

sis of this a posteriori bound, we design and implement an hp-adaptive refinement
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algorithm which automatically controls each of these error contributions as the un-

derlying finite element space is enriched. Numerical experiments highlighting the

practical performance of the proposed adaptive strategy are presented.

2 Iterative Discontinuous Galerkin Methods

2.1 Discrete hp-discontinuous Galerkin spaces

Let Th be a partition of Ω into disjoint open and shape-regular elements κ such that

Ω =
⋃

κ∈Th
κ . We assume that each κ ∈Th is an affine image of a given master ele-

ment κ̂ , which is either the open triangle {(x,y) :−1 < x < 1,−1 < y <−x}) or the

open square (−1,1)2 in R2. By hκ we denote the element diameter of κ ∈ Th, and

nnnκ signifies the unit outward normal vector to κ . We allow Th to be 1-irregular, i.e.,

each edge of any one element κ ∈ Th contains at most one hanging node (which,

for simplicity, we assume to be the midpoint of the corresponding edge). In this

context, we suppose that Th is regularly reducible (cf. [18, Section 7.1] and [11]),

i.e., there exists a shape-regular conforming (regular) mesh T̃h (consisting of trian-

gles and parallelograms) such that the closure of each element in Th is a union of

closures of elements of T̃h, and that there exists a constant C > 0, independent of

the element sizes, such that for any two elements κ ∈ Th and κ̃ ∈ T̃h with κ̃ ⊆ κ
we have hκ/hκ̃ ≤C. Note that these assumptions imply that Th is of bounded local

variation, i.e., there exists a constant ρ1 ≥ 1, independent of the element sizes, such

that ρ−1
1 ≤ hκ♯/hκ♭

≤ ρ1, for any pair of elements κ♯,κ♭ ∈Th which share a common

edge e = ∂κ♯∩∂κ♭. Moreover, let us consider the set E of all one-dimensional open

edges of all elements κ ∈ Th. Further, we denote by EI the set of all edges e ∈ E

that are contained in the open domain Ω (interior edges). Additionally, we introduce

EB to be the set of boundary edges consisting of all e ∈ E that are contained in Γ .

For any integer p∈N0, we denote by Pp(κ) the set of polynomials of total degree

p on κ . Similarly, when κ is a quadrilateral, we also consider Qp(κ), the set of all

tensor-product polynomials on κ of degree p in each coordinate direction. To each

κ ∈ Th we assign a polynomial degree pκ (local approximation order). We collect

the local polynomial degrees in a vector ppp = {pκ : κ ∈Th}, and then introduce the

hp-DGFEM space

VDG(Th, ppp) = {v ∈ L2(Ω) : v|κ ∈ Spκ (κ) ∀κ ∈Th} ,

with S being either P or Q. We shall suppose that the polynomial degree vector

p, with pκ ≥ 1 for each κ ∈ T , has bounded local variation, i.e., there exists a

constant ρ2 ≥ 1, independent of the local element sizes and ppp, such that, for any

pair of neighbouring elements κ♯,κ♭ ∈ Th, we have ρ−1
2 ≤ pκ♯/pκ♭

≤ ρ2.

We also define the L2-projection ΠTh,ppp : L2(Ω)→VDG(Th, ppp) by
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(ΠTh,pppv− v,w)L2(Ω) = 0 ∀w ∈VDG(Th, ppp).

Evidently, since functions in VDG(Th, ppp) do not need to be continuous, we have that

Πκ ,pκ =ΠTh,ppp|κ , where, for κ ∈Th, we let Πκ ,pκ be the L2-projection onto Spκ (κ).

2.2 Nonlinear hp-DGFEM formulation

Let κ♯ and κ♭ be two adjacent elements of Th, and xxx an arbitrary point on the inte-

rior edge e ∈ EI given by e = (∂κ♯∩∂κ♭)
◦. Furthermore, let v and qqq be scalar- and

vector-valued functions, respectively, that are sufficiently smooth inside each ele-

ment κ♯,κ♭. Then, the averages of v and qqq at xxx∈ e are given by 〈〈v〉〉= 1/2(v|κ♯+v|κ♭),
〈〈qqq〉〉 = 1/2(qqq|κ♯ + qqq|κ♭), respectively. Similarly, the jumps of v and qqq at xxx ∈ e are

given by [[v]] = v|κ♯ nnnκ♯ + v|κ♭ nnnκ♭ , [[qqq]] = qqq|κ♯ · nnnκ♯ + qqq|κ♭ · nnnκ♭ , respectively. On a

boundary edge e∈ EB, we set 〈〈v〉〉= v, 〈〈qqq〉〉= qqq and [[v]] = vnnn, with nnn denoting the

unit outward normal vector on the boundary Γ .

Furthermore, we introduce the edge functions h,p ∈ L∞(E ), which, for an edge

e ∈ E , are given by h|e := he and p|e = 〈〈p〉〉|e, with he denoting the length of e. In

addition, we define the discontinuity penalisation function σ ∈ L∞(E ) given by σ =
γp2h−1, where γ ≥ 1 is a (sufficiently large) constant. Then, we equip the DGFEM

space VDG(Th, ppp) with the DGFEM norm ‖v‖2
DG

:=
∥∥∇Th

v
∥∥2

L2(Ω)
+
∫
E

σ |[[v]]|2 ds,

v ∈ VDG(Th, ppp), where ∇Th
is the element-wise gradient operator.

With this notation, following [8], we introduce the interior penalty DGFEM dis-

cretization of (3) by: find uDG ∈ VDG(Th, ppp) such that

ADG(uDG;uDG,v) = ( f ,v)L2(Ω) ∀v ∈ VDG(Th, ppp), (5)

where, for given w ∈VDG(Th, ppp), we define the DGFEM bilinear form

ADG(w;u,v) =
∫

Ω
µ(|∇Th

w|)∇Th
u ·∇Th

vdxxx

−

∫

E

〈〈µ(|∇Th
w|)∇Th

u〉〉 · [[v]]ds+θ

∫

EB

〈〈µ(h−1|[[w]]|)∇Th
v〉〉 · [[u]]ds

+
∫

EB

σ [[u]] · [[v]]ds, u,v ∈VDG(Th, ppp),

where θ ∈ [−1,1] is a method parameter. Referring to [8, Theorem 2.5], provided

that γ ≥ 1 is chosen sufficiently large (independent of the local element sizes and

of the polynomial degree distribution), the existence and uniqueness of the DGFEM

solution uDG ∈VDG(Th, ppp) satisfying (5) is guaranteed.

Assumption 1 In the sequel, we suppose that there exists a computable a posteriori

error estimate of the form ‖u− uDG‖DG
≤ η(uDG, f ), where u ∈H1

0(Ω) is the solution

of (1), and uDG is its hp-DGFEM approximation defined in (5).
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Remark 1. In the article [11, Theorem 3.2] it has been proved that such a bound does

indeed exist. More precisely, we have that

‖u− uDG‖DG ≤C

(

∑
κ∈Th

η2
κ +O( f ,uDG)

)1/2

=: η(uDG, f ), (6)

where, the local error indicators ηκ , κ ∈ Th, are defined by

η2
κ := h2

κ p−2
κ ‖ΠTh,ppp−1( f +∇ · (µ(|∇uDG)∇uDG))‖

2
L2(κ)

+ hκ p−1
κ ‖ΠE ,ppp−1([[µ(|∇uDG|)∇uDG]])‖

2
0,∂κ\Γ + γ2h−1

κ p3
κ‖[[uDG]]‖

2
L2(∂κ),

(7)

and O( f ,uDG) := ∑κ∈Th
O

(1)
κ +∑e∈EI

O
(2)
e is a data oscillation term. For κ ∈ Th

and e∈ EI , we have O
(1)
κ := h2

κ p−2
κ ‖(I−ΠTh,ppp−1)|κ( f +∇ ·(µ(|∇uDG|)∇uDG))‖

2
0,κ ,

and O
(2)
e := he p̄−1

e ‖(I−ΠE ,ppp−1)|e ([[µ(|∇Th
uDG|)∇Th

uDG]])‖
2
0,e, where I denotes

a generic identity operator. Here, we write ppp − 1 := {pκ − 1}κ∈Th
. Addition-

ally, we denote by ΠE ,ppp−1|e the L2-projector onto P p̄e−1(e), where we let pe =
max{pκ♯ , pκ♭}, with κ♯,κ♭ ∈Th, e = ∂κ♯∩∂κ♭. Moreover, C > 0 in (6) is a constant

that is independent of the local element sizes, the polynomial degree vector ppp, and

the parameters γ and θ .

2.3 Iterative DGFEM

In order to provide a practical solution scheme for the nonlinear hp-DGFEM sys-

tem (5) we propose a linearization approach based on a discrete Kačanov fixed point

iteration, see, e.g., [6]. To this end, we begin by selecting an initial guess u0
DG
∈

VDG(Th, ppp). Then, for n ≥ 1, given un−1
DG
∈ VDG(Th, ppp), we solve the linear hp-

DGFEM formulation, defined by

ADG(u
n−1
DG

;un
DG
,v) = ( f ,v)L2(Ω) ∀v ∈VDG(Th, ppp), (8)

for un
DG
∈ VDG(Th, ppp). We emphasize that, in actual computations, the linear sys-

tem (8) may be solved by an iterative algorithm, thereby generating an approximate

numerical solution ûn
DG
∈ VDG(Th, ppp), with ûn

DG
≈ un

DG
. This means that, in practice,

instead of computing the sequence {un
DG
}n≥0 obtained from the iteration (8), an in-

exact sequence {ûn
DG
}n≥0 is generated such that

ADG(û
n−1
DG

; ûn
DG
,v)≈ ( f ,v)L2(Ω) ∀v ∈VDG(Th, ppp). (9)

From a mathematical view point, this (inexact) iterative linearization DGFEM ap-

proach gives rise to three different sources of error:

1. Discretization error, which is expressed by the residual
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ρn
DG
(v) := ADG(û

n
DG

; ûn
DG
,v)− ( f ,v)L2(Ω), v ∈H1

0(Ω). (10)

2. Linearization error, which is given in terms of the residual ψn
DG
∈ VDG(Th, ppp):

(ψn
DG
,v)L2(Ω) := ADG(û

n
DG

; ûn
DG
,v)−ADG(û

n−1
DG

; ûn
DG
,v) ∀v ∈ VDG(Th, ppp). (11)

We observe that, if (1) is linear, then we immediately obtain ψn
DG

= 0.

3. Linear solver error, which is described by a residual λ n
DG
∈ VDG(Th, ppp):

(λ n
DG
,v)L2(Ω) := ADG(û

n−1
DG

; ûn
DG
,v)− ( f ,v)L2(Ω) ∀v ∈ VDG(Th, ppp). (12)

Note that, if (8) is solved exactly, then we have ûn−1
DG

= un−1
DG

and ûn
DG

= un
DG

, and

it follows that λ n
DG

= 0.

Remark 2. Since VDG(Th, ppp) may not need to be continuous along element inter-

faces, the linearization and linear solver residuals ψn
DG

and λ n
DG

, respectively, can be

computed elementwise, i.e., in parallel, and, hence, at a low computational cost.

The aim of the analysis in the following section is to investigate the above

residuals, and then to provide a computable a posteriori error estimate for the er-

ror ‖u− ûn
DG
‖DG between the solution u of (1) and ûn

DG
∈ VDG(Th, ppp).

2.4 A posteriori error estimation

In order to bound the residual ρn
DG

in (10), we apply an elliptic reconstruction tech-

nique along the lines of the works [13, 15], see also [7]. Specifically, we define an

auxiliary function ũn ∈ H1
0(Ω) to be the unique solution of the weak formulation

A(ũn; ũn,v) = ( f +ψn
DG
+λ n

DG
,v)L2(Ω) ∀v ∈H1

0(Ω),

where ψn
DG

and λ n
DG

are the linearization and linear solver residuals from (11)

and (12), respectively. Upon adding (11) and (12), we notice that

ADG(û
n
DG

; ûn
DG
,v) = ( f +ψn

DG
+λ n

DG
,v)L2(Ω) ∀v ∈ VDG(Th, ppp).

In particular, we observe that ûn
DG

is the DGFEM approximation of ũn based on em-

ploying the (nonlinear) DGFEM scheme defined in (5). In particular, we may exploit

the a posteriori error estimate in Assumption 1 to infer the computable bound

‖ũn− ûn
DG
‖DG ≤ η(ûn

DG
, f +ψn

DG
+λ n

DG
). (13)

We now turn to bounding the elliptic reconstruction error u− ũn ∈H1
0(Ω); to this

end, we first observe that ‖u− ũn‖DG = ‖u− ũn‖H1
0(Ω). Then, employing the strong

monotonicity property (4), and recalling the weak formulation (3), we obtain
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α‖u− ũn‖2
DG
≤ A(u;u;u− ũn)−A(ũn; ũn,u− ũn)

=−(ψn
DG
,u− ũn)L2(Ω)− (λ n

DG
,u− ũn)L2(Ω).

Employing the Cauchy-Schwarz inequality, together with the Poincaré-Friedrichs

inequality, ‖v‖L2(Ω)≤CPF‖∇v‖L2(Ω) for all v∈H1
0(Ω), where CPF > 0 is a constant,

we deduce that

‖u− ũn‖DG ≤Ψn
DG
+Λ n

DG
, (14)

where the linearization and linear solver residuals are given, respectively, by

Ψn
DG

:= CPF/α

(

∑
κ∈Th

‖ψn
DG
‖2

L2(κ)

)1/2

, Λ n
DG

:= CPF/α

(

∑
κ∈Th

‖λ n
DG
‖2

L2(κ)

)1/2

.

Summarizing the above analysis leads to the following result.

Theorem 1. Suppose that Assumption 1 is satisfied. Then, given a sequence of (pos-

sibly inexact) DGFEM approximations {ûn
DG
}n≥0 ⊂ VDG(Th, ppp), cf. (9), for n ≥ 1,

the following a posteriori error bound holds:

‖u− ûn
DG
‖DG ≤ η(ûn

DG
, f +ψn

DG
+λ n

DG
)+Ψn

DG
+Λ n

DG
.

Here, u is the analytical solution of (1), ψn
DG

and λ n
DG

are the residuals defined in (11)

and (12), respectively, and α > 0 is the constant occurring in (2) and (4).

Proof. The result follows immediately upon application of the triangle inequality,

i.e., ‖u− ûn
DG
‖DG≤‖u− ũn‖DG+‖ũ

n− ûn
DG
‖DG, and inserting the bounds (13) and (14).

Remark 3. We note that the above analysis naturally applies to other finite element

schemes, provided that Assumption 1 is satisfied.

2.5 Adaptive iterative hp-DGFEM procedure

In this section we introduce an automatic hp–refinement algorithm which ensures

that each of the three components of the error, namely discretization, linearization,

and linear solver, are controlled in a suitable fashion. To this end, we propose the

following strategy, cf. [12].

Algorithm 2 Given a (coarse) starting mesh Th, with an associated (low-order)

polynomial degree distribution ppp, and an initial guess û0 ∈VDG(Th, ppp). Set n← 1.

1: Compute the DGFEM solution ûn
DG

from (9) based on employing an itera-

tive linear solver. Furthermore, evaluate the corresponding error indicators

η(ûn
DG
, f +ψn

DG
+λ n

DG
), Ψn

DG
, and Λ n

DG
.

2: if

Ψ n
DG
+Λ n

DG
≤ϒ η(ûn

DG
, f +ψn

DG
+λ n

DG
) (15)
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holds, for some given parameter ϒ > 0, then hp–adaptively refine the space

VDG(Th, ppp); go back to step (1:) with the new mesh Th (and based on the previ-

ously computed solution ûn
DG

interpolated on the refined mesh).

3: else, i.e., if (15) is not fulfilled, then set n← n+ 1, and perform another lin-

earization step by going back to (1:).

4: end if

In Step 2 of Algorithm 2, if (15) is fulfilled then the space VDG(Th, ppp) is adap-

tively hp-refined based on first marking elements for refinement according to the

size of the local element indicators ηκ , cf. (7). To this end, we exploit the maximal

strategy whereby elements are marked for refinement which satisfy the condition

ηκ > 1/3 maxκ∈Th
ηκ . Secondly, once an element κ ∈Th has been marked for refine-

ment, we undertake either local mesh subdivision or local polynomial enrichment

based on employing the hp-refinement criterion developed within the article [10].

Finally, when (15) is not fulfilled, rather than determining which source of error,

i.e., the (computable) quantities Ψn
DG

or Λ n
DG

from (11) and (12), respectively, is dom-

inant, we choose to always undertake a further linearization step, and hence a further

linear solver step is also computed, since this ensures that the most up to date ap-

proximation ûn
DG

is employed at all times.

3 Application to Quasilinear Elliptic PDEs

In this section we present numerical experiments to highlight the performance of the

proposed iterative hp–refinement procedure outlined in Algorithm 2. To this end, we

set the interior penalty parameter constant γ to 10 and the steering parameter ϒ to
1/4. The solution of the resulting set of linear equations is computed using an ILU(0)

preconditioned GMRES algorithm.

For the first numerical experiment, we let Ω = (0,1)2 and define the nonlinear

coefficient as µ(|∇u|) = 2+(1+ |∇u|)−1. The right-hand forcing function f is se-

lected so that the analytical solution to (1) is given by u(x,y) = x(1−x)y(1−y)(1−

2y)e−20(2x−1)2
. In Figure 1 we present a comparison of the actual error measured in

terms of the energy norm versus the square root of the number of degrees of freedom

in VDG(Th, ppp). From Figure 1(a) we clearly observe that exponential convergence of

the proposed hp-refinement strategy as VDG(Th, ppp) in enriched. Furthermore, in Fig-

ure 1(b) we plot the individual residual error indicators; for this smooth problem,

we observe that the discretization indicator (denoted as ηn in the figure) is always

dominant, while the linearization and linear solver residuals (denoted as Ψ n and λ n,

respectively) are roughly of the same magnitude.

Secondly, we let Ω denote the L-shaped domain (−1,1)2 \ [0,1)× (−1,0]⊂ R2

and select µ(|∇u|) = 1+exp(−|∇u|2). By writing (r,ϕ) to denote the system of po-

lar coordinates, we choose the forcing function f and an inhomogeneous boundary

condition such that the analytical solution to (1) is u = r2/3 sin(2/3ϕ), cf. [3]. In Fig-

ure 2 we now present a comparison of the actual error measured in terms of the en-
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Fig. 1 Example 1. (a) Comparison of the DGFEM norm of the error and the a posteriori bound,

with respect to the square root of the number of degrees of freedom; (b) Individual error estimators.
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Fig. 2 Example 2. (a) Comparison of the DGFEM norm of the error and the a posteriori bound,

with respect to the third root of the number of degrees of freedom; (b) Individual error estimators.

ergy norm versus the third root of the number of degrees of freedom in VDG(Th, ppp);
as before we again attain exponential convergence of the proposed hp-refinement

strategy as VDG(Th, ppp) is adaptively refined, though convergence of the a posteriori

error estimator is no longer monotonic. Indeed, from Figure 2(b), we observe that

once an hp-mesh refinement has been undertaken, then several linearization/solver

steps may be required to ensure that the numerical solution has been computed to a

sufficient accuracy before future refinements may be undertaken.

4 Conclusions

In this article we have derived a computable hp-version a posteriori error bound

for the DGFEM approximation of a second-order quasilinear elliptic PDE problem,

whereby a discrete Kačanov iterative linearization scheme is employed. The result-

ing computable upper bound directly takes into account discretization error, as well

as the errors stemming from linearization and the underlying linear solver. Numer-
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ical experiments highlighting the performance of this bound within an automatic

hp-refinement algorithm are presented.
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