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Abstract—This paper presents two post-fault compensa-
tion strategies for the distributed current control of a nine-
phase Permanent-Magnet Synchronous Machine (PMSM). The
dynamic performance in faulty condition is guaranteed by
keeping the current loop bandwidths constant. The two faults
under investigation are Open-Circuit (OC) and Short-Circuit
(SC) of one set of the three-phase windings. The decoupled
mathematical model of the machine in post-fault conditions
are derived prior to the control strategies are designed. The
Vector Space Decomposition (VSD) is used and the design
for the controllers is revised. While short-circuiting one set of
three-phase windings, in order to eliminate different electro-
magnetic interactions, different lag compensators for differ-
ent healthy modules are introduced. The proposed post-fault
control strategies are compared against the step response
in nominal condition and further validated by means of
Matlab/Simulink R© simulations, where three Two-Level Three-
Phase Voltage Source Inverters (2L-3P-VSIs) are used to supply
the machine.

Index Terms—Multi-three phase machine, current control,
fault tolerance

I. INTRODUCTION

FAULT-tolerant capability of electric motor drives is
paramount importance in safety-critical applications such
as aerospace and Electric Vehicle (EV). Since beginning
of the 20th century, the multiphase machines (more than
three-phase) have been investigated due to their advantages
over conventional three-phase machines, such as lowering dc
harmonics and increasing reliability [1]–[5]. Among multi-
phase machines, an innovative Multi-Three-Phase Machines
(MTPM) are a particular subgroup, which the main advan-
tage is the reuse of all the know-how regarding different
control strategies, fault detection, fault isolation, and winding
design for the unit block [6], [7]. They are obtained by
winding multiphase machine phases into three-phase sub-
windings sets with isolated neutral points [6], [8]. Power-
train re-design with MTPM leads to modularity by extending
redundancy from the power electronics to the control unit
level [6]. More precisely, multiple Two-Level Three-Phase
Voltage Source Inverters (2L-3P-VSIs), like the one shown
in Fig. 1, are connected in parallel rather than in series to
obtain a redundant system [6], as illustrated in Fig. 2.

One of the most acclaimed advantage of multiphase
machines is their ability to operate under faulty conditions
[7], [9]–[17]. However, the post-fault control of multiphase
PM machine is a challenging task due to numerous fault
scenarios which are depending on the number of phases,
fault type (OC or SC), connection of stator windings, fault
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Fig. 1. Module of 2L-3P-VSI and one three-phase set of windings (a,b,c)
[9].

location and etc. [12]. Therefore, an extensive research work
has been recently done to keep constant the current control
performance under fault conditions [7], [9], [11]–[18]. Fault-
tolerant operation under SC faults is more challenging espe-
cially for PM machines, where most of the reported works
are limited considering one or some of the factors mentioned
above and usually devoted to OC fault-tolerant control [10].

Based on the work presented in [7], this paper extends
the analysis by adding the power electronics converters,
shown in Fig. 1, feeding a nine-phase PMSM, Fig. 2 and by
introducing a lag compensator for the SC condition. The dis-
tributed current control is presented in nominal (or healthy)
and under faulty conditions, both in OC and SC. In order
to guarantee optimal dynamic performance in all operating
condition of the machine, different post-fault compensation
strategies for keeping the current loop bandwidths constant
are presented. Further validation is discussed using the
VSD technique and Matlab/Simulink R© simulations. After
the introduction, the mathematical machine modelling in
dq0 reference frame [7] is presented in Sec. II. Details of
current control design in nominal condition is detailed in
Sec. III. The current control within the dq0 reference frame
and the VSD technique are compared, and their equivalence
is revealed. In Sec. IV and Sec. V, fault-tolerant control
strategies under OC and SC are presented and the lag
compensator design is highlighted. In Sec. VI, the demon-
strated post-fault control strategies are compared against the
nominal condition and they are further validated by means
of Matlab/Simulink R© simulations. Finally, conclusions are
discussed in Sec. VII.

II. MATHEMATICAL MACHINE MODELLING

In this section, the details of machine modelling technique
is implemented based on analytical model in dq0 reference
frame. The considered modelling assumptions are according
to the one demonstrated in [7], [9], where no restrictive
assumption is made, instead, about whether the winding is
distributed or concentrated and all the leakage flux compo-
nents are considered.



A. Winding and power converter topology

By defining m as the number of phases per isolated set
of windings (where m = 3 for multi-three-phase system
(phases a, b, and c in Fig. 1), N is the number of windings
sets, and the total number of phases is equal to n = Nm.
Therefore, the nine-phase machine is considered in this paper
which is arranged in three-phase sets of windings (m = 3,
N = 3, n = 9). The model is considered an asymmet-
rical split-phase scheme composed of N symmetrical m-
phase sections with odd number of phases n = Nm (Fig.
2). Hence, the phase progression in asymmetrical n-phase
schemes is α = π/n [7], [9].

Fig. 2. Fully modular and redundant distributed current control diagram of
a multi-three-phase machine with three sets of windings. [6].

According to Fig. 2, the considered configuration presents
three sets of distributed converters, fully modular and redun-
dant. There are two Proportional-Integral (PI) controllers per
three-phase set and only the local three currents are provided
as a feedback [6], [7].

B. Analytical model in Park’s transformation

Based on an equivalent circuit of d-axis and q-axis for
PMSM, the whole set of machine variables can be thus
transformed into dq0 reference frame [7], [9]. Hence, the
machine voltage equation in the new coordinate is:

vdq = Rdqidq + ωJLdqidq + Ldq
didq
dt

+ edq

with vdq = [vdq1 · · ·vdqN ]
T , idq = [idq1 · · · idqN ]

T

and edq = [edq1 · · · edqN ]
T

(1)

where vdq denotes the voltage, idq is the current, and edq is
the back electromotive force vector nx1. Rdq and Ldq are
respectively resistance and inductance matrices nxn, J is
the nxn j operator, θ is the rotor position, and ω = dθ/dt.

Distributed current control is achieved within the rotor
orthogonal dq0 (indicated as subscript dq) reference frame
by applying the Park’s transformation to the machine stator
variables (denoted as subscript abc) [7], [9]. Since the
machine is a multi-three-phase system, the global Park’s
Transformation matrix is defined by the following equations:

T =

 T1 · · · 03

...
. . .

...
03 · · · TN


nxn

(2)

Th =

√
2

3

 cos[θ − (h− 1)α] sin[θ − (h− 1)α] 0
−sin[θ − (h− 1)α] cos[θ − (h− 1)α] 0

0 0 1


 1 −1/2 −1/2

0
√

3/2 −
√

3/2

1/
√

2 1/
√

2 1/
√

2

with h = 1..N

(3)
where 03 is a 3x3 null matrix [7].

Whilst Rabc = Rdq = rsI(nxn) where rs is the stator
phase resistance, the inductance matrix Ldq is obtained as
follows:

Ldq =

 Ldq(1,1) · · · Ldq(1,N)

...
. . .

...
Ldq(N,1) · · · Ldq(N,N)


with Ldq(i,j) = LT

dq(j,i) = ThLabc(i,j)T
T
h =

=
3

2

(
Lmd 0 0
0 Lmq 0
0 0 0

)
+

(
Mi−j −Xi−j 0
Xi−j Mi−j 0
0 0 Hi−j

)
(4)

where Lmd and Lmq are denoted as d, q auto inductances.
Parameters Mk, Xk, Hk are the stator leakage inductances
expressed within the dq0 reference frame. Their physical
meaning can be found in [7] and [9].

In this case study, since Lmd and Lmq are the same, for
the sake of brevity, only data regarding the q-axis from the
first module will be presented.

III. CURRENT CONTROL IN NOMINAL CONDITION

This Sec. discusses the design of distributed current con-
trollers in Nominal Condition (NC) achieved by diagonalis-
ing the inductance matrix by means of the VSD [7], [10],
[11]. The design is based on the first harmonic inductance
which is taking into account all the mutual interactions
within the stator. Assuming the speed loop is not affecting
the inner current control one, the current control loop design
based on (1) can be done in locked rotor position. Hence,
the mechanical speed ω is zero and Eq. (1) becomes:

vdq = Rdqidq + Ldq
didq
dt

(5)

Thanks to the VSD, decoupled links between each i-th
input voltage and j-th output current can be obtained. The
transfer function matrices both in the dq and vsd space, are
derived as follow:

Gdq = C(sI−Adq)−1Bdq + D = Ydq/Udq (6)

where Adq = −L−1
dq Rdq , Bdq = L−1

dq , C, D, and I are
respectively output, feed-through, and identity nxn matrices,
Udq is the applied voltage input vector, and Ydq is the output
current vector; similarly, in the vsd space:

Gvsd = C(sI−Avsd)−1Bvsd + D = Yvsd/Uvsd (7)

where
Lvsd = TT

vsdLdqTvsd (8)

In (8), the Tvsd matrix stands for the transformation matrix
which maps the orthonormal coordinates dq0 into the named
vsd orthonormal space [7].

Being the dq0 and the vsd two orthonormal spaces, the
two transfer function matrices represent in a different way in
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(a) Transfer functions in NC for vsd and dq0
state space models.
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(b) Comparison between the dominant pole in
NC and OC.
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(c) The q output current showing comparison
between nominal and SC condition.

Fig. 3. Bode diagrams showing relationship in between NC, OC, and SC.

the same system [7], [19]. However, whilst Gvsd is diagonal,
Gdq is not, like shown in (9).

GdqNC =



G 0 0 G 0 0 G 0 0
0 G(2,2) 0 0 G 0 0 G 0
0 0 G 0 0 G 0 0 G
G 0 0 G 0 0 G 0 0
0 G(5,2) 0 0 G 0 0 G 0
0 0 G 0 0 G 0 0 G
G 0 0 G 0 0 G 0 0
0 G(8,2) 0 0 G 0 0 G 0
0 0 G 0 0 G 0 0 G


(9)

Gvsd and Gdq equivalence can be appreciated by comparing
the transfer function linking the dq input voltages to the q
output current of one set of winding, for example the first
one, (GAdqNC =

∑n
k=1GdqNC(k,2)) against the transfer

function linking the first harmonic input voltage to the first
harmonic output current along the q axis, expressed by the
following Eq.:

GvsdNC(2,2) =
1

sq1 + rs
(10)

where q1 is the first harmonic inductance along the q axis.
The Bode plots of the two transfer functions are plotted in
Fig. 3a. dq current controllers shown in Fig. 2 are then de-
signed considering the plants GvsdNC(1,1) and GvsdNC(2,2)

shown [7], [9]. In Fig. 4, the equivalent q axis current control
loop used to design the PI, is shown, where the Actuation
Delay AD(s) and a current Low-Pass Filter LPF (s) have
been introduced. More precisely, the blocks parameter in
Fig. 4 are:

AD(s) =
1

s1.5Ts + 1
(11)

LPF (s) =
ω2
f

s2 +
√

2ωfs+ ω2
f

(12)

i∗

i∧
−

sKpINC+KiINC

s

ei
AD(s) 1

sq1NC+rs

i

LPF (s)

Fig. 4. Equivalent current control loop for NC design.

where KpINC and KiINC are respectively the updated
proportional and integral PI gains parameter in NC, Ts is the
interrupt time, ωf stands for current filter cut-off frequency.

IV. FAULT-TOLERANT CURRENT CONTROL STRATEGY IN
OPEN-CIRCUIT (OC)

(a) The last set is disconnected.

(b) The last set is in short circuit.

Fig. 5. Simulated faulty conditions.

In this section, the motor model developed in Sec. II with
the last set of windings under OC fault condition is further
investigated, Fig.5a. If in NC the number of phases is nNC =
NNCm = 9, in OC condition the number of active phases
is nOC = NOCm = 6 being NOC equal to two instead
of three. By deleting the last three rows and the last three
columns from the NC matrices and the last three elements
from the NC vectors, the OC transfer function matrix can
be derived like in Sec. III.

GdqOC = CdqOC(sI− AdqOC)
−1BdqOC +DdqOC (13)

GvsdOC = CvsdOC(sI− AvsdOC)
−1BvsdOC +DvsdOC (14)

The two equivalent transfer functions

GAdqOC =

nOC∑
k=1

GdqOC(k,2) and GvsdOC(2,2) (15)

are obtained considering the two reduced transfer function
matrices in (13) and (14). Their Bode plots are shown in
Fig. 3b, where it is possible to appreciate their equivalence.
In the same Fig. 3b, the difference between the NC and
the OC plants can be appreciated. Indeed, GAdqOC(2,2) 6=
GvsdNC(2,2). By considering the first OC harmonic induc-
tance q1OC , current dynamics in OC condition can be kept
constant. Current controller in OC can be designed by
considering the current loop in Fig. 6, where KpIOC and
KiIOC are respectively the updated proportional and integral
PI gains parameter in OC.
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Fig. 6. Equivalent current control loop design under OC fault condition.

V. FAULT-TOLERANT CURRENT CONTROL IN
SHORT-CIRCUIT (SC)

Considering the model under SC fault condition in Fig. 5b,
the dq voltages of the third set of windings are zero (va3 =
vb3 = vc3 = 0). The current dynamics of the two healthy
sets are affected by these SC currents circulating within the
faulty set. In order to design the current controllers under SC
fault condition while ensuring constant current dynamics, it
is essential to derive the transfer functions linking the healthy
q input voltages (vdq(2,1),vdq(5,1)) to the healthy q output
currents (idq(2,1),idq(5,1)), where nSC = nNC - 3.

GdqSC1 = GdqNC(2,2) +GdqNC(5,2) =

nSC∑
k=1

GdqNC(k,2)

(16)

GdqSC2 = GdqNC(2,5) +GdqNC(5,5) =

nSC∑
k=1

GdqNC(k,5)

(17)
GdqSC1 and GdqSC2 are the transfer functions for the first
and the second healthy set, respectively. The Gdq(i,j) are the
G elements from matrix GdqNC in (9) linking the ith input
voltage to the jth output current.

In Fig. 3c, the frequency responses of the healthy modules
under SC are compared against the frequency response
of a module in NC. The difference between the nominal
(GvsdNC) and two healthy sets (GdqSC1 and GdqSC2) with
the third one in SC is appreciated. The two transfer functions
GdqSC1 and GdqSC2 can be used to design the current
controllers for SC fault condition. As all the considerations
are the same for the second module, only simulation results
from the q-axis of the first module will be discussed.

i∗

i∧
−

sKpINC+KiINC

s

ei
AD LAGh GdqSCh

i

LPF

Fig. 7. Equivalent current control loop design in SC.

The different SC frequency responses are given by the
interactions among different EMFs and current ripples from
the circulating currents within the SC set of windings. The
frequency response can be kept constant by adding a lag
compensator to the current control loop. This is the main
contribution of this work if compared to the previous control
strategy presented in [7]. Fig. 7 illustrates the updated
equivalent current control loop in SC, where the two plants
are GdqSC1 and GdqSC2, from (16) and (17), respectively.
LAGh denotes the lag compensator, where h = 1. . .N is
the module index, which design will be detailed in the next
paragraph. It is important to notice that by adding the lag
compensators to the healthy current controllers, there is no
need to update the PI parameters (KpISC = KpINC and
KiISC = KiINC).
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Fig. 8. Bode diagrams showing the lag compensator for the first module.
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Fig. 9. The lag compensator designs for first and second module balance
out the phase leading in SC.

In Eq. 18, the transfer function of a lag compensator is
defined by τLh and αLh, as following:

LAGh(s) =
1 + αLhτLhs

1 + τLhs
(18)

The LAGh(s) is characterized by one pole pLh = -1/τLh

and one zero zLh = -1/αLhτLh. In order to compute the
parameters of τLh and αLh in Eq. (18), pole and zero of
the complex GdqSC transfer function are identified initially
based on the dominant pole-zero algorithm presented in [7],
[20], [21]. In Fig. 8, the bode diagram of the lag compensator
for the q-axis of the first module (LAG1) is shown together
with the SC plant (GdqSC1

) and the NC transfer function
GvsdNC(2, 2). It can be observed from the bode plots that
the dominant pole-zero of the plant are respectively denoted
by zd1 and pd1. Hence, by designing τLh and αLh on
dominant pole-zero (zd1 and pd1) with Eq. (19), dynamics
of healthy modules can be restored to the nominal ones.

τLh =
1

zd1
, αLh =

1

pd1τLh
(19)

By substituting the values from (19) into (18), the lag
compensator design balances out the phase leading intro-
duced by the SC fault condition. In Fig. 9, the equiv-
alence between compensated plants in (20) and nominal
plant GvsdNC(2, 2) can be appreciated. Further analysis and
comparison of output currents behaviour are discussed in
next section.

GdqSCLagh(s) = LAGh(s) GdqSCh
(s) (20)



(a) Relationship between EQ and PLECS model
in NC

(b) With NUP PI gains in OC (c) With UP PI gains in OC, refer Table I

Fig. 10. Comparison between output current steps at locked rotor in nominal and open circuit condition.

(a) With no Lag Compensators in SC (b) With Lag Compensators in PLECS model
SC

(c) With Lag Compensators in EQ model SC

Fig. 11. Comparison between output current steps at locked rotor in nominal and short circuit condition.

VI. SIMULATION RESULTS

The model developed in Sec. II is validated and compared
based on the proposed current control strategy in all oper-
ating conditions; NC, OC, and SC by means of simulation
in Matlab/Simulink and PLECS. The PLECS converter is
feeding a custom voltage behind reactance model of a nine-
phase PMSM based on (1). Effects at high frequency are
not going to be discussed in this paper for space constraint.
In all simulations, the PI controllers are designed with the
same input parameters (current bandwidth ωc = 600[rad/s]
and phase margin ϕc = 60◦). In the next sub-sec., it is
highlighted that step responses in faulty conditions can be
restored to the nominal ones by re-configuring the system
as previously discussed in Sec. III, IV, and V. The main
machine parameters used in the simulation are rs = 0.005Ω,
interrupt time Ts = 0.0001s, current filter cut-off frequency
ωf = 6.2832 · 105[rad/s], and first harmonic inductance
d1NC = q1NC = 9.763 · 10−4[rad/s]. Since d1NC = q1NC ,
for brevity only q current results are shown. The output
currents are illustrated for first (iq1) and second (iq2) module
with the last set of windings (iq3) in OC or SC, relating
the Simulink model (PLECS) used as a bench mark and
the equivalent (EQ) model, where respectively denoted by
iqNC(PLECS) and iqNC(EQ).

A. Nominal condition

The simulated model in nominal condition is based on the
current control loop introduced in Sec. III. Fig. 10a illustrates

the output current steps for both EQ and PLECS model in
nominal condition. It is evident that the two models have the
equivalent response, which indicates the match between their
iq output currents with the same PI parameters of KpINC

and KiINC .

B. OC fault condition

According to Fig. 6, the current dynamics in OC fault
can be reconfigured by updating the PI gains (KpIOC and
KiIOC) considering the OC harmonic inductance q1OC =
6.829 · 10−4[H]. Table I shows the updated PI gains in OC.

TABLE I
PI GAINS IN NOMINAL AND OC CONDITIONS

PI gains KpI KiI

NC 0.858 379.362

OC 0.599 266.679

Fig. 10b shows the difference of output currents between
NC (iqNC) and non-updating (NUP) the PI gains in OC
for both PLECS (iq1OC(PLECS)) and EQ (iq2OC(EQ))
model, while Fig. 10c shows the restored dynamics obtained
by updating (UP) the PI gains. Based on the output currents
transient, the match can be appreciated between UP PI gains
from Table I of OC and healthy set in their PLECS and
equivalent model. The PI gains in OC must be updated to
tolerate with the fault and continue operate as in nominal



(a) With no Lag Compensators (b) With Lag Compensators

Fig. 12. dq applied voltages at locked rotor with third module in short circuit.

condition, even in this particular case the current dynamics
in OC is not heavily affected. Since the third set of the nine-
phase windings are in OC condition, therefore the q currents
(iq3OC) are all zero. As the rotor is locked, the Back Electro
Motive Force (BEMF) voltages are zero and therefore not
shown.

C. SC fault condition

The current dynamics control can be restored by intro-
ducing the lag compensator presented in Sec. V for the last
set windings under SC fault. In Fig. 11, the comparison
of output currents between SC and nominal condition in
both PLECS and equivalent model are shown. Fig. 11a
demonstrates the effects and difference between SC with no
lag compensator and NC (iqNC(PLECS)) output currents,
where iq1SC and iq2SC indicate the q currents of first and
second set of healthy modules under SC condition. It can be
seen that the current dynamics is heavily affected without lag
compensator. According to Fig. 11b and 11c, it is possible
to appreciate the match between nominal and SC with lag
compensator design for both PLECS and EQ model. The un-
desired SC effects are compensated by the lag compensator
and it balances out phase leading introduced by the fault.
Since the third set of three-phase is short-circuit, therefore
the currents iq3SC shown are the circulating currents which
approaching to zero value as the current control loop design
is simulated in locked rotor position. On the other hand, this
match is previously validated through the bode diagrams in
Fig. 9, while the PI gains in SC current control loop are
remain constant as applied in nominal (KpINC ,KiINC). In
Fig. 12, both the vd and vq applied voltages from the first
and second modules are shown. Whilst Fig. 12a presents the
applied voltages without lag compensator, Fig. 12b shows
the dq voltages with the lag compensator. By looking at both
the figures, a slower dynamics and a lower peak amplitude
can be appreciated in Fig. 12b.

VII. CONCLUSION

Post-fault control strategy is important to ensure the sys-
tem can still deliver power after a fault while operating with
the same high dynamic performance. This paper presents the
distributed current control for Multi-Three-Phase machines
and its compensation strategies for both OC and SC fault of
one set of windings. The new PI parameters are analytically

obtained for OC current control, and a lag compensator is
designed in SC current control loop to eliminate the effects
of the short circuit currents. The first harmonic inductance
are obtained by diagonalising the state space model in dq
reference frame based on VSD technique. The overall VSD
transformation is resulted from combining the two transfor-
mations which are geometrical and decoupling transforma-
tion. The advantage of this technique is that VSD theory can
be developed only for the conventional multi-phase model
instead of adapting VSD procedures on any particular multi-
phase winding topology that may occur in practice of phase
arrangement of the actual machine. Finally, the proposed
current control strategy in all three conditions; healthy, OC,
and SC, were validated by means of Matlab/Simulink R©

simulations. The presented system appears to be a good
candidate for multi-three phase applications where increased
reliability and fault tolerance levels are required.
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