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abstract
In this paper a new control technique for matrix converter based on a Linear Quadratic Regulator (LQR)
is proposed. Stabilization of matrix converter is often challenging due to the input filter resonance.
The proposed method is compared with classical approaches for matrix converter control. It will be
shown how the proposed approach can guarantee higher output current bandwidth providing also a good
attenuation to grid disturbance.

Introduction
A matrix converter is a power converter capable of connecting two three phase systems directly to each
other using a matrix of 9 bidirectional power switches. It offers different advantages compared to a
standard back-to-back configuration like reduced size and weight, higher efficiency and better reliability
due to the elimination of electrolytic capacitor used for DC-links. The system considered in this work
is depicted in Fig. 1. It is composed by an input LC filter, the matrix converter and a RL as load. The
former is used to prevent switching harmonics to finish directly into the grid.

Fig. 1: System model.

Different control approaches have been proposed in literature. In [1, 2] authors propose to filter the
measured input voltage Vi with a low-pass filter before using it in the modulation process. In [3] the use
of a high-pass filtered Vi term added to the output reference voltage is used to increase system stability.
In [4] Model Predictive Control is adopted.

In this work a new optimal control approach for regulation and stabilization of matrix converter is pro-
posed. Compared to previously presented methods it offers a higher bandwidth and an active damping
of the input filter resonance resulting in less oscillatory behaviour during transients.



Dynamic model
The input filter of Fig. 1 can be be modelled in the dq-reference frame resulting in
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where Lt = L f +Lg. L f , R f and C f are inductance, resistance and capacitance of the input filter respec-
tively. Vg, Lg and wg are grid voltage, inductance and frequency while I f and Vi are the inductor current
and the capacitor voltage. Finally Ii is the matrix converter input current. Hereafter subscripts d and q
are used to identify quantities on the d-axis and q-axis respectively in the dq-reference frame.

Similarly, the RL load can be modelled in the dq-reference resulting in
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Ro, Lo and ωo are load resistance, inductance and output pulsation respectively while Io and Vo are load
current and matrix converter output voltage.

Input and output matrix converter currents are non-linearly related to each other as [2]
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Merging (1)-(3) a complete nonlinear dynamic model of the considered system is obtained.

Controller design
To design the controller, system equations (1)-(3) are firstly linearised about the equilibrium point result-
ing in the following linear system

ẋ = Ax+Bu+Gv (4)
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The superscript ∗ indicates the steady state values, assumed here as nominal values. The following
assumptions have been made: V ∗id = V ∗gd = 0, V ∗iq = V ∗gq and I∗f d = 0. State and input vectors are defined
as:
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System (4) has been subsequently discretized with Zero Order Hold (ZOH) method, resulting in

x(k+1) = Adx(k)+Bdu(k)+Gdv(k) (9)

This is necessary since the controller implementation will be discrete. When the bandwidth of the closed
loop system approaches the sampling frequency, the discrete implementation of a stable controller de-
signed in continuous domain can result in unstable modes. Finally system (9) has been extended with
integral states to remove steady state error resulting in
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where 0 represents a zero matrix of appropriate dimensions. x̃ =
[
x xi

]′
where xi ∈R2×1 are the integral

states used to remove steady state error between load currents and their references [5]. With the system
in the form (10) it is possible to synthesise a LQR controller. The latter is defined as the control action u
that minimise the cost function
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1
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∞
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where Q ∈R8×8 and R ∈R2×2 are the state and control weighting matrices respectively. It can be shown
that this control actions results in a state feedback of the form

u = Kx̃ =
[
Ks Ki

]
x̃ (12)

where Ks ∈ R2×6 and Ki ∈ R2×2 are the state gains matrix and the integral gains matrix respectively.

As shown later, the proposed approach always return a stable controller and permits to obtain high



bandwidth of the output current control loop without incurring in instability or oscillatory behaviour.

It is important to note that matrices (5) and (6) come from the linearisation of a nonlinear system. This
implies they are state-dependant and a linearisation point must be selected before synthesizing LQR
controller. A good choice is the nominal maximum output current that guarantee a stable system for
Ioq ∈ [0 : In

oq]. When the output current change sign however, controller must be synthesized again. Two
different gain matrices K have been computed linearising the system in In

oq and −In
oq respectively. The

controller switches from one set of gains to the other according to output current sign.

Tuning procedure
One of the main disadvantage of LQR control approach is its counter-intuitive tuning. No direct relation
between the weighting matrices Q and R and time or frequency domain performance indexes exists and
often a trial and error approach is used. However, some simplification can be made and a simple tuning
procedure derived. First of all, both matrices are usually set as diagonal matrices in order to have only
quadratic terms in cost function (11). In this application there is not necessity, in general, to have different
bandwidth on the d and q axis. For this reason matrix R has been set equal to identity matrix. When the
system is extended with integral states, it is convenient to weight only the latter in the cost function in
order to ensure both a good reference tracking and disturbance rejection. For this reason Q has been set
equal to diag([0 0 0 0 0 0 α α]). α is the only tuning parameter remaining in the system: increasing it the
bandwidth of the output current controller increases and vice versa. Even if it is not possible to obtain a
direct relation between α and the resulting bandwidth, with few attempts it is possible to synthesise the
desired performance with the guarantee of getting always a stable and robust controller.

Analysis and results
The performance of the proposed control method is analysed using as example a 500kW matrix converter
supplying a RL load. All the system parameters are reported in Table I, where superscript n denotes
nominal values.

Table I: System parameters

Lt 20 [µH]
R f 4 [mΩ]
C f 300 [µF]
ωg 50 [Hz]
V n

g 240 [Vrms]
Lo 100 [µH]
Ro 0.23 [Ω]
In
oq 1200 [A]

ωo 651 [ rad
s ]

Po 500 [kW ]

To better appraise the advantage of proposed method, it has been compared with the PI-based approach
presented in [1,2]. These works propose to low-pass filter the input capacitor measured voltage Vi before
using it in the modulation process. This strategy has a double effect on the system: a lower low-pass
filter cut-off frequency results in a more stable system but also in a higher distortion of load current due
to grid higher harmonics.

Output current bandwidth
In [1] a standard Proportional Integral (PI) controller is also used to regulated load currents. Vi low-pass
filter cut-off frequency ω f and PI bandwidth ωc define the stability region of the system, as shown in Fig.
2. The figure clearly shows that the two parameters are inversely proportional to obtain a stable system.
In addition, it is not possible to obtain an output current bandwidth higher that about 560 Hz, no matter
which Vi filter cut-off frequency is used. On the other hand, using the control method proposed in this
work, the output bandwidth can be set arbitrary high, limited only by sensors noise.



Grid distortion rejection

The grid can be affected by high harmonics distortion. In the matrix converter, the absence of a DC stage
cause the propagation of this disturbance directly to the load. The full state feedback controller in (12)
produce a direct coupling between the grid side variables and the voltage applied to the load. However
the attenuation of grid disturbance is still comparable to a standard PI control approach as shown in Fig.
3.
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Fig. 2: Stability region for control approach pro-
posed in [1,2]. ω f and ωc are Vi low-pass filter and
current controller bandwidths respectively.
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Fig. 3: Biggest singular value of the transfer func-
tion matrix from grid voltages disturbance to load
currents. Blue: PI-based controller. Red: LQR
controller.

LQR controller presents an attenuation of 0.55 V
A and 1.16 V

A at 300 Hz and 600 Hz respectively. In
comparison, PI-based control shows an attenuation of 1.12 V

A and 1.55 V
A at the same frequencies. In this

test and in all simulation results that follow the PI-based controller has been tuned assuming ω f = 40 Hz
and ωc = 550 Hz. Regarding LQR controller, α = 1e8 is selected resulting in an output current bandwidth
of 1.6 kHz.

Simulation results

The two control methods have been compared in simulations using Matlab Simulink. In all simulation a
standard Venturini modulator is used [6] with a switching frequency of 10 kHz.

Fig. 4: Output current transient response using PI-based control method.



Fig. 5: Output current transient response using LQR control method.
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Fig. 6: PI-based control steady state response at nominal power. Left: Time domain response. Right:
Phase A input current FFT.
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Fig. 7: LQR control steady state response at nominal power. Left: Time domain response. Right: Phase
A input current FFT.



Fig. 8: Steady state system response to grid distortion. Left: PI-based controller. Right: LQR controller.

Fig. 9: LQR controller performance during output current inversion. Left: abc response. Right: dq
response.

Fig. 4 and Fig. 5 show a current transient response from 0 A to 1200 A at t = 5ms using PI-based control
method and proposed LQR method respectively. The output frequency is set to ωo = 651 rad

s . As can
be noted the proposed controller presents a faster dynamic response because it allows to be tuned for an
higher output current bandwidth. In addition, it is able to damp far quickly oscillations caused by input
filter resonance. This can be better appreciated in Fig. 6 and Fig. 7 that show the steady state behaviour of
the two analysed controllers at system nominal power. Input currents Total Harmonic Distortion (THD)
are 6.63% and 2.37% for PI-based and LQR controller respectively. The main reason for a higher THD
in PI-based control are harmonics around 2000 Hz, the input filter resonance frequency as can be noted
from FFT in Fig. 6.

A test is also performed to evaluate the robustness to grid distortion. Fig. 8 shows the steady state
response of the two analysed control approaches to a 5% 5th harmonic grid distortion. The output current
THDs are 2.18 % and 2.0 % for PI-based control and LQR control respectively. It demonstrates that the
output current distortion due to grid harmonics is comparable in the two cases. Finally, Fig. 9 shows
LQR controller performance when a output current reference step from 1000 A to -1000 A is applied at
5ms. As can be noted when d-axis output current change sign the matrix gain is changed without creating
any distortion. With this approach the proposed controller can guarantee system stability in the whole
nominal range.



Conclusions
This paper presents a new LQR-based control approach for matrix converter. It has been shown how
the proposed method allows higher output current bandwidth compared to traditional PI-based control
approaches. In addition a better damping on the input filter resonance is obtained resulting in a lower
grid current THD. Finally the proposed approach has been test in the whole operative range along with
in presence of grid distortion showing very good results.
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