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Abstract—As big data often contains a significant amount 

of uncertain, unstructured and imprecise data that are 

structurally complex and incomplete, traditional attribute 

reduction methods are less effective when applied to 

large-scale incomplete information systems to extract 

knowledge. Multigranular computing provides a powerful tool 

for use in big data analysis conducted at different levels of 

information granularity. In this paper, we present a novel 

multigranulation super-trust fuzzy-rough set-based attribute 

reduction (MSFAR) algorithm to support the formation of 

hierarchies of information granules of higher types and higher 

orders, which addresses newly emerging data mining 

problems in big data analysis. First, a multigranulation 

super-trust model based on the valued tolerance relation is 

constructed to identify the fuzzy similarity of the changing 

knowledge granularity with multimodality attributes. Second, 

an ensemble consensus compensatory scheme is adopted to 

calculate the multigranular trust degree based on the 

reputation at different granularities to create reasonable 

subproblems with different granulation levels. Third, an 

equilibrium method of multigranular-coevolution is employed 

to ensure a wide range of balancing of exploration and 

exploitation and can classify super elitists’ preferences and 

detect noncooperative behaviors with a global convergence 

ability and high search accuracy. The experimental results 

demonstrate that the MSFAR algorithm achieves a high 

performance in addressing uncertain and fuzzy attribute 

reduction problems with a large number of multigranularity 

variables.  

Index Terms—Multigranulation super-trust model, fuzzy- 

rough attribute reduction, valued tolerance relation, ensemble 

consensus compensatory scheme 
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I. INTRODUCTION 

ecently, there has been explosive growth in the amount of 

data generated, and the term ‘big data’ is being used to 

refer to the challenges of handling data with a high 

volume, variety, velocity, intrinsic value and uncertain 

veracity. These ‘five V’s’ are the key features defining the 

essence of big data [1][2]. Big data has attracted much 

attention from a variety of circles of scientific research, 

marketing, business management, and government decision 

making, leading to an upsurge of research [3][4][5][6][7][8]. 

Although a large candidate set of attributes is provided in big 

data problems, most may be redundant or irrelevant, which 

highly diminishes the learning performance of 

decision-making algorithms. The complexity of the big data 

problem mainly arises from the very large number of decision 

variables and various types of constraints. Thus, it has become 

highly desirable to develop some effective attribute reduction 

(feature selection) methods to extract useful knowledge 

hidden in large-scale data repositories. Since big data can 

often be incomplete, uncertain and vague in reality, 

conventional knowledge discovery techniques, ranging from 

models, algorithms, and systems to applications, have been 

challenged in terms of how to store, manage, process, and 

analyze the complex attribute sets of big data [9][10][11].  

With the increase of big data, researchers have started 

realizing the existence of data space alongside natural and 

social spaces and shown remarkable interest in its exploration. 

Structuralized knowledge organization and reasoning is 

considered an effective paradigm for handling large-scale 

tasks. In the recent past, a considerable amount of work has 

focused on a new research area—granular computing 

(GrC)—which is situated against the background of other 

human-centered information processing paradigms. GrC, 

which is a term coined by Zadeh [12], refers to a new 

knowledge representation and reasoning paradigm with 

information granules. Fuzzy sets and rough sets are the two 

main formal frameworks among active branches of granular 

computing [13], which are of vital importance for the 

understanding of big data analysis completed at different 

granularity levels. They provide two powerful conceptual and 

algorithmic vehicles for multiple-view data analysis. Fuzzy 

set theory introduced by Zadeh in 1965 [14] is a formal 

mechanism by which to represent and manipulate concepts 

with ambiguous boundaries and to understand and apply the 

processes employed in human reasoning. However, a fuzzy set 

is characterized by only a membership function, which ignores 

uncertain information and thus degrades its performance in big 

data analysis. Rough set theory proposed by Pawlak in 1982 

[15] has been applied to contend with uncertainty caused by 

indiscernibility and incompleteness [16][17][18][19][20][21]. 
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Since rough set theory is complementary to fuzzy set theory, 

fuzzy-rough sets have appeared as a newly emerging 

combination delivering the advantages of both complementary 

areas and are considered to provide a more powerful model for 

analyzing uncertainty in big data [22][23][24]. A fuzzy-rough 

set is defined by two fuzzy sets, fuzzy upper and lower 

approximations, which are obtained by extending the 

corresponding notions of a rough set. 

 In the fuzzy-rough framework, elements have membership 

grades located within some range, which allows for greater 

flexibility in handling uncertain information [25]. In the 

Boolean case, elements that belong to the lower 

approximation are represented as belonging to the 

approximated set with absolute certainty. Therefore, it has 

become timely and strongly justified to develop effective 

fuzzy-rough set algorithms with multigranulation to enhance 

understanding and reasoning in big data analytics. Type-2 

fuzzy sets, as a higher type with a higher order of information 

granules, extend the expressive capabilities of Type-1 fuzzy 

sets, and they are able to represent the imprecision of the 

membership function of fuzzy sets. A Type-2 interval number 

(IN) is a mathematical object that can be interpreted either 

probabilistically or possibilistically. The use of an IN is 

particularly appropriate when modeling linguistic concepts 

[26][27]. Type-2 fuzzy sets have the potential to model 

uncertainties despite the large number of associated 

computations, especially when applied to non-real-time 

applications [28][29]. However, Type-2 fuzzy sets do not 

place any constraints on the continuity or other properties of 

their embedded sets.  

Fuzzy-rough set models provide a method by which 

discrete or a real-valued noisy data or a mixture of both can be 

greatly reduced so that it can be effectively applied to both 

regression and classification of large-scale datasets. 

Fuzzy-rough set research has attracted considerable attention 

in recent years. Some approaches have been proposed to 

improve the performance of traditional fuzzy sets and rough 

sets as follows. Wang et al. [30] presented a new 

nearest-neighbor clustering classification algorithm based on 

fuzzy-rough set theory, in which every training sample was 

made according to fuzzy roughness, and then training sample 

points in a class boundary or overlapping regions were 

removed. Hassanien [31] introduced a hybrid scheme in 

conjunction with statistical feature extraction techniques by 

combining the advantages of both rough sets and fuzzy sets, 

wherein rough sets were employed for the reduction 

generation of the minimal number of features, and fuzzy sets 

were considered as an image preprocessing technique to 

enhance the contrast of the whole image. It was reported, 

however, that fuzzy-rough sets are sensitive to noisy samples. 

To alleviate this shortcoming, Hu et al. [32] discussed why 

the models of rough sets are sensitive to noise and 

developed some robust fuzzy-rough set models based on 

fuzzy lower approximations. Petrosino and Salvi [33] 

presented a multiscale algorithm based on rough fuzzy sets in 

which rough sets handled the vagueness and fuzzy sets 

handled the coarseness. Sarkar [34] generalized the concept of 

rough membership functions to rough–fuzzy membership 

functions, wherein the value signified the rough uncertainty as 

well as the fuzzy uncertainty associated with the pattern. An et 

al. [35] proposed a novel robust data-distribution-aware 

fuzzy-rough set model by computing lower and upper 

approximations. However, the proposed models cannot be 

used to handle multimodal big data in real-world applications. 
Xu et al. [36] put forward a novel data redundancy reduction 

approach based on both fuzzy-rough set theory and 

information theory. Salama [37] provided fuzzy-rough 

attribute reduction software to facilitate the reduction of 

high-dimensional data. Zeng et al. [38] proposed the 

fuzzy-rough set approach for incremental feature selection 

in hybrid information systems. Maji and Garai [39] presented 

an interval type-2 (IT2) fuzzy-rough feature selection method, 

judiciously integrating the merits of the IT2 fuzzy set and 

rough sets to effectively reduce real-valued noisy features. 

Zhao et al. [40] analyzed the nested topological structure of 

fuzzy-rough sets with incremental parameters and designed a 

novel algorithm to compute a nested classifier by reflecting all 

possible parameters. Feng and Mi [41] considered the 

multigranulation fuzzy-rough sets of an information system by 

the minimal and maximal membership degrees based on 

multifuzzy tolerance relations. Yang et al. [42] presented two 

incremental algorithms for attribute reduction with 

fuzzy-rough sets for one and multiple incoming samples. 

Wang et al. [43] introduced a fitting fuzzy-rough set model to 

guarantee the maximal membership degree of a sample to its 

own category. Because fuzziness is employed in rough set 

theory, more reduction information relevant to continuous 

attributes can be successfully acquired. Hu et al. [50] 

proposed a model of multikernel fuzzy-rough sets and 

described a parallel strategy to handle large-scale 

multimodality fuzzy data attribute reduction. 

  Although fuzzy-rough attribute reduction methods have 

shown promising performance, they cannot cope well with the 

multimodality of big data and a large variety of real-world 

applications that involve the challenging complexity of big 

data. In practice, most attribute reduction and classification 

tasks are associated with mixtures of numerical and 

categorical attribute features. The size of multimodal big data 

is usually very large, resulting in extensive time consumption 

and the use of massive parallel processing databases in 

performing attribute reduction. Obviously, this can be greatly 

detrimental to the traditional attribute reduction performance 

for analyses of incomplete large-scale information systems. 

Furthermore, noisy attributes are also one of the main sources 

of uncertainty in big data applications. Although a few 

fuzzy-rough attribute reduction methods are robust toward 

complex noisy attributes, they require more user-supplied 

information, and there is a lack of continuity and inheritance in 

their internal relationships, which results in unsatisfactory 

performances. Meanwhile, when the volume of massive data 

objects increases in the database, much more computing time 
and space overhead are necessary to address the new rendering 

decision attributes. Currently, few works have considered the 

multigranulation algorithm for big data analysis at different 

granularity levels, and there has been a shortage of 

fuzzy-rough set analytical research. 

The focus of this paper is to devise a fuzzy-rough attribute 

reduction approach capable of addressing structurally complex 

and granular large-scale attributes. The efficiency of 

fuzzy-rough attribute reduction algorithms in a very 
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large-scale dataset is an important research topic for the future. 

The multigranulation-fuzzy-rough model is an appropriate 

solution by which to accelerate the process of finding attribute 

reduction sets. In this paper, we propose a novel 

multigranulation super-trust fuzzy-rough attribute reduction 

(MSFAR) algorithm to support the formation of hierarchies of 

information granules of higher types and higher orders. 

MSFAR is suitable not only to address newly emerging 

attribute reduction problems associated with an irregular 

distribution of changing large-scale datasets but also to satisfy 

scenarios with complex noisy attributes. Furthermore, the 

multigranulation super-trust model offers a new way to classify 

data with different degrees of overlap, resulting in the creation 

of reasonable subproblems with different levels of granulation. 

Its main advantages are its high efficiency and robustness. 

Therefore, the main contributions of this paper are as follows: 

(1) A multigranulation super-trust model based on valued 

tolerance relations is constructed to identify the fuzzy 

similarity of the changing knowledge granularity for fuzzy 

classification with multimodality attributes, which effectively 

solves the attribute reduction problem of missing data in a 

large-scale information system. 

(2) An ensemble consensus compensatory scheme is 

adopted to calculate the multigranular trust degree in different 

granularities, resulting in the creation of reasonable 

subproblems with different granulation levels, from coarsened 

to refined.  

(3) An equilibrium method of multigranular-coevolution 

is employed to ensure a wide range of balancing of 

exploration and exploitation. This strategy can classify super 

elitists’ preferences and detect noncooperative behaviors with 

a global convergence ability and high search accuracy. 

  The remainder of the paper is organized as follows. We 

provide background information about the fuzzy-rough set 

model based on the valued tolerance relation in Section II. 

Section III introduces a novel multigranulation super-trust 

model with a self-evolving compensatory scheme, wherein the 

multigranulation super-trust model, the ensemble consensus 

compensatory scheme, and an equilibrium method of 

multigranular-coevolution are described in detail. In Section 

IV, the primary steps of MSFAR are detailed. Extensive 

experimental evaluations are described in Section V. Finally, 

conclusions are drawn in Section VI. 

II. FUZZY-ROUGH SET MODEL BASED ON VALUED 

TOLERANCE RELATIONS 

This section provides the relevant definitions for the 

fuzzy-rough set model based on valued tolerance relations. 

 Definition 1 [15] In the rough set theory, the universe is 

divided into a set of equivalence classes according to the 

attribute values of objects. An information system can be 

defined as a decision table by ( , , , , )T U C D V f= , where C  

is the set of condition attributes, D  is the set of decision 

attributes, V  is the value set of all attributes, and 

: { }f U C D V →  is the information function, such that 

( , ) af x a V  for each { },a C D x U  . 

Definition 2 [16] [17] For { }P C D , an equivalence 

relation ( )IND P  is defined as follows.     

  ( ) {( , ) | , ( , ) ( , )}IND P x y U U a P f x a f y a=     =   (1) 

( )IND P  partitions U  into disjoint subsets. Let /U P  denote 

the family of all equivalence classes of relation ( )IND P , i.e., 

1 2,/ { ,..., ..., }i nU P P P P P= , where 
iP  is an equivalence 

class of P , which is denoted as [ ]i Px . Note that equivalence 

classes are defined with respect to their own attribute sets. 

Equivalence classes /U C and /U D  will be called condition 

and decision classes, respectively. 

Definition 3 [14] Let 
1 2{ , ,..., }rD D D be a family of fuzzy 

sets on U  if 

1

( ) 1 )
r

i

i

D x x U
=

=   (  ,  

where 
1 2{ , ,..., }rD D D  is considered a fuzzy partition. For

x U  , the fuzzy decision of x  is defined by 

 
[ ]

( ) , 1,2,..., ,and ,
[ ]

B i

i

B

x D
D x i r x U

x
= =      

(2) 

where ( )iD x  denotes the fuzzy decision of x  to 
iD . 

Definition 4  For an object x U , the fuzzy positive region of 

D  relative to B is defined as  

        1

( )( ) ( )
r

B i

i

POS D x BD x
=

= ,
          

     (3) 

where ( )iD x  is a set of decision attributes. 

Definition 5 [42] For each condition attribute a A , one 

can define a fuzzy binary relation 
aR , which is called a fuzzy 

equivalence relation if 
aR  is reflexive ( ( , ) 1)R x x = , 

symmetric ( ( , ) ( , ))R x y R y x= , and sup-min transitive 

( ( , ) { ( , ), ( , )})z UR x y sup min R x z R z y for ,x y U  . A 

subset B A can also define a fuzzy equivalence relation, 

denoted by 
B a B aR R= . Based on the fuzzy equivalence 

relation, the concept of fuzzy rough set is defined as follows. 

 Let ( )F U  be the fuzzy power set of U  and B A . For 

each x U , a pair of lower and upper approximation 

operationer of ( )X F U  based on 
BR  is defined by 

( )( ) {1 ( , ), ( )},B u U BR X x inf max R x u X u= −    (4) 

( )( ) { ( , ), ( )}.B u U BR X x sup min R x u X u=     (5) 

where the lower approximation ( )( )BR X x  is considered as 

the degree of x  certainly belonging to X ,while the upper 

approximation ( )( )BR X x  is the degree of x  possibly 

belonging to X . 

( ( ), ( ))B BR X R X  is referred to as the fuzzy rough set of X

with respect to B ,which is defined based on Max t-conorm 

and Min t-norm. 

Definition 6 For the fuzzy-rough attribute reduction process, 

it is necessary to determine the dependency degree of the 

decision features. The dependency function of D  relative to 

B  is formally described by 
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( )( )
( ) i

B ix U

B

POS D x
D

U


 =


,       (6) 

where 0 ( ) 1B D   , and it is defined as the ratio of the sizes 

of the positive region relative to all samples in the feature 

space. 

Definition 7 The main thought behind the attribute reduction 

process using fuzzy rough sets is to find a minimal subset of 

attributes that keeps the positive region unchanged, so that 

those wiped features will not affect the decision making. 

Considering a decision table ( , )U A D , a subset Red A  is 

called a reduct of A  relative to D  if the following 

conditions are satisfied. 

i)   for , ( )( ) ( )( );A Redx U Pos D x Pos D x  =       (7) 

ii)
{ }, , ( )( ) ( )( ).P a Reda P y U Pos D y Pos D y−    =    (8) 

Notice that the reduct is usually not unique. Let ( )DRed A  

denote the set of all reducts with respect to ( , )U A D , and 

then ( )= ( )D DCore A Red A  is called the core of ( , )U A D . It 

is easier to obtain the core first and then find a reduct based on 

the core. 
Definition 8 [44][45] In the improved quantitative tolerance 

model, for an incomplete information system

,},,,,{ ATBafVATUDIIS =

)},(,),,(),,{( 2
2

1
1

m
m
aaa

'
a vkvkvkV = , where mvvv ,,, 21   

are all the possible values of the attribute a .

|})(|{| i
i
a vxaUxk == , where ||• denotes the cardinality 

of a set. ivxaUx = )(, , and its probability is 

)/( 21 k
aaa

i
a kkkk +++  . ,x y . Their similarity degree 

based on the value of Aa  is defined by           
 
 

{ }
1

1 1

1,   ( ) ( ) ( ) ( )

0,   ( ) ( ) ( ) ( )

/( ),   ( ) ( ) ( ( ) ( ) )( , )

( /( )),   ( ) ( )

m
i j

a a i ia
j

m m
j j

a a

j j

a x a y a x a y

a x a y a x a y

k k a x v a y a x a y vVS x y

k k a x a x

=

= =

=     


     



=     == 



=  = 




 

 (9) 

Therefore, the similarity between x  and y  in ATA is 

defined as  

),(),( yxVTyxVT
Av

vA

i

i


= ,       
 

(10) 

and the quantitative tolerance class of x  in ATA is 

denoted by 

( ) { : ( , ) } { }w

A AVT x y U VT x y w x= =  .    
 

(11) 

Definition 9 A multigranular valued tolerance relation is 

considered a good decomposition fuzzy-rough set framework 

for addressing large-scale problems with dynamically 

increasing complexity. For the information system 

1 2{ , , , }, , ,..., ,mDIS U A V f A A A A=  which corresponds 

to the classification threshold with a sequence of m sequence 

of attribute sets. X U  , where the upper approximation 

and lower approximation based on the grade multigranulations 

are defined as follows. 

1 2

1 2

1

{ : ... },m

m

m
ww w0

i i A A A

i

A w X x U VT X VT X VT
=

=       (12) 

 

    

1 1

( ).
m m

0 0

i i i i

i i

A w X A w X
= =

=       

 

(13) 

Therefore,

1 1

( , )
m m

0 0

i i i i

i i

A w X A w X
= =

  is represented as the 

optimistic multigranularity fuzzy-rough set model based on 

quantitative tolerance. 

III. MULTIGRANULATION SUPER-TRUST MODEL WITH A 

SELF-EVOLVING COMPENSATORY SCHEME 

Traditional attribute reduction methods are satisfactory to a 
certain extent, but they are not capable of addressing massive 
amounts of complex large-scale data. Thus, there is a need for 
devising an effective trust method to efficiently handle the 
inherent multimodality attributes characteristics of big data. A 
multigranulation super-trust fuzzy-rough set model based on 
the valued tolerance relation is constructed to extract the 
fuzzy similarity of changing knowledge granularity for fuzzy 
classification. This model effectively solves the problem of 
missing data in an incomplete large-scale information system. 
With the increasing dimensionality of multigranulation space, 
most approaches to extract the fuzzy similarity of knowledge 
granularity are easily trapped in local optima due to 
overexploitation; therefore, their performance deteriorates. To 
achieve a better balance between the exploration and 
exploitation of knowledge granularity for solving complex 
large-scale data sets, we propose a novel multigranulation 
super-trust model with a self-evolving compensatory scheme 
to calculate the multigranular trust degree according to Eq. (17) 
at different granularities, thereby splitting the large dataset into 
reasonable subdatasets. In addition, this model can explore the 
search space and locate the global best region during the 
fuzzy-rough attribute reduction process, as well as accelerate 
the premature convergence speed. 

A. Multilgranulation Super-Trust Model 
Since there are various methods for calculating the 

credibility of a population, a practical method aims to 
process the multigranulation super-trust framework 
to adjust trust relationships based on subpopulations’ 
interactions in different granularity spaces. We construct a 
granu-population architecture according to the trust degree 
of evolutionary elitists, including super elitists, denoted by 
“ ”, and ordinary elitists, denoted by “ ”. The credibility 
of subpopulations in the same granu-population is 
calculated according to the trust calculation mechanism 
based on their respective reputations, which has been 
proven to be a good reflection of trust relationships 
between subpopulations of different granularities. Since the 
interaction between elitists in the same granu-population 
will be more frequent than those between 
granu-subpopulations in the common topology, the trust 
degree can be quickly established, and the 
granu-subpopulation can be evaluated effectively. The 
dynamic trust execution process is described in Fig. 1. Two 
types of super-trust relationships are employed to play two 
roles within different granu-subpopulations for fuzzy-rough 
attribute reduction. As specified in Fig. 2, the super-trust 
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relationships between the super elitist and the ordinary elitist 
and between ordinary elitists are both direct trust relationships, 
and those between the super elitists within different 
granu-subpopulations are recommendation trust relationships. 
The main steps of the process are described in Algorithm 1.  

Direct Trust in the same
granu-subpopulation

Recommendation Trust 
between heterogeneous 
granu-subpopulations

Super Elitist

Ordinary Elitist

Direct Trust Relationship

Granu-population

Pj1

SPj
Pjn

Pji

Pjj

P11

SP1

 P1i

P1j

P1n

Recommendation Trust Relationship

Pi1

SPi

 Pii

Pij

Pin

 

Granu-population1

Granu-populationi

Granu-populationj

Granu-populationn

Pn1

SPn

 Pni

Pnj

Pnn

Fig. 1. Dynamic trust execution process of the multigranularity super-trust 

model  

Algorithm 1: Multigranulation Super-Trust Model (MSTM) 

1. Set the number of granularity subpopulations N

( 2)N   and initialize N  granularity subpopulations 

hGS , where {1,..., }h N .  

2. Initialize the first granularity subpopulation by assigning 

the collective preference in round tP  to granularity 

subpopulation center 
1

tGS . Then, initialize the second 

granularity subpopulation center 2

tGS  as the elitist 

preference 
t

iE , which is the farthest from 
t

cE . 

3. For ( 3)t

hGS h  , compute the minimum distance 

between each of the remaining ordinary elitists’ 

preferences 
t

iE  and all current initial granularity 

subpopulation centers and find the super elitist preference 

whose minimum distance is the largest by  

( ) maxt

h iMS GS = ( )min ( , )t t

u h i ud E GS
.    (14) 

  Assign it to 
t

hGS . Repeat this step until all N   

granularity subpopulations are initialized. 

4. In the granu-populationi, to compute the distances 

between preference relations (both elitists’ preferences 

and cluster centers indistinctly), the trust degree of 

different elitists in the same granularity subpopulation is 

defined by 

1

1
( )

n

i ij ij
dev D P SP

n =
= − ,    (15) 

where n is the total number of elitists, iSP  is the super 

elitist, and 
ijP  is the ordinary elitist in the 

granu-populationi. 

5. Compute the trust degree of each super elitist iSP  

toward each granularity subpopulation center 

( 2)t

hGS h  , ( ) [0,1],
huGS iP  as follows: 

1/( 1)

1/( 1)

1

(1/ ( , ))
( )

(1/ ( , ))
h

b

i h
uC i N b

i uu

d P C
P

d P C

−

−

=

=


.    (16) 

6. The granularity subpopulation centers ( 2)t

hGS h  and 

cluster trust degrees ( )
huGS iP  are updated iteratively. 

Reputations represent the trust degrees of different 

granu-populations, which can be expressed as follows:  

1

1

( )

( )

h

h

m

uGS i ii
h m

uGS ii

P P
GS

P

=

=

=



.        

 

(17) 

7. The similarity between granularity subpopulation 

( 2)t

hGS h   is determined in the current round t , 

{2,..., 1}t Maxrounds − , and each granularity 

subpopulation 
1( 2)t

uC u−   is computed in the previous 

round ( 1)t − . Thus, the scale of the subdatasets is 

dynamically updated iteratively by the trust 

degree relationships based on the subpopulation 

interactions in different granularity spaces. 

8.  A granularity subpopulation similarity measure 

( )1,t t

h usim GS GS −
 is defined by 

( )1 1
( )

, 1

m t

hu it t i
h u

P
sim GS GS

m

− =


= −


,  (18) 

where ( ) [0,1]t

hu iP   is the variation in the iP  

membership of both granularity subpopulations, which 

is computed by 

1 1( ) ( ) ( ) .
h u

t t t t t

hu i GS i GS iP P P  − − = −    

 

(19) 

 For the granularity subpopulation 
t

hGS ,  

    if 
1 1: ( , )t t t

u h uGS sim GS GS k− −  , [0,1]k   is a    

similarity threshold. Then,
t

hGS  and 
1t

uGS −
 are 

assumed to represent the same granu-population. 

B. Ensemble Consensus Compensatory Scheme 

In this section, an ensemble consensus compensatory 

scheme is presented to evaluate the trust information of 

recommended granu-subpopulations. Its main novelty lies in 

calculating the multigranular trust degrees in different 

granularities based on the fuzzy granularity compensatory 

scheme, as well as addressing reasonable subproblem splitting. 

By analyzing the change in the knowledge granularity 

produced by coarsening and refining in the process of 

attribute reduction, the overall performance is greatly 

improved. Fig. 2 shows the framework of the ensemble 
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consensus compensatory scheme, and its main steps are 

described in Algorithm 2. 

Elitist pair  

iw

1 2, ,..., nP P P

Select feature set

1 2, ,..., nEM EM EM

Construct vector of 
feature selection set

Optimize consensus degree

( , )i je e

 Important weights

11 1

1

n

i i

i

n nn

i i

pe pe

PE

pe pe

 
 

=  
 
 

Granu-subpopulationi 

Establish change 
directions

Conduct self-evolutionary 
compensatory scheme

     
Fig. 2. Ensemble consensus compensatory scheme 

Algorithm 2:  Ensemble Consensus Compensatory Scheme 

             (ECCS) 

1. Dedicate each granu-population to its corresponding 

attribute set. The fitness evaluation is distributed equally 

among the participating Granu-subpopulationi with the 

importance weight iw of the ith elitist. Granu- 

subpopulationi is evaluated in its own domain.  

2. Compute the weights by the fuzzy measures over each 

Granu-subpopulationi. 
( ) ( ) ( )( )1 2i i i n

d d d
  

    is 

the permutation of the evaluation values of the alternative 

iA , and 
( )i j

C


 is the criterion corresponding to 
( )i j

d


. 

The weight criterion is calculated by  

  
( ) ( )( ) ( )( )1

, 1,2, , ,
i j i j i j

w j n
  

 
−

=  −  =  

 

(20) 

where 
( ) ( ) i j t

C t j
 

 =  for 1j  ,
( )0i

 = . ( )i j
w


 

is the weight of criterion 
( )i j

C


, and 
( )( )i j

   is the 

fuzzy measure. 

3.  Based on the given weight vector T

1 2( , , , )mw w w w= , 

the intuitionistic fuzzy matrix is a matrix of pairs of 

nonnegative weight numbers, which is constructed by  

( ) ( 1, 2, , ; 1, 2, , ).ij n mI a i n j m= = =   (21) 

4. Each super elitist 
iSP E  provides its preference for 

alternatives according to the fuzzy preference relation

( )lk n n

i iP p = , which consists of a matrix of assessments 

lk

ip  for each pair of super elitists 

( , ), , {1, 2,..., }.i jx x l k n  The ensemble consensus of 

preferences can be improved if the super elitists provide 

reciprocal assessments. If , [0,1], ,lk

ip p p l k=   then 

1lk

ip p= − . 

5.  Compute the similarity degree of each pair of super 

elitists ( , )i jSP SP , and then the similarity matrix 

( )lk n m

ij ijSM sm =  is defined by 

 

11 1

1

,

n

ij ij

ij

n nn

ij ij n n

sm sm

SM

sm sm


 
 

=  
 
 

  (22) 

where [0,1]lk

ijsm  is the similarity degree between 

super elitists 
iSP  and 

jSP  in their assessments 
lk

ip

and 
lk

jp , as obtained by the similarity function  

1 .lk lk lk

ij i jsm p p= − −        (23) 

6.  A consensus matrix ( )CM
lk n mcm =  is computed by 

aggregating similarity matrices, including the importance 

weights [0,1]ijw  of each pair of super elitists

( , )i jSP SP . The weighted average of the similarity 

degrees of each elitist [0,1], ( )lkcm l k   is 

computed by 
1

1 1

1

1 1

m m lk

ij iji j ilk

m m

iji j i

w sm
cm

w

−

= = +

−

= = +

=
 

 
.    (24) 

7.  If all super elitists are given equal importance weights, 
lkcm  is redefined by 

1

1 1

( 1) / 2

m m lk

ij iji j ilk
w sm

cm
m m

−

= = +
=

−

 
,      (25) 

where ( 1) / 2m m −  is the number of different pairs of 

elitists ( , )i je e  in the granu-subpopulationi. 

8.  Design the average weight lk

ijcm  associated with each 

pair of super elitists ( , )i je e  to select each pair of 

features ( , )l kx x  as 

1

lk

ij ijlk

ij m

ijj i

w sm
cm

w
= +

=


,         (26) 

 where [0,1]ijw  , and the value is computed based on a  

single super elitist’s weights ,i jw w . 

9.  An ensemble consensus degree with a compensatory 

scheme is computed by three different levels: 

(i) The level of pairs of super elitists ( )lkcp : This value is 

obtained from CM  as lk lkcp cm= , with 

, {1,..., },l k n l k  . 

(ii) The level of super elitists ( )lca : The level of 

agreement of each super elitist 
lx X=  is computed by 

1,

1

n lk

k k ll
cp

ca
n

= 
=

−


.          (27) 

(iii) The level of preference relation of the overall consensus  
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   degree  cr  is obtained by  

 1

n l

l
ca

cr
n

==


.          (28)  

10. Compare the consensus degree 
iEM  with a consensus 

threshold [0,1]  .  

(i) If 
iEM  , the ganu-subpopulationi moves to the 

attribute selection process. 

(ii) If 
iEM  , the moderator advises the elitists to modif 

their preferences to increase the level of agreement in the  

   following rounds. 

C. Equilibrium Adjustment Strategy of Multigranular 

Coevolution   

Information granularities are not completely independent, 

and they usually overlap and overlay each other. Therefore, a 

dynamic-approximation equilibrium adjustment strategy is 

needed in the multigranular-coevolution space to avoid the 

super elitists running into optima, thus providing good 

guidance for all elitists. While super elitists are in the local 

optima state according to the premature judgment mechanism, 

the mutative-scale equilibrium adjustment strategy is used to 

ensure a wide range of balancing of exploration and 

exploitation. This strategy can classify super elitists’ 

preferences and detect noncooperative behaviors with a global 

convergence ability and high search accuracy. Fig. 3 shows the 

updating approximations of the equilibrium adjustment 

strategy when using different multigranularities for super 

elitists. Our projection produces different isosceles right 

triangles, and the arrow shows the direction of sorting super 

elitists in each triangle area. If two super elitists start with the 

lower granularity of 
3Na , the attribute values of the updating 

approximations converge to the equilibrium pair (
3Na ,

3Na ). 

Similarly, if both super elitists start with very a high 

granularity of 
1Na , the attribute values of the updating 

approximations convergence to the equilibrium pair (
1Na ,

1Na ). 

Thus, the results show that using the equilibrium adjustment 

strategy of multigranular-coevolution for super elitists based 

on isosceles right triangles can lead to an increase in the size of  

the basin of multigranularity attraction. Its main steps are 

described in Algorithm 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: Equilibrium Adjustment Strategy of  
Multigranular Coevolution (EASMC) 

1. Assuming that 
t

hC  and 
1t

uC −
are considered to be in the 

same elitist cluster, let 
1

( )t
h

mt t

h iCi
S P

=
=   and

1

1 1

1
( )t

u

mt t

u iCi
S P −

− −

=
=  be the sums of the elitists’ 

membership degrees to cluster ( 2)t

hC h  , respectively. 

Analogously, let 
1

1 1
( )t

mt t

iCi
S P

=
=  be the sum of the 

elitists’ membership degrees to the collective preference. 

2.  If 
1t t

h uS S − , the super elitists become more assembled 

around 
t

hC . On the other hand, if 
1t t

h uS S − , the super 

elitists become less assembled around 1

t t

cC P= . 

3. Perform a mixed competitive and cooperative convolution 
among the multigranularity subpopulations and suppose 

iS
 
as the ith super elitist. For i=1 to | |iS , do the 

following: 

(i)  Insert the representative of 
iS  as

 
,i repS  into 

C

iP . 

(ii) If | |x in S , select the competing super elitist randomly 

and insert competitors from the selected 

Granu-subpopulationi into 
C

iP . Otherwise, insert 

competitors from other granu-populations into 
C

iP
 
and 

insert random super elitists from iS into 
C

iP . 

(iii) Assemble the complete solution with ,i jS  and the 

representatives from the other granu-populations, assign 

Pareto rank to ,i jS , and calculate niche count of ,i jS . 

(iv) Update the representative super elitist of iS and
 
archive 

the nondominated solution. 

(v) Determine the winning granu-population kS  and    

update i kS S= . 

4.  Super elitists’ fuzzy membership degrees ( )
huC iP to 

granu-subpopulationi are computed using similarity 

measures, where the distance between preference iP  

and 

the super elitist center hC  is represented as ( , )i hd P C . 

5.  Calculate the consistency ratio CR for each of the super   

elitists, ( )t t

ij n n
C c


=  and ( )t t

ij n n
D d


=  , with  1,2,...,t s . 
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Fig. 3. Coarsening and refining attribute values for the updating approximations in multigranulation space. 

(a) Dynamic adjustment, and (b) Equilibrium.  
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IV. PROPOSED MSFAR ALGORITHM 

 We propose a novel multigranulation super-trust fuzzy- 
rough attribute reduction (MSFAR) algorithm to support the 
formation of hierarchies of information granules of higher 
types and higher orders to support big data analysis. To 
accomplish this, we implement the described multigranulation 
fuzzy-rough sets and super-trust model with a self-evolving 
compensatory scheme to calculate the multigranular trust 
degree. It explicitly permits identifying the interdependent 
variables and adaptively decomposes them in the 
multigranulation space, so that the complexity and 
nonseparability of interdependent variables can be minimized 
among different fuzzy attribute subsets. It also extracts the 
fuzzy similarity of the changing knowledge granularity for 
fuzzy classification with multimodality attributes, effectively 
solving the problem of missing data in incomplete large-scale 
information systems. The proposed MSFAR algorithm can 
split a large dataset into reasonable subdatasets with the 
multigranulation super-trust model. It incorporates an 
additional multigranulation module and super-trust- 
coevolution to achieve the desirable goal of detecting complex 
interdependent variables, which can serve as a guide to carry 
out fuzzy-rough attribute reduction tasks with 
multigranulation flexible classification thresholds in big data. 
Its main steps are detailed as follows. 

First, the fuzzy attribute sets are mapped into the 
evolutionary population space, and the fuzzy reduction model 
is completed as the optimization objective model.  
  Second, a multigranulation fuzzy-rough model based on the 
valued tolerance relation is constructed to identify the fuzzy 
similarity of the changing knowledge granularity for fuzzy 
classification with multimodality attributes, which effectively 
solves the problem of missing data in an incomplete large-scale 
information system. Then, an equilibrium method of 
multigranular coevolution is employed to classify super elitists’ 
preferences and detect noncooperative behaviors.  
  Third, the multigranulation super-trust-coevolution model 
with a self-evolving compensatory scheme is adopted to 
calculate the multigranular trust degrees of different 
granularities, which represent their reputations in the group, 
resulting in the creation of reasonable subproblems with 
different levels from coarsened to refined granulation. It can 
self-adapt among different multigranulation layers and capture 
interdependent fuzzy-rough attribute subsets.  
 The pseudocodes of MSFAR are listed as follows: 

Algorithm 5:  Proposed MSFAR algorithm 

1. Initialize the searching space of the fuzzy attribute sets and  

the granularity subpopulations by assigning the collective 

preference in round tP , initialize the granularity 

subpopulations 
hGS , and generate a list of candidate 

fuzzy-rough attribute subsets 
1 2( , ,..., )nA A A . 

2. Decompose the fuzzy-rough attribute sets, compute 

equivalence class of the decision table, and classify super 

elitists’ preferences using Algorithm 1 (MSTM). Then, 

obtain 
1 2{ , ,..., }r r rnS E E E= . 

3. Conduct the ensemble consensus compensatory scheme by  

using Algorithm 2 (ECCS) to determine whether a 

granularity subpopulation is composed of the same super 

elitists as follows. 

   Suppose that 
t

hGS  and 
1t

uGS −
are considered to represent 

the two granularity subpopulations of two super elitists  

and ordinary elitists and that their super elitists’ trust 

degrees ( )
h

t t

GS iP  and 
1 1( )
h

t t

GS iP − −
 have values close to 

each other for all ie E . Then, conduct two similar 

granularity subpopulation compositions. 

4. Perform the equilibrium adjustment strategy of 

multigranular coevolution using Algorithm 3 (EASMC) 

and then obtain the corresponding perfect consistency 

equilibrium degree CED based on isosceles right triangles 

as ( )t t

ij n n
C c


=  1,2,...,t s for any inconsistent CED 

( )t t

ij n n
C c


= , where t i

ij

j

c



= for , 1,2,...,i j n= .  

5.  Obtain the perfect CED as ( )t t

ij
n n

D d


= ,  1,2,...,t s . 

Thus, a perfect consistency pair =< , >t t tT C D  can be 

constituted by  

( )t t

ij n n
C c


= and ( )t t

ij
n n

D d


=  for  1,2,...,t s .  (29) 

6.  The energy function is reconstructed by  

( )

1

( ) G
i

K
m

k N kj j

j

EF e p v
=

=  .

       

(30) 

where G  denotes a K K  matrix defining the 

connectivity between elitist populations k  and j  

and jv  denotes the accumulated class probabilities in 

the neighborhood information 
iN  of elitist population 

i . 

7.  The definition of the multigranulation flexible threshold 

( )RFT X  of R  is formulated as 

( )
( )

2 2

1

1
log log

n
nR i

R

i i

B X X
FT X U

U U X=

 
= −  

  
 ,  (31) 

  where ( )XBnR
 is the threshold region of the boundaries. 

8. Conduct classification and learning of fuzzy-rough 

attribute sets with a parallel accelerating framework and 

( )RFT X  as follows: 

(i) Calculate the degree of dependency as the criterion for 

attribute selection and obtain the similarity degree 

{ }( , )aVS x y  based on quantitative tolerance. 

   (ii) Select feature subsets {subset1,…,subseti,…,subsetn }. 

(iii) Select the best feature subset 
best

iFS for each 

granu-subpopulation and achieve a cascade feature set 

of fuzzy-rough attribute subsets as follows:      

  1 2 ,...,best best best

nFS FS FS FS= .    (32) 

9. Evaluate whether or not the accuracy of the fuzzy-rough 

attribute reduction is satisfied with respect to the predefined 

accuracy. If satisfied, then output the optimal set
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1

FS
n

best

Opt i

i

FS
=

= ; otherwise, go to Step 6. 

   

V. EXPERIMENTAL EVALUATION AND DISCUSSIONS 

To validate the efficiency and effectiveness of the proposed 
MSFAR algorithm, we carry out a thorough series of 
experiments in this section, including a comparison of the 
computational times and accuracies of different algorithms and 
robustness comparisons for big datasets with consideration of 
the attribute noise. We provide performance comparisons 
between MSFAR and other representative algorithms for 
large-scale datasets and conduct robustness comparisons using 
attribute noise datasets for MSFAR versus representative 
algorithms. 

A. Experimental Setup 

   All experiments are performed on computers with a 
Windows 10 operating system, an i7 3770k Intel CPU and 64 
GB RAM using Java 11 programming language. We select five 
publicly available large-scale datasets from the UCI repository 
with heterogeneous attributes [46]. In addition, we produce 
three synthetic large-scale WEKA datasets with the WEKA 
data mining software [47], with these datasets involving a 
large number of samples with different statistical 
characteristics. Descriptive information about the eight 
datasets is given in Table I, where “KddCup99” is the network 
connectivity data set from USA air force simulation over nine 
weeks and “RLCP” means “Record Linkage Comparison 
Patterns”. The datasets Susy and PokerHand are duplicated 
several times. We employ a stratified 10-fold cross-validation 
for data validation. The original dataset is equally partitioned 
into 10 parts, wherein two parts are used for testing and the 
remaining eight parts are used as the training set for attribute 
reduction. A classifier is then learned with the reduced training 
set and the classification accuracy is obtained on the reduced 
testing data. The cross-validation process is then repeated 10 
times. The average values are calculated for the final 
performance. We compare the experimental results of MSFAR 
with the results achieved by other representative algorithms.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B. Computational Times and Accuracies of Different 
Algorithms  

   To test the computational feasibility of MSFAR for use 
with large-scale datasets, we quantitatively compare its 
classification accuracy with those of some representative 
fuzzy attribute reduction algorithms, such as B-FRFS [48], 
MIBARFRAR [36], UFRFS [49], MFDAR [50] and MLFRS 

[51]. To avoid the influence of random selection, independent 
runs for each dataset are repeated 50 times, and the averaged 
computational time and accuracy are presented as the final 

results. As described in Table II, we employ ‘－’ to indicate no 

acceptable solution and a bold number to represent the best 
result of the computational time (time/s ×102). As indicated in 
Table II, MSFAR clearly exhibits the highest speed of 
fuzzy-rough attribute reduction for most datasets compared 
with those of B-FRFS, MIBARFRAR, UFRFS, MLFRS and 
MFDAR. The attribute reduction time denotes the running 
time required for different fuzzy attribute reduction algorithms 
select features. For example, in the Weka-6.4G dataset, the 
attribute reduction time of MSFAR is 2,728 s, whereas the 
corresponding times for B-FRFS, MIBARFRAR, UFRFS, 
MLFRS, and MFDAR are 4,916 s, 6,321 s, 5,129 s, 4,723 s 
and 3,643 s, respectively. The computational time of MSFAR 
is only 55.49%, 43.16%, 53.19%, 57.76% and 74.88% of those 
of B-FRFS, MIBARFRAR, UFRFS, MLFRS and MFDAR, 
respectively. Similar results are evident for most datasets. 
Table III shows the numerical comparison of the selected 
features of different fuzzy attribute reduction algorithms. As 
described in Tables II and III, the proposed MSFAR algorithm 
can reduce the amount of redundant uncertain, unstructured 
and imprecise data and significantly improve the 
computational time. Therefore, it acquires the optimal number 
of selected features of the fuzzy-rough attribute sets, which is 
consistently a much better performance than those of its rivals 
for seven large-scale datasets. The main reasons behind these 
results are that the multigranulation super-trust-coevolution 
model with a self-evolving compensatory scheme employed 
in MSFAR is constructed to calculate the multigranular trust 
degree at different granularities and to split large datasets into 
reasonable subdatasets. MSFAR can consider both strongly 
relevant features and their corresponding correlated features 
simultaneously, and it selects important correlated features 
from a set of attribute features for classification. 

In the following experiment, we further evaluate the 
classification accuracy of MSFAR for selected dynamically 
increasing sample sizes in the large-scale Higgs and 
Weka-1.8G datasets compared with those of representative 
algorithms. We employ only two classifiers, namely, SVM 
[52] and C4.5 [53], to process datasets whose attributes have 
been selected by six different methods, namely, B-FRFS, 
MIBARFRAR, UFRFS, MLFRS, MFDAR and MSFAR. 
Tables IV and V report the classification accuracy versus the 
dynamically increasing sample size of large datasets with the 
SVM classifier and C4.5 classifier, respectively. The six 
different attribute reduction algorithms result in the different 
sets of attributes for the large-scale increasing datasets. It is 
obvious that MSFAR significantly surpasses most of the 
representative algorithms. As an extreme case, both B-FRFS 
and MIBARFRAR fail with increasing sample sizes of the 
Higgs dataset because they are easily overwhelmed when 
processing high-dimensional large datasets. However, MSFAR 
achieves much better classification accuracy because it can 
benefit from the advantages of that the multigranulation  
fuzzy-rough set model can accurately capture interdependent 
variables associated with structurally complex and incomplete 
attribute sets and can greatly eliminate most irrelevant attribute 
sets without lowering the classification performance. For 
example, for the 80×106 sample size of Weka-1.8G, MSFAR 
can reach 97.81% classification accuracy, whereas for 
B-FRFS, UFRFS and MLFRS, these values are 92.21%, 
93.43%, 94.62%, respectively. For the ever-growing 

TABLE I 

 DESCRIPTION OF EXPERIMENTAL DATASETS 

No Datasets Samples Attributes 

1 PokerHand 1,025,010 10 

2 KddCup99 5,000,000 41 

3 Susy 5,000,000 18 

4 RLCP 5,749,132 14 

5 Higgs 11,000,000 28 

6 Weka-1.8G   
 

32,000,000 10 

7 Weka-3.2G 40,000,000 15 

8 Weka-6.4G 80,000,000 15 
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large-scale datasets, MSFAR performs significantly better. 
Therefore, the performance of MSFAR improves for large 
datasets—the larger is the dataset, the higher is the 
classification accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
As indicated in experimental results, MSFAR is suitable for 
use in fuzzy-rough attribute reduction and classification for 
large-scale increasing datasets, thereby overcoming the 
limitations of the representative algorithms.  

The experimental results clearly indicate that the 
classification system employing MSFAR as the fuzzy-rough 
attribute reduction algorithm can acquire the optimal reduction 
results of structurally complex and incomplete attribute sets, 
and lead to an appealing performance in classification accuracy, 
irrespective of different classifiers. 

 

C. Statistical Analysis 

In order to sufficiently report classification accuracies, an 
appropriate statistical test need to be applied to evaluate the 
statistical significance of the results of the fuzzy-rough 
attribute reduction algorithms. In this paper, a paired t-test was 
used to determine the statistical significance of the results at 
the 0.05 level. Since a paired t-test is a parametric test, it 
always assumes approximate normality. The results are shown 
in Tables VI for the SVM classifier, where a ‘b’ symbol next 

to a value indicates that the performance is statistically better 
than MSFAR, and a ‘w’ symbol shows that the performance is 
worse statistically. The final line in Tables VI summarizes the 
count of the number of statistically better, equivalent and 
worse results for each representative fuzzy attribute reduction 
algorithm in comparison to MSFAR. The statistical  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
comparisons results between each compared algorithm and 
MSFAR indicate that only three datasets (KddCup99, Susy 
and RLCP) for which MSFAR is bettered by MLFRS and 
MFDAR, but for the remainder MSFAR achieves statistically 
equivalent to or better accuracy results than other 
representative fuzzy attribute reduction algorithms.  

It is obvious in Table VI that B-FRFS and MIBARFRAR 

do not perform as well as does MSFAR in producing 
classification accuracy results which are consistent across the 
SVM classifier, as there are four or five cases wherein they 
produces worse statistical results compared with MSFAR. 
From the results reported in this table, it can be seen that the 
representative fuzzy attribute reduction algorithms attain a few 
of results which are statistically comparable to accuracy for 
the unreduced data, but MSFAR achieve significantly better 
classification results than them. Generally speaking, it can be 
concluded that MSFAR is superior to the other algorithms in 
the paired t-test. It offers the significance level for the tests 
whilst retaining the semantics of the data. The better 
performance of the proposed MSFAR algorithm is achieved 
due to the fact that it provides an efficient way to select a 

    Datasets B-FRFS MIBARFRAR UFRFS MLFRS MFDAR MSFAR 

1.  PokerHand 29.61±0.46 27.89±1.41 32.45±0.52 33.09±1.29 26.34±0.20 21. 35±0.23 

2.  KddCup99 45.18±1.28 40.98±0.35 36.89±0.38 41.51±1.41 34.90±0.62 24.23 ±0.24 

3.  Susy 34.61±1.41 38.02±1.48 39.36±2.51 34.07±0.32 30.12±0.23 27.09 ±0.20 

4.  RLCP 35.92±0.37 － 29.35±1.32  31.10±0.28 32.24±0.45 23.97 ±0.31 

5.  Higgs － 30.91±0.42 20.51±0.34 19.25±0.41 23.21±0.32 15.33 ±0.38 
 

6.  Weka-1.8G 41.19±0.53 － 47.29±1.37  34.22±0.31 35.32±0.87 32.23 ±0.28 

7.  Weka-3.2G 31.68±2.47 38.11±0.68 23.90±1.51 24.19±0.48 24.32±0.39 19.56±0.39 

8.  Weka-6.4G  49.16±1.54 63.21±2.59 51.29±1.48 47.23±0.37 36.43±0.69 27.28 ±0.40 

 

TABLE II   

COMPUTATIONAL TIME (IN SECONDS×102) COMPARISON OF DIFFERENT FUZZY ATTRIBUTE REDUCTION ALGORITHMS 

 

    Datasets B-FRFS MIBARFRAR UFRFS MLFRS MFDAR MSFAR 

1.  PokerHand  6 6 7 8 8 9 

2.  KddCup99   32 34 31     36 37 40 

3.  Susy    13 14 14 15 16 18 

4.  RLCP     12 － 11 12 13 14 

5.  Higgs     － 18 22      24 28 25 

6.  Weka-1.8G   7 － 6  7      8 8 

7.  Weka-3.2G   12 12 13  12 14 15 

8.  Weka-6.4G   12 11 13 11 12 15 

 

TABLE III 
NUMERICAL COMPARISON OF THE SELECTED FEATURES OF DIFFERENT FUZZY ATTRIBUTE REDUCTION ALGORITHMS 



 

 

11 

reduced attribute set of real valued data sets, having maximum 
significance and relevance without lowering the classification 
performance. 

D. Discussion 

  From the results for average classification accuracy 
presented in Tables IV and V, it can be observed that the 
multigranulation fuzzy-rough set model can perform better 
with lower average subset sizes in comparison to both the 
UFRFS and MLFRS algorithms. In particular, for the proposed 
MSFAR algorithm, from the abovementioned results, it is 
clear that the multigranulation model offers a greater reduction 
of the large-scale size. This reduction is to be expected since 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
 

there is much discriminative information contained in the 
decision features. The main reason behind this result is that the 
multigranulation fuzzy-rough set model can accurately capture 
interdependent variables associated with structurally complex 
and incomplete attribute sets and can greatly eliminate most 
irrelevant attribute sets without lowering the classification 
performance. The possible reasons behind this effect are that 
we construct a multigranulation fuzzy-rough set model based 
on a valued tolerance relation to extract the fuzzy similarity of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE IV 

CLASSIFICATION ACCURACY COMPARISON WITH THE SVM CLASSIFIER FOR THE INCREASING  

LARGE-SCALE EVER-GROWING HIGGS DATASETS (TEST±STD /%) 

Algorithms 
Sample size (  108) 

2 4 10 20 40 

MSFAR 91.13±0.23† 93.21±0.35 95.18±0.41 96.24±0.29 96.93±0.38 

B-FRFS 87.89±0.31 89.29±0.51 91.23±0.43 91.90±0.68 - 

MIBARFRAR 82.19±0.28 84.39±0.42 84.23±0.54 85.07±0.31 - 

UFRFS 87.12±0.56 91.72±0.21 92.29±0.27 93.10±0.43 93.65±0.12 

MLFRS 88.21±0.28 89.36±0.76 90.11±0.65 92.54±0.36 94.65±0.52 

MFDAR 89.23±0.23 92.11±0.28 91.47±0.49 92.45±0.67 93.78±0.34 

 
TABLE V 

CLASSIFICATION ACCURACY COMPARISON WITH THE C4.5 CLASSIFIER FOR THE INCREASING  

LARGE-SCALE EVER-GROWING WEKA-1.8G DATASETS (TEST±STD /%) 

Algorithms 
Sample size (  108) 

2 10 30 50  80 

MSFAR 92.38±0.15 93.39±0.46 95.90±0.28 96.32±0.76 97.81±0.41 

B-FRFS 88.19±0.28 89.89±0.35 90.29±0.37 91.89±0.25 92.21±0.32 

MIBARFRAR 83.78±0.47 84.19±0.12 84.69±0.44 - - 

UFRFS 88.56±0.34 89.19±0.42 91.19±0.43 92.34±0.49 93.43±0.51 

MLFRS 91.27±0.37 91.90±0.56 92.43±0.37 93.12±0.34 94.62±0.12 

MFDAR 91.56±0.28 92.36±1.01 93.07±0.52 94.21±0.52 95.68±0.35 

 

 

    Datasets MSFAR B-FRFS MIBARFRAR UFRFS MLFRS MFDAR 

1.  PokerHand  86.32 84.12 75.13 w 69.90 w 82.54 83.16 

2.  KddCup99   78.34 77.25 67.27 w 79.90 81.46 b 71.42 w 

3.  Susy    92.18 87.43 89.65 91.06 90.65 93.92 b 

4.   RLCP     83.33 67.83 w 81.65  82.56 87.43 b 80.90 

5.   Higgs     95.53 85.89 w 88.56 82.19 w 92.27 92.56 

6.  Weka-1.8G   92.27 84.45 w 87.92 w 91.35 88.07 w 92.04 

7.  Weka-3.2G   93.56 88.78 88.76 85.04 w 84.37 w 85.17 w 

8.  Weka-6.4G   94.96 82.87 w 84.27 w 91.57 87.65 w 90.38 w 

Summary (b/ /w) (0/4/4) (0/4/4) (0/5/3) (2/3/3) (1/4/3) 

 

TABLE VI 

STATISTICAL SIGNIFICANCE DETERMINED USING THE PAIRED T-TEST: SVM 
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the changing knowledge granularity for fuzzy classification 
with consideration of multimodality attributes, which 
effectively solves the problem of missing data in the 
large-scale information system. Meanwhile, the multilayered 
super-trust-coevolution model with a self-evolving 
compensatory scheme can calculate the multigranular trust 
degree at different granularities based on the reputation in the 
group to split the large problem into reasonable subproblems. 
  It is necessary for the algorithm to perform efficiently in 
real time so that it consistently functions without requiring a 
significant amount of computing resources. In our 
experiments, the time complexity of the proposed MSFAR 
algorithm is also analyzed by observing the real-time 
performance for selected big datasets of varying sizes. The 
experimental results indicate that the computational 
complexity of MSFAR is obviously less than those of UFRFS 
and MLFRS. Hence, if we were to perform the evaluation 
using larger datasets, the computational time would be 
unacceptable for the comparison algorithms, but MSFAR 
requires a smaller amount time to obtain the optimal solution.  
  Of course, in a few special cases, the results of MSFAR are 
slightly poorer than those of the representative algorithms. In 
general, the two main components in MSFAR should work 
together to allow it to obtain better results. Furthermore, 
MSFAR can dynamically adapt its main operators to suit 
various large-scale instances with dynamically increasing 
percentages of noise. 

 

VI. CONCLUSIONS  
 Recently, big data has been an emerging topic that has 

attracted the attention of many researchers. The significant 
amount of unstructured, uncertain and imprecise large-scale 
data exhibits structurally complex and granular characteristics. 
Uncertainty data have been widely adopted for attribute 
reduction, but alone, they may be insufficient for use in batch 
feature selection. The recent progress in fuzzy-rough set 
approaches can be helpful for analyses of big data problems. In 
this paper, we present a novel multigranulation super-trust 
fuzzy-rough attribute reduction (MSFAR) algorithm for use in 
big data analysis at different granularity levels. A 
multigranulation fuzzy-rough set model based on a valued 
tolerance relation is constructed to identify the fuzzy similarity 
of the changing knowledge granularity for fuzzy classification 
with multimodality attributes. Meanwhile, the multigranulation 
super-trust-coevolution model with a self-evolving 
compensatory scheme is adopted to calculate the multigranular 
trust degree at different granularities, and it can be directly 
applied to a variety of knowledge analytical problems with 
continuous or numerical large-scale datasets. The experimental 
results demonstrate that MSFAR produces very good results. It 
is theoretically and experimentally indicated that the 
multigranulation super-trust-coevolution model with a 
self-evolving compensatory scheme can provide a much better 
performance by the MSFAR compared to those of the 
representative models. These represent important developments 
for improving the reasoning and understanding of big data. 

In the era of big data, the size of large data usually 
dynamically increases, including current changing and 
interconnected datasets. It is time consuming to perform 
efficient attribute reduction and classification for these uncertain 
and redundant datasets. In the future, it is expected that using 
analytical methods to learn from big data can significantly 
improve the fuzzy-rough attribute reduction process. We will 

also explore the effective and robust multigranulation 
mechanisms of fuzzy-rough reduction estimation to achieve 
improved understanding of large-scale feature selection. We 
intend to exert great effort in promoting our research to offer a 
new avenue by which to address the problem of optimum 
predicting disorder from neonatal brain MRIs. 
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