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Abstract
We develop a machine learning algorithm to infer the emergent stochastic equation governing the
evolution of an order parameter of a many-body system. We train our neural network to
independently learn the directed force acting on the order parameter as well as an effective diffusive
noise. We illustrate our approach using the classical Ising model endowed with Glauber dynamics,
and the contact process as test cases. For both models, which represent paradigmatic equilibrium
and nonequilibrium scenarios, the directed force and noise can be efficiently inferred. The directed
force term of the Ising model allows us to reconstruct an effective potential for the order parameter
which develops the characteristic double-well shape below the critical temperature. Despite its
genuine nonequilibrium nature, such an effective potential can also be obtained for the contact
process and its shape signals a phase transition into an absorbing state. Also, in contrast to the
equilibrium Ising model, the presence of an absorbing state renders the noise term dependent on
the value of the order parameter itself.

1. Introduction

Stochastic processes are fundamentally important in physics [1–3]. For instance, random microscopic
fluctuations can strongly impact the evolution of macroscopic physical observables, e.g. order parameters
close to phase transitions. Monte Carlo methods [4–6] are often the ‘benchmark’ for the computational
treatment of classical many-body dynamics, allowing for efficient sampling of stochastic microscopic
configurations and trajectories. The large-scale dynamics of the order parameter are instead typically
modeled by a stochastic differential equation. The latter contains both a force term, leading to a deterministic
drift, and a noise term yielding diffusive behavior7. [7, 8] However, establishing a connection between
fluctuating microscopic stochastic trajectories and the coarse-grained evolution of the order parameter is a
challenging task that can rarely be accomplished analytically.

7 The drift and the diffusion represent the most basic ingredients for a coarse-grained dynamics. More general forms might include
memory kernels or other non-Markovian time dependencies [7, 8].
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Figure 1. Training of the drift coefficient µθ and the diffusion coefficient σθ from the stochastic trajectories of the order
parameter. (a) The network for the drift coefficient, µθ , is trained by minimizing a distance, L[µ](θ) in equation (4), between
µθ(x) and the drift coefficient µ, cf equation (3). For a given value x of the order parameter, we consider all the values Zt close to
it in the observed trajectories, and their update Zt+dt. The finite difference Zt+dt − Zt is then used to locally approximate the drift
coefficient µ. (b) The network for the diffusion coefficient σθ is trained by minimizing a distance, cf equation (10), between
σ2
θ(Zt) and the derivative of the quadratic variation ∂t[Z]t, see L[σ](θ) in equation (9). The quadratic variation [Z]t itself, cf

equation (6), is locally approximated from the observed trajectories.

In this paper, we develop a machine learning approach [9–14] to bridge this gap. To illustrate our
method, we consider two paradigmatic classical many-body systems: the 2D Ising model evolving under
Glauber dynamics [15–17] and the nonequilibrium contact process in 1D. The dynamics considered for the
Ising model obey detailed balance, which eventually takes the system to a state of thermal equilibrium. As a
function of temperature, this state shows a transition from a paramagnetic to a ferromagnetic state,
characterized by a zero and non-zero value of the order parameter, respectively. As we will show, this
transition manifests in the structure of the learned drift term cf figure 1(a), from which one can reconstruct
an effective potential that exhibits a characteristic double-well shape below the critical temperature. Both the
paramagnetic and ferromagnetic phases are fluctuating, which is also reflected in the learned noise term. In
contrast to the scenario of the Ising model, the contact process represents a genuine out-of-equilibrium
system [18–21], i.e. its dynamics does not obey detailed balance and its stationary state is non-thermal. The
model features a phase transition between a non-fluctuating absorbing state in which the order parameter is
strictly zero and a fluctuating active phase with a non-vanishing order parameter. Interestingly, we show that
also for this genuine nonequilibrium process, an effective potential governing the deterministic drift of the
order parameter can be constructed using our machine learning approach. Unlike for the Ising model,
however, where the learned noise is such that both phases are fluctuating, a noise term is inferred whose
strength depends on the order parameter. In particular, the noise strength tends to zero for vanishing values
of the order parameter, see sketch in figure 1(b), signalling an approach to the (non-fluctuating) absorbing
state.

Our method is applicable to a wide range of many-body processes in and out of equilibrium. It provides a
way to determine a stochastic equation for order parameters which is intuitive and directly interpretable, as
in mean-field theories. Remarkably, it also carries information about the exact low-dimensional physics of
the considered model, as we demonstrate through estimates of critical exponents. Moreover, our method
should also be applicable for inferring effective stochastic differential equations for the evolution of order
parameters from experimental data. Our approach is based on learning ordinary differential equations,
which are relatively straightforward to handle. In contrast, alternative methods focus on learning the full
probability distribution governing the stochastic process [22–27]. These approaches often require
assumptions about the functional form of the probability distribution, such as modeling it with a set of
Gaussian distributions. Other techniques learn the stochastic differential equation by integrating the
stochastic dynamics and optimizing over the probability distribution of the variable [28–34], but they
encounter difficulties in the scenarios we focus on, where the data is subject to significant inherent noise. As
background, we explain more in detail what are the physical quantities that we examine. These quantities
describe macroscopic properties of the microscopic spin models, which are referred to as ”order parameters”
in statistical mechanics. Order parameters, as discussed in [35], are named for their role in measuring the
degree of order within a physical system. Typically, they have non-zero values in phases where some form of
order exists, and zero values in disordered phases. The coarse-grained quantities we focus on are the averages
of the binary spin values over the lattice size at each time step. We assume that their dynamics can be
described by a stochastic differential equation of the Itô type whose drift and diffusion coefficient are
time-independent. In figure 2, we present various configurations of the microscopic spin system for the Ising
model. Specifically, in figure 2(a), we illustrate several configurations of the microscopic spin system and the
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Figure 2. The stochastic dynamics of the order parameter and its steady state for the dynamical Ising model. In panel (a), the
evolution of the order parameter, specifically the magnetizationmt, for the dynamical Ising model is depicted as a function of
time t at a specific value of the control parameter, namely, the temperature T. The insets show the actual corresponding
configurations of the entire spin system at the initial and final states. In the Ising model, varying the temperature results in three
distinct phases: the ordered phase, the critical phase, and the disordered phase. The critical phase appears at the critical
temperature Tc (see panel (b)). Below the critical temperature, the configurations evolve towards a stationary magnetization per
single spinmstat that is non-zero.

corresponding time evolution of the order parameter. In figure 2(b), we display the stationary values of the
states as a function of the control parameter, which in this case is the temperature.

2. Many-body stochastic processes

2.1. The evolution of stochastic observables
For the sake of concreteness, we focus on many-body lattice systems of N sites, each of which is associated
with a classical spin variable. We denote the system state, or system configuration, through the vector s
containing the values si of the variables at the different sites i. We furthermore assume the system to be
subject to a discrete-time Markovian stochastic spin-flip dynamics.

Relevant information about the above many-body system is provided by so-called order parameters,
which encode properties of the whole configuration. A paradigmatic example is given by an average of the
form Zt ≡ Z(st) =

1
N

∑
i s
i
t, where st is the time-evolving state of the system. As a consequence of the

stochastic nature of st, also the effective dynamics of Zt is stochastic. For large systems and at a continuous
coarse-grained time scale, Zt becomes a continuous random variable that may be expected to obey an
emergent stochastic differential equation of the form

dZt = µ(Zt, t)dt+σ (Zt, t)dWt . (1)

Here, the function µ is referred to as the drift coefficient, while σ is called diffusion coefficient.Wt is a
standard Wiener process [1] and dWt is its increment satisfying the relations E[dWt] = 0 and E[dW2

t ] = dt,
with E denoting expectation over the noise. Despite the simple form of equation (1), understanding the
functional form of µ and σ is in general a difficult task. In the following, we propose a method to learn an
approximation to the analytical form of the drift and the diffusion coefficients by means of neural networks.
We determine two artificial neural networks µθ and σθ (see sketch in figure 1), which describe the dynamics
of Zt, given the network parameters (weights and biases) θ. We restrict ourselves to the Markovian case in
which µθ and σθ do not depend on time

dZt = µθ (Zt)dt+σθ (Zt)dWt. (2)

To approximate the functions µ and σ we use a data-driven method, i.e. the networks µθ and σθ are trained
on a data set composed of trajectories Zt, which we call ground truth data, see also figure 1. Note that
restricting to the Markovian case of equation (2) is an assumption since, even if the dynamics of the system
configuration st is Markovian at the microscopic scale, the emergent dynamics of the order parameters—i.e.
macroscopic quantities—may feature non-Markovian effects.

2.2. Neural network representation of the drift and diffusion coefficients
Our approach consists of training the networks µθ and σθ with separate routines, independently from each
other.

As we discuss below, this means that the data sets used for training, despite being derived from the same
sets of trajectories, differ from each other. Specifically, in the case of the drift coefficient, the network is
trained using the first moments of the (infinitesimal) finite differences between adjacent time steps in the
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trajectories. For the diffusion coefficient, the network is trained using the time derivative of the quadratic
variation, which is akin to the second moment of the finite differences between two different times in the
trajectories. In fact, nothing prevents us from training the drift and diffusion terms using completely
different sets of trajectories.

The drift term can be quantified by exploiting averages over trajectories of the infinitesimal increment
dZt in equation (1). More precisely, starting from equation (1) it is possible to show that the function µ at
point x can be obtained as the limit [36–38]

µ(x) = lim
dt→0+

EZt=x [Zt+dt]− x

dt
, (3)

where EZt=x denotes expectation conditional on the process being in x at time t. In the theory of stochastic
processes, the above limit also provides the action of the so-called infinitesimal generatorW on the function
x, µ(x) =W[x] [38].

The limit in equation (3) can be estimated from the data set, as sketched in figures 1–3. To this end, we
generate batches Xi = {x1, . . . ,xdbatch} of size dbatch. Each xj in Xi is extracted randomly between the minimum

and maximum values of the trajectories Zt. For each xj, we consider all the nj points Z
j
t, in all trajectories,

which belong to the interval of width δ around xj, see figure 3(a). The value of δ has to be chosen in such a
way that all bins associated with the different xj are sufficiently populated, ensuring the smoothness of the
learned µ(xj). We check a posteriori that the predicted dynamics, learned with such a δ, corresponds to the
ground truth (see appendix A)8.. We optimize µθ by minimizing the following loss function, cf figure 3(b)

L [µθ] (θ) =

dbatch∑
j=1

∣∣∣∣∣∣µθ

(
xj
)
− 1

nj

∑
Zj
t

∆1Z
j
t

∣∣∣∣∣∣ , (4)

where∆1Zt ≡ (Zt+dt −Zt)/dt. We consider the coarse-grained adimensional time t to correspond to the
number of discrete-time updates of the system normalized by a suitable factor τ and thus dt= 1/τ .

In our data sets, the observed noise is often larger than the drift, cf figures 3(c) and 7(c), especially near
the stationary state, where the drift coefficient vanishes altogether. This is why computing the targets
1
nj

∑
Zj
t
∆1Z

j
t in equation (4) is essential. In fact, no learning would be possible without taking the targets to

be arithmetic averages, due to the above-mentioned large fluctuations.
Since our task is to understand the order-parameter dynamics, we restrict ourselves to the problem of

learning one-dimensional data. This allows for an efficient estimate of the drift coefficient in equation (2). In
one dimension, the stochastic quantity Zt indeed hits the different intervals sufficiently many times during
the evolution, which is needed for proper sampling and computing µ(x). To reduce over-fitting, we train
ntrain different models µi

θ(x), with the loss function (4). To each of these models, we assign a weight wi equal
to the inverse of the mean square error between the data estimate of µ(x) and the network result µi

θ. As a
reference model µθ, we take the weighted average over this ‘ensemble’ of models:

µθ =

ntrain∑
i=1

wiµ
i
θ∑ntrain

i=j wj
. (5)

Specifically, the values of ntrain, dbatch,nepochs and δ we adopt for the considered models are reported in
table A1 (see appendix A).

In order to learn the diffusion coefficient, we use the ‘second moment’ of dZt, which is the quadratic
variation [Z]t. For stochastic processes as in equation (1), this is given by [39, 40]

[Z]t =

ˆ t

0
dZ2

s =

ˆ t

0
dsσ2 (Zs) , (6)

which is nothing but the integral version of the differential equation

∂t [Z]t = σ2 (Zt) . (7)

8 This interval is defined as Bδj ≡ {All Ztsuch that |Zt − xj|< δ}, and its cardinality is nj ≡#Bj
δ . We denote the points in this

interval as Zj
t.
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Figure 3. Estimation of the drift and diffusion coefficients µ and σ. In panel (a), some exemplary trajectories Zt for the Ising
model on a 128× 128 square lattice are depicted. Here, the order parameter Zt is the magnetizationmt. These trajectories are
generated using the dynamical rules reported in equation (14) and provide the variablemt. For a givenmt (black solid line), all
the ni intersections (red dots) within the shaded area are used to compute the quantity µ(x)dt. The latter is plotted in panel (c)
(dashed line), while the solid line is obtained from the trained network µθ(m). In panel (c) the network for the diffusion
coefficient σθ(m) is also shown, in order to compare its dependence on the magnetizationm with the one of the drift. This can
also be seen in panel (b), where the values for the finite difference of the quadratic variation∆α2 [m]t, upon which the network is
trained, are provided together with the values of the corresponding predictions of the neural network σ2

θ(mt).

To train the network for the diffusion coefficient σθ, we devise a coarse-graining procedure that makes the
spin-flip noise of the stochastic many-body dynamics look like a Wiener process. To this end, we first
compute the quadratic variation from trajectories as

[Z]t
∼=

∑
u∈[0,t]

(Zu+α1du −Zu)
2
. (8)

Here, the integer factor α1 ⩾ 1 may allow one to magnify the variation at the different times. Furthermore,
we approximate equation (7) by

∂t [Z]t ≈∆α2 [Z]t =
[Z]t+α2dt

− [Z]t
α2dt

. (9)

The factor α2 ≫ 1 allows one to coarse-grain the noise over many discrete time-steps, which proved
necessary for convergence during the training procedure. This is mainly due to the fact that the finite
difference in equation (9) is stochastic. For this reason we need an average in order to obtain valuable
information for the training. Equation (9) will still be a good approximation of a time derivative if we
consider a time window α2dt much smaller than the time during which relaxation to stationarity takes place.
The optimization of the network parameters is then performed by minimizing the loss function

L [σθ] (θ) =
∑
t

|∆α2 [Z]t −σ2θ (Zt) |. (10)

Note that this loss function is insensitive to the sign of σθ. This is not a problem since the stochastic
increment dWt is symmetric under a change of sign.

To summarize, we explicitly selected the following hyper-parameters to control convergence: the number
of hidden layers, the learning rate, the number of epochs, the batch size dbatch, and the number of models
used to compute an ‘average model’ ntrain. Additionally, we chose a threshold δ from which to compute finite
increments from a given initial condition, and a time step dt. We also set two constants α1 and α2. The
constant α1 is used in approximating the quadratic variation: [Z]t =

∑
u(Zu+α1du −Zu)

2. The constant α2 is
used in computing its finite difference: σ2(Zt) = ([Z]t+α2dt − [Z]t)/α2dt. For further details on the training
procedure, we refer to the appendix A and to table A1.

3. The kinetic ising model

3.1. The model and its dynamics
The Ising model is a paradigmatic model of statistical mechanics. It provides a qualitative description of the
behavior of molecular magnetic dipoles in a metal. The crystalline structure of the metal is modeled as a
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lattice of N sites. At each site i = 1,2, . . . ,N, a magnetic dipole is represented as a spin variable si =±1. The
spins interact with each other according to the following energy functional (Hamiltonian)

H(s) =−1

2

∑
⟨ij⟩

si sj. (11)

Here, the notation ⟨ij⟩ restricts the sites i and j in the sum to be nearest neighbors on the lattice. We consider
a two-dimensional square lattice. This Hamiltonian presents a Z2 symmetry since it is invariant under sign
change of every spin variable si →−si. At thermal equilibrium at a given temperature T, each spin
configuration has a probability described by the Boltzmann distribution πB(s)∝ e−H(s)/kBT, where kB stands
for the Boltzmann constant. Given the magnetization

m=
1

N

∑
i

si, (12)

the order parameter of the model is the expectation of the absolute value ofm in the Boltzmann distribution.
The system undergoes a continuous transition from an ordered phase with finite magnetization at
sufficiently low temperatures, to a disordered one with vanishing magnetization. While in one dimension the
model predicts a finite magnetization only at zero temperature, in two dimensions the critical temperature
Tc corresponding to the phase transition is finite. Close to Tc, the value of the average magnetization m̄
follows a power-law behavior

m̄∝ |T−Tc|β , (13)

where β is a so-called critical exponent.
The Ising model discussed above does not possess inherent dynamics. In order to apply our ML method

to this model we can endow it with Glauber dynamics using Metropolis–Hastings sampling, which is usually
utilized for sampling the Boltzmann distribution of the model. Such a dynamic is defined by the single
spin-flip probabilities P= P(si →−si), updating the spin variables in the lattice according to

P
(
sit →−sit

)
=

{
exp(−∆E/kBT) if ∆E> 0

1 if ∆E⩽ 0
(14)

where∆E=H(s1t , . . . ,−sit, .., s
N
t )−H(s1t , . . . , s

i
t, .., s

N
t ) is the energy change associated with the transition. For

the completion of a single discrete time step st → st+1, a single spin-flip is attempted N times at a random
site. For such a dynamical Ising model, the (stochastically evolving) order parametermt is defined as in
equation (12) for an evolving configuration st. We choose each of the spins in the initial configuration to be
up or down with equal probability, so that for large systemsm0 ≈ 0. For further detail about the model and
its field theoretical representation, see appendix B.1.

3.2. Neural network results
Given a set of trajectories formt at temperature T, we learn the corresponding drift term µT

θ using the
approach explained above and the loss function L[µT](θ) in equation (4). The drift term essentially acts as a
directed force on the order parameter and it is thus natural to define an effective potential driving the motion
ofmt via the integral

MT
θ (m)≡−

ˆ m

0
dxµT

θ (x) . (15)

Our results reported in figure 4 show that upon increasing T the effective potential undergoes a transition
from a functional form exhibiting a double well to a single well potential. This fact is connected with the
equilibrium Ising phase transition which can be understood as follows. The stationary values of the
expectation of the order parameter m̄stat correspond to the minima of the effective potentialMT

θ , see figure 4,
and thus to zeroes of the drift coefficient, µT

θ(m̄stat) = 0, cf figure 5. Since the considered discrete-time
dynamics samples the Boltzmann distribution at stationarity, one essentially has that the stationary values
m̄stat should approximate the equilibrium order parameter m̄, thus connecting the retrieved potential to the
Ising transition.

To benchmark the results from the trained networks µT
θ , we can thus extract the critical temperature Tc

and the critical exponent β of the order parameter and compare them with the known values for the Ising
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Figure 4. Effective potentialMT
θ of the Ising model. The effective potentialMT

θ in equation (15) is determined by the integral of
the drift µθ with respect to the magnetizationm. One can observe that for increasing temperature this effective potential changes
its functional form from having two distinct minima in the double-well potential to having only one minimum atm= 0.

model. We fit the stationary magnetization m̄stat to the scaling form of equation (13) by minimizing the
function

ϵ
(
c̃1, T̃c, β̃

)
=
∑
T

|µT
θ

(
c̃1|T− T̃c|β̃

)
|2. (16)

The positive function ϵ(̃c1, β̃, T̃c) vanishes when c̃1|T− T̃c|β̃ = m̄stat. We consider the values of c1, Tc and β
that minimize ε in equation (16). To find them, the zeroes of the drift coefficient µT

θ , are computed using the
exact derivatives via automatic differentiation. This is possible since we use differentiable neural networks.
We find the following values: β = 0.156± 0.001, Tc = 2.271± 0.001, and c1 = 1.076± 0.002. Note that the
errors reported are only those related to the fit and do not consider finite-time and finite-size errors. For the
Ising model, the analytical values are β = 1/8 and Tc = 2/ ln(1+

√
2)∼= 2.269 [41]. Our results are thus in

good agreement with the exact values and show that the networks are able to provide a sound description of
the critical behavior encoded in the data they are trained on.

Close to the critical point, the Ising model with Glauber dynamics is expected to fall in the model A class
according to the Halperin classification [42]. This is a pure relaxation model for a time dependent field in a
double well potential, subject to uncorrelated white noise [43–46]. The latter feature is indeed reflected in
our results on the learned diffusion coefficient σθ, shown in figures 3(b) and (c). There, we present σθ for
T= 2.269, which is in proximity to the critical temperature. As can be seen, the diffusion coefficient σθ is
essentially constant when compared with the drift coefficient, entailing white noise in the dynamics ofmt.

We thus showed how the learned networks are able to encode significant information about the statics,
i.e. the order-disorder phase transition (see figure 5) and the dynamics, i.e. the form of the noise, for the
process under investigation, through a simple equation.

4. The contact process

4.1. The model
We now apply our method to a paradigmatic nonequilibrium process, the so-called contact process [47, 48].
It was introduced to describe epidemic spreading in the absence of immunization. It is not defined via an
energy function but solely via dynamical rules. The contact process shows a nonequilibrium continuous
phase transition which belongs to the directed percolation universality class [49–53].

Within the epidemic spreading interpretation of the model, each lattice site i represents an individual
which can either be found in the healthy state sit = 0 (inactive site) or in the infected state sit = 1 (active site).
We consider here the case of a one-dimensional lattice. The dynamics occur in discrete time as follows: first,
given the configuration st at time t, we calculate the probability that each spin flips through the rules

P
[
0→ 1,nit

]
∝ κdtnit/2 ,

P
[
1→ 0,nit

]
∝ γdt .

(17)
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Figure 5. Neural networks for the drift coefficients µT
θ for the Ising model. Due to the Z2 symmetry of the Hamiltonian, only the

behavior form> 0 is shown. Warmer tones correspond to higher temperatures. The higher the temperature, the closer the
non-trivial zero of µT

θ corresponding to m̄stat is to zero. In the main figure, the dashed line at zero intercepts the graph of the
function µT

θ , at the stationary value m̄stat for each temperature T. Specifically, these values correspond to points where
µT
θ(m̄stat) = 0. In the inset, m̄stat values are shown as a function of their respective temperatures as grey bullets. Additionally, the

inset displays the power law behavior of m̄stat relative to the distance from the critical temperature Tc, derived by minimizing the
function ϵ(̃c1, T̃c, β̃) in equation (16) as a solid black line.

Here, we introduced the healing rate γ, the infection rate κ and nit indicates the number of infected nearest
neighbors of i. Then, according to the above probability, a spin is extracted, and the corresponding flip is
performed. The order parameter is the number density of infected sites

ρt =
1

N

∑
i

sit , (18)

with N being the total number of sites. We here consider ρ0 = 1 as the initial value for the density (all sites
infected).

From the dynamical rules in equation (17), one can see that the state with all healthy sites is a stationary
state. In fact, this is a so-called absorbing state since it can be reached during the dynamics but it cannot be
left. For any finite system, there is always a finite probability of hitting the absorbing state, which is the unique
stationary state of the system. In the thermodynamic limit (N→∞) and for sufficiently large infection rates,
a phase with a finite density of infected sites, usually called fluctuating phase [52–54], becomes stable. In
finite systems, this phase eventually dies out and only appears within a meta-stable timescale. The absorbing
phase and the fluctuating phase are separated by a continuous phase transition occurring at a finite critical
value of the infection rate κc, above which the system features a nonzero expectation of the stationary density
ρ̄stat. In proximity to the phase transition, the density follows a power-law behavior

ρ̄stat ∝ |κ−κc|β . (19)

In the following, we focus on a one-dimensional lattice made of 100 sites and measure the infection rate in
units of γ.

4.2. Neural network results
We start by discussing the results for the drift term of the contact process. As for the kinetic Ising model, we
train the network for many data sets of trajectories. For each data set at infection rate κ, we train a model µκ

θ .
The results for learned drifts µκ

θ are shown in figure 6, for different values of κ. Decreasing κ, the zero
crossings µκ

θ (ρ̄stat) = 0 occur at progressively smaller values of ρ̄stat. In the inset, we illustrate how these can
be used to extract the critical infection rate κc and the associated critical exponent β. As for the kinetic Ising
model, we can fit the density of infected sites to the power law of equation (19) by minimizing the function
ϵ(̃c1, κ̃c, β̃):

ϵ
(
c̃1, κ̃c, β̃

)
=
∑
κ

∣∣∣µκ
θ

(
c̃1|κ− κ̃c|β̃

)∣∣∣2 . (20)

8



Mach. Learn.: Sci. Technol. 5 (2024) 045002 F Carnazza et al

Figure 6.Drifts µκ
θ as a function of ρ, for different values of the infection rate. In the main figure, the drifts, which are color coded

according to the infection rate κ, are depicted. The zeros of the drift term correspond to the stationary values of the stable
stationary points ρ̄stat, where µκ

θ (ρ̄stat) = 0. The dashed line in the figure indicates where these zeros intersect with the drift
coefficient. As the infection rate decreases, the stationary density collapses to ρ̄stat = 0. From these values, represented as grey
bullets in the inset, the critical exponent β can be extracted in the proximity of the critical infection rate κc. The solid black line
shown in the inset represents the power law behavior of ρ̄stat as a function of the infection rate κ. This power law is obtained by
minimizing the function ϵ(̃c1, κ̃c, β̃) in equation (20). The drift terms in the active phase do not vanish when approaching ρ= 0
as one may expect. As discussed in the main text, this is a consequence of the fact that trajectories in the active phase do not visit
sufficiently often values below the stationary values ρ̄stat, which affects the training procedure.

The values c1,κc and β that we find are β = 0.28± 0.03, κc = 3.062± 0.003. These values should be
compared with the values obtained by means of Monte Carlo or series expansion κc = 3.29785(8) [55–57],
β = 0.276486(8) [58, 59].

Albeit this agreement, there is in fact a problem with the shape of the learned drifts µκ
θ , as shown in

figure 6. Given that the contact process features an absorbing state at density ρ= 0, one should expect that
the drift vanishes for this density. This is evidently not the case here. The reason lies in the fact that the
physics actually influences the way in which training data can be produced. In our case, we train the network
considering trajectories starting from the state with all sites infected. For such initial condition and being in
the active phase, the density of infected sites will decrease with time until it reaches a (meta)stable finite value
around which it will fluctuate. This implies that during the learning process values of the density smaller
than the (meta)stable one, including the absorbing-state value ρ= 0, are not visited sufficiently often.
Therefore, it is not possible to appropriately learn the drift term below such values.

In figure 7, we report the results for the learned diffusion coefficient σθ(ρ), together with the network
prediction for µθ(ρ) and the time derivative of the quadratic variation∆α2 [ρ]t, which the network learns
(details on the network parameters are given in table A1). We consider a value for the infection rate, κ= 3.36,
in the proximity of the critical point κc. In contrast to the Ising model, where both phases above and below
the critical point are fluctuating, the presence of an absorbing phase dictates that the diffusion coefficient
must vanish at zero density. This means that the noise must be multiplicative. In fact, it can be proven that
the diffusion coefficient is proportional to the square root of the density [54, 60, 61], which is a consequence
of the central limit theorem and the fact that only active sites can contribute to fluctuations (for details we
refer to appendix B.2). Both the learned diffusion coefficient σθ and the drift µθ are not constant and
approach zero for small ρ, see figure 7(c). They are not strictly zero at ρ= 0 due to the above-discussed
limitations of the learning procedure.

In figure 7(a) we show a selected trajectory, for which we display ρt , We see that σθ yields a time averaged
value of the (coarse-grained) derivative of the quadratic variation∆α2 [ρ]t on which it was trained. Moreover,
we also see that the learned noise vanishes as the system enters the absorbing state, i.e. ρt = 0 (cf figure 7(b)).

5. Conclusions

We have shown how to encode a simple stochastic equation in an artificial neural network and applied this
method to two paradigmatic models of statistical mechanics, both in and out of equilibrium. Both studied
systems, the kinetic Ising model and the contact process, exhibit a continuous phase transition which also is
captured by the network. For both models we identified the critical point and retrieved the static critical
exponent β.
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Figure 7. Diffusion in the contact process. (a) A sample trajectory ρt for κ= 3.36. Such trajectories ρt are used to compute the
derivative of the quadratic variation∆α2 [ρ]t. This time derivative is used to train the network σθ , via the loss in equation (10).
(b) The network takes as input the values of ρt of a given trajectory and outputs the values σ2

θ(ρt), which approximate the
derivative of the quadratic variation∆α2 [ρ]t, see equation (6). Unlike in the Ising model, σθ is not a constant function of the
order parameter ρt . The reason is that in the absorbing phase (where the order parameter is strictly zero) no fluctuations take
place, as shown the same trajectory in panel (a). (c) Learned diffusion coefficient σθ as a function of the density ρ. We observe
that σθ indeed goes to zero for vanishing order parameter ρ, signalling multiplicative noise. For comparison, we also provide the
results for the corresponding drift µθ .

It is important to note that within the chosen approach the network does not learn the order parameter
from raw configurations. Rather, it is fed with a one-dimensional average value of an order parameter
(density or magnetization) and outputs the one-dimensional drift and diffusion coefficients for a given order
parameter value. The network thus learns one-dimensional quantities which simplifies the training process.
In the case of the contact process, a multiplicative form of the noise is retrieved, while for the kinetic Ising
model, the network learns a noise form that is approximately constant, i.e. independent of the value of the
order parameter.

A natural future development would be to use the learned drift as a scaling function and to obtain all the
critical exponents. This approach might also prove useful in classifying universal behavior of different
processes, as two models are expected to belong to the same class, not only if they share the same set of
critical exponents, but also if they share the same scaling function. Another point for future exploration is to
go beyond the inherently Markovian assumption in equation (1), as the success of the results reported here,
even under this assumption, could be attributed to the one-dimensional character of the training data.
Future aims include the application of our approach to trajectories of open quantum processes and the
utilization of machine learning methods that automatically infer the relevant order parameter [34].
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Table A1. Details of the networks’ architecture and of the training procedure. All the trained networks are fully connected feed-forward
multi-perceptron networks [63, 64]. In the first column, the number of neurons ni in the ith layer is reported, as n1 × . . .× nout, with i in
{1,2, . . . ,out}. To train each network, the optimizer RMSprop algorithm in the PyTorch implementation is used, where only the
learning rates were modified. The specific activation functions are also displayed. The quantity ntrain refers to how many models are
trained on each dataset, weighted averages of which are taken to compute the reference model. The dimension of the batch use to train is
dbatch, while nepochs is the number of epochs. The width of the interval from which µ is computed (cf figure 3) is δ, while the coarse
graining of the discrete time is τ . The constant α1 is used in computing the approximation for the quadratic variation
[Z]t =

∑
u(Zu+α1du − Zu)2. The constant α2 is instead using in computing its finite difference: σ2(Zt) = ([Z]t+α2dt − [Z]t)/α2dt.

Network details

Model
Layers
architecture

Learning rate
(RMSprop
optimizer)

Activation
function

ntrain, dbatch,
nepochs δ,τ α1,α2

µθ Ising 1× 50× 50×
1

0.3× 10−3 ReLU 10, 100,
7000

0.01, 1000 —

σθ Ising 1× 64× 1 10−3 Tanh
(intra-layers),
Sigmoid (output)

10, 100,
5000

— 1, 500

µθ Contact
process

1× 50× 1 0.5× 10−3 ReLU 10, 100,
2000

0.05, 100 —

σθ Contact
process

1× 64× 1 10−3 Tanh
(intra-layers),
Sigmoid (output)

10, 100,
5000

— 10 100

Appendix A. Neural network details and integration of the learned stochastic equations

Because of the different properties of the two models considered in the present work, the kinetic Ising model
and the contact process, the employed networks and the hyper-parameters adopted to train them are slightly
different. In the following, we specify the details of the networks and how the integration of the Itô equation
is performed. The code we use is available at [62].

A.1. Neural network and training details
We model the drift µθ as a fully connected feed-forward neural network. The network is trained by
employing back propagation methods to optimize the loss function (4) This optimization minimizes the
distance between the function µθ(x) and the drift coefficient µ. The back propagation lets us compute the
gradients used in an optimization routine. This routine requires as input a constant, namely, the learning
rate, which amounts to the optimization step in the gradient descent algorithm. The order of magnitude of
the learning rate should be small enough to learn the data’s essential details yet not too small to avoid learning
the noise effects. Moreover, lower learning rates make the optimization procedure slower. The learning rate
we choose is thus a compromise between the optimization velocity and the accuracy of the results. We
optimize the network to learn∆1Ztτ . The learned µθ then has to be multiplied with τ to make it comparable
with the training data. For the Ising model, the time scale τ is set to 1000. For the contact process, it is 100.
Similarly, the network σθ is a fully connected feed-forward network. As for µθ, the input and output
dimensions are one-dimensional. Both for µθ and σθ the adopted optimizer is the PyTorch implementation
of the RMSprop algorithm [65]. The architecture and training details for the networks and σθ are reported in
the table A1, both for the kinetic Ising model and the contact process. For both of this processes the power
law for the stationary values m̄stat and ρ̄stat only applies in the vicinity of the critical point, and only in the
ordered and the active phase respectively. For the Ising model, the sum in equation (16) is computed for 15
values of the temperature equally spaced in between a minimum value Tmin = 2.2214 and maximum value
Tmax = 2.2759. Similarly, for the contact process, in the sum in equation (20), we use 31 equally spaced
values of the infection rate κ, from κmin = 2.0 as lowest value to highest value κmax = 2.9831.

To find the best critical values in equations (16) and (20), we use the minimization library [66] that allows
to compute exact gradients on the (differentiable) networks µθ and σθ and minimize them numerically.

A.2. Integration of the Itô equation
In the present work, we extract an approximation to the drift coefficient µ and the time derivative of the
quadratic variation [Z]t from the ground truth data. It is interesting to numerically solve the learned Itô
equation (2) and compare the results with the ground truth Zt. This can be readily done with the machine
learning library Torchsde [67], which we adopt here. The numerical integration of Itô equations requires
small time steps to achieve convergence. The fictitious time scale dt introduced to train the drift µθ thus
comes in handy for the integration. One needs to pay attention to the incrementsWt+u −Wt of the Wiener
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Figure A1. Dynamical trajectories for the kinetic Ising model (a) and the contact process (b). We report the ground truth
trajectories (‘Data’, in red) as well as those generated by numerically integrating the learned Itô equation (2) (‘Network’, in blue).
In panel (a), the time evolution of the magnetization of a two-dimensional lattice of size N= 128× 128 is shown for a
temperature T= 2.2214. Some samples for the ground truth trajectories and the ones obtained from the network in lighter colors
are displayed together with their averages over 100 trajectories in darker ones. Analogously, in panel (b), the time evolution of the
density of active sites ρt on a one-dimensional chain of length N= 100 is shown for κ= 3.36, both for the ground truth and for
the data generated by the network together with the respective order parameter estimated from 100 trajectories. The green line
(‘Post-selected data’) represents the order parameter computed only from trajectories which do not decay into the absorbing state
ρ= 0 (for the Ising model, the order parameter is the trajectory average of the absolute value of the magnetizationmt at time t).

process in equation (1), which should be distributed with a probability p following a normal distribution
N (0,u) centered around zero and with variance u such that p(Wt+u −Wt) =N (0,u). The learned σθ, which
is trained without using the time scale dt, has thus to be divided by

√
dt to make it comparable with the

values obtained from the drift.
The results obtained by integrating the learned Itô equation (2) present a similar behavior to the ground

truth dynamics, see figure A1(b).
For the contact process, our goal is to describe the dynamics up to the non-absorbing stationary state.

For this reason, we restrict the training of the drift function µθ to ρt > δ in the data set, neglecting the region
near the absorbing state (ρt = 0). This allows us to consider short trajectories while retaining important
information about how the active (non-absorbing) stationary state ρstat is reached. This implies that the
learned drift function µθ has only one stationary state, that is, a zero, in ρstat, but not in ρt = 0. When
integrating the Itô equation, no trajectory thus goes to the absorbing state, something that instead happens
to the ground truth data. The average of the ground truth data (referred to as ‘Data’ in figure A1) thus slowly
decreases towards zero, while the average of only those trajectories in the ground truth data that do not end
in the absorbing state exhibits a non-zero stationary state (indicated by ‘Post-selected data’ in figure A1). The
latter agrees with the average obtained from integrating the learned Itô equation (indicated by ‘Network’ in
figure A1). In this figure, the first moment of the dynamics is reported in darker tone both for the
magnetization of the Ising model E[mt] and the density of active sites in the contact process E[ρt]. A possible
measure d(mdata

t ,mnet
t ) of the accuracy of the model is the averages difference between the first moment of

the magnetization (density)mdata
t (ρdatat ) and the one predicted by the neural networkmnet

t over the time
window [0,T]:

d
(
mdata

t ,mnet
t

)
=

1

T

ˆ
[0,T]

dt
(
E
[
mdata

t

]
−E

[
mnet

t

])2
. (A.1)

In the reported figure, we find values d(mdata
t ,mnet

t = 0.0013 for the Ising model, and d(ρdatat ,ρnett = 0.0159 in
the case of the contact process.

Appendix B. Field-theoretic formulations

B.1. Kinetic Ising model
The field theory for the kinetic Ising model [42] is introduced by coarse-graining in space the originally
discrete value of the spins si in the critical regime. Averaging over some mesoscopic spatial volume, a
real-valued spin density field ψ is defined over a (d+ 1)-dimensional continuous space-time. Specifically, the
configurations Σt have been coarse-grained so that at each point, a density ψ ∈ R is defined. Then the
stochastic time evolution for the density ψ is provided by

∂tψ (x, t) =− δF [ψ]

δψ (x, t)
+ η (x, t) , (B.1)
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with an effective potential functional of the form

F [ψ] = Γ0

ˆ
ddx|∇ψ (x, t) |2 + u0ψ

2 (x, t)+ r0ψ
4 (x, t) , (B.2)

and a Gaussian noise with correlations

⟨η (x1, t1)η (x2, t2)⟩= 2Γ0δ (x1 − x2)δ (t1 − t2) . (B.3)

The diffusion constant Γ0 and the coupling constants in (B.2) are functions of the model parameters.

B.2. Contact process
For the field-theoretic formulation of the contact process, the average over some mesoscopic box in the
lattice defines a coarse-grained density field ρ(x, t) (instead of taking the average over the whole lattice ρ̄).
The Langevin equation for its time evolution can be derived directly from the master equation of the contact
process and reads [54, 60]

∂tρ(x, t) = D∇2ρ(x, t)+ ιρ(x, t)−λρ2 (x, t)+ ζ (x, t) . (B.4)

The noise ζ(x, t) exhibits a multiplicative form

⟨ζ (x1, t1)ζ (x2, t2)⟩= Γρ(x1, t1)δ (x1 − x2)δ (t1 − t2) . (B.5)

D is the diffusive constant, while the coupling constants ι, λ, and Γ are functions of the lattice details and of
the infection rate. The occurrence of a term proportional to ρ and one proportional to ρ2 in equation (B.4)
can be explained heuristically from the mean-field treatment of the transition rates in equation (17). The
number of sites becoming inactive at time t is

∑
i s
i
t ∝ ρt. Instead, the number of sites becoming active is

given by the number of inactive sites next to an active site that can be thus be infected. This number is given
by

∑
i(s

i
t − si+1

t )2 = 2
∑

i s
i
t − 2

∑
i s

i
ts
i+1
t ∝ 2ρt − 2ρ2t . In the mean-field treatment, the master equation thus

reads ∂tρt = (κ− 1)ρt −κρ2t . The form of the noise proportional to
√
ρ, can be justified by observing that

only active sites contribute to the density fluctuations. To see this, let N be the total number of sites, and let n
be the number of active sites at time t. The density of active sites at time t is thus ρt = n/N. Now, let Xi be the
number of active sites at time t ′ > t whose infection can be traced back to the ith active site at time t. Notice
that the sequence {X1, . . . ,Xn} is formed by independent identically distributed random variables, and
ρt′ = 1/N

∑
i Xi. Their expectation value and variance will thus be independent of the site i: E[Xi] = ν,

Var[Xi] = ζ2 for some real number ν and ζ . The relation between ν, ζ2 and the sample average
X̄n = 1/n

∑
iXi ≡ ρt′/ρt is described by the central limit theorem. This theorem states that for large n, the

probability distribution p of the random variable
√
n(X̄n − ν) converges to a normal distribution centered

around zero and with variance ζ2,N (0, ζ2):

p
(√

n(X̄n − ν)
)
N

(
0, ζ2

)
. (B.6)

Note that for ρt to be finite also N must be large. Substituting
√
n→ Nρt and X̄n → ρt′/ρt, one obtains

p
(√

N(ρt′ − ρtν)
)
→√

ρtN
(
0, ζ2

)
, (B.7)

which means that the expectation value of ρt′ is ρtν, and its variance ρtζ2.
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