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ABSTRACT 

Glioblastoma multiforme (GBM) is a grade IV astrocytoma, which is the most aggressive form 

of brain tumor. The standard of care for this disease includes surgery, radiotherapy and 

temozolomide (TMZ) chemotherapy. Poor accumulation of TMZ at the tumor site, tumor 

resistance to drug and dose-limiting bone marrow toxicity eventually reduce the success of this 

treatment. Herein, we have encapsulated > 500 drug molecules of TMZ into the biocompatible 

protein nanocage, apoferritin (AFt), using a ‘nanoreactor’ method (AFt-TMZ). AFt is 

internalized by transferrin receptor 1-mediated endocytosis and is therefore able to facilitate 

cancer cell-uptake and enhance drug efficacy. Following encapsulation, the protein cage 

retained its morphological integrity and surface charge, hence its cellular recognition and 

uptake are not affected by the presence of this cargo. Additional benefits of AFt include 

maintenance of TMZ stability at pH 5.5 and drug release under acidic pH conditions, 

encountered in lysosomal compartments. MTT assays revealed that the encapsulated agents 

displayed significantly increased anti-tumor activity in U373V (vector control) and, 

remarkably the isogenic, U373M (MGMT expressing TMZ-resistant) GBM cell lines, with 

GI50 values < 1.5 μM for AFt-TMZ, compared to 35 μM and 376 µM for unencapsulated TMZ 

against U373V and U373M, respectively. The enhanced potency of AFt-TMZ was further 

substantiated by clonogenic assays. Potentiated G2/M cell cycle arrest following exposure of 

cells to AFt-TMZ indicated an enhanced DNA damage burden. Indeed, increased O6-

methylguanine (O6-MeG) adducts in cells exposed to AFt-TMZ and subsequent generation of 

γH2AX foci, support the hypothesis that AFt significantly enhances the delivery of TMZ to 

cancer cells in vitro; overwhelming the direct O6-MeG repair conferred by MGMT. We have 

additionally encapsulated > 500 molecules of the N3-propargyl imidazotetrazine analog (N3P), 

developed to combat TMZ resistance, and demonstrated significantly enhanced activity of AFt-

N3P against GBM and colorectal carcinoma cell lines. These studies support the use of AFt as 
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a promising nano-delivery system for targeted delivery, lysosomal drug release and enhanced 

imidazotetrazine potency for treatment of GBM and wider-spectrum malignancies.
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1. INTRODUCTION

Glioblastoma multiforme (GBM), a grade (IV) astrocytoma, is the most prevalent and 

aggressive adult central nervous system (CNS) tumor; presenting heterogeneous, highly 

angiogenic, invasive and migratory characteristics.1-4 GBM cells infiltrate healthy areas of the 

brain and are thus surrounded by a blood-brain tumor barrier and blood-brain barrier (BBB).5 

Surgical resection of the tumor followed by radiotherapy coupled with temozolomide (TMZ; 

Figure 1a) chemotherapy confers a median survival rate of ~ 15 months.6 Despite the fact that 

TMZ is able to relatively easily cross the BBB by diffusion, there are concerns associated with 

poor accumulation of TMZ at the tumor site due to presence of active drug efflux transport 

proteins such as P-glycoprotein (Pgp) in the BBB and short TMZ plasma half-life (t½).7,8 

Indeed, it has been estimated that < 1% of administered drug reaches the brain.9 Furthermore, 

TMZ therapy harbors dose-limiting bone marrow toxicity, hence presenting an additional 

barrier to successful treatment.10 

Intracellular drug resistance mechanisms further exacerbate efficacy. TMZ is a DNA 

methylating prodrug. Upon degradation, the active methyldiazonium cation is released and 

reacts with DNA purine bases, methylating N3-adenine, O6- and N7-guanine.11 O6-

methylguanine (O6-MeG) is the most cytotoxic product produced.12,13 The mechanism of 

action of TMZ has been established14-16 and it is now accepted that a deficiency in DNA 

mismatch repair (MMR) leading to O6-MeG-thymine mismatch tolerance and overexpression 

of O6-methylguanine-DNA methyltransferase (MGMT), which removes the methyl group 

from the O6 position of guanine (restoring normal guanine), are major causes of TMZ 

resistance in vitro and clinically.17,18 To overcome TMZ resistance, analogs of TMZ have been 

developed, whereby N3-methyl substitutions with for example N3-propargyl (N3P), have 

allowed analogs to evade recognition and removal by MGMT and exert activity independent 

of DNA mismatch repair (MMR) status.19,20
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To enhance brain tumor drug accumulation for greater efficacy and to prevent dose-

related toxicity, one approach has been to utilize drug delivery systems (DDS) for targeted drug 

delivery to tumors.21-24 Apoferritin (AFt; 480 kDa) is a biocompatible protein cage with an 

external diameter of 12 nm and internal cavity of 8 nm.25,26 The heavy (H) subunits of AFt bind 

to the transferrin receptor 1 (TfR1),27,28 which is overexpressed in cancers (including gliomas) 

and is also abundantly present on the endothelium of the BBB.29,30 Hence, AFt has been 

proposed as an active drug delivery system for therapeutic agents across the BBB in vivo.31-33 

Indeed, there remains an urgent need to develop effective DDS formulations for TMZ and its 

analogs to enhance efficacy, overcome drug resistance and improve prognoses for patients 

diagnosed with brain malignancies.

Herein, we report the encapsulation of TMZ into AFt for GBM-targeted drug delivery, 

via TfR1 uptake. AFt has 14 channels (~ 0.3 – 0.4 nm in diameter) that enable encapsulation 

of small molecules by diffusion (the so-called ‘nanoreactor’ route). In vitro studies have been 

carried out on the isogenic GBM cancer cell line pair, MGMT-low (U373V) and MGMT-

transfected (U373M), together with MMR-deficient and Pgp overexpressing HCT116 

colorectal carcinoma (CRC) cell lines and non-tumorigenic MRC-5 lung fibroblasts. Enhanced 

activity of drug within cancerous cells over non-transformed cells upon treatment with 

encapsulated versus naked drug was demonstrated. Supported by detection of enhanced O6-

methylguanine (O6-MeG) adducts and H2AX foci in GBM cells exposed to AFt-encapsulated 

(compared to naked) TMZ, we attribute the observed differential cytotoxicity to AFt-related 

enhanced delivery, uptake and intracellular retention by cancer cells, allowing release of 

(intact) TMZ in acidic lysosomes. We additionally demonstrate that further enhancement of 

activity can be achieved by AFt encapsulation of the TMZ analog bearing the N3P substitution. 

Our results offer a novel approach for imidazotetrazine formulations that address current 

limitations, such as drug stability and tumor resistance, associated with TMZ chemotherapy. 
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2. MATERIALS AND METHODS

AFt-drug encapsulation: Initially, the reductive demineralization of horse spleen ferritin (Ft; 

92% L-subunit: 8% H-subunit) to AFt was carried out.34 TMZ (Sigma-Aldrich) and N3P 

(synthesized by Helen S. Summers, University of Nottingham) were encapsulated into AFt by 

diffusion. For both nano-formulations, drug solution in DMSO (10 mM, 7.2 μmoles of TMZ; 

6.3 μmoles of N3P) was added to AFt in 0.1 M sodium acetate (NaOAc) buffer (pH 5.5) 

solution (0.0045 mM, 0.009 μmoles) in small volume increments, every 30 mins (total time 4.5 

h), under stirring at 4 °C. The formulations were ultra-filtered using an Amicon ultra-4 

centrifugal filter (MWCO: 30 kDa) at 4000 x g for 4 mins and filtered through a 0.22 μm filter. 

Samples were stored at 4 °C for further studies.

Nanoparticle characterization: The hydrodynamic size and zeta potential of AFt and nano-

formulations diluted in deionized water were measured using Malvern Zetasizer Nano ZS 

(backscatter angle 173°, λ = 633 nm, T = 25 °C). Samples were filtered (0.22 μm filter) prior 

to reading and measured in a disposable DTS1070 cell. Protein size was corroborated via red 

native-PAGE, whereby proteins were stained prior to electrophoresis with Ponceau S (Sigma-

Aldrich) to impart negative charge whilst native structure was retained.35 Using a native PAGE 

4-16% Bis-Tris pre-cast gel (Invitrogen), samples (1 µg, 18 μL) alongside the NativeMark 

protein standard (Invitrogen, 5 μL) were resolved at 4 °C, for 1 h at 150 V followed by 1 h at 

250 V. Gels were stained with Coomassie brilliant blue G250 for 1 h and left to de-stain 

overnight in water before imaging with Gene flow limited.

Assessment of encapsulation efficiency and drug loading: Drug concentration in solution was 

estimated from absorbance measurements using Varian Cary 50 UV-Vis spectrophotometer (λ 

= 330 nm for TMZ and λ = 328 nm for N3P) with a Suprasil quartz cuvette (Hellma Analytics) 

and the protein concentration was determined by Bradford assay (see Supplementary Materials, 

SI1).36, 37 All measurements were performed in triplicate. For drug release studies, 400 µL of 
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AFt nano-formulations were added into a Slide-A-Lyzer 10 kDa MWCO device (Thermo 

Fisher Scientific) and samples were dialyzed at 37 °C and mixed at 150 rpm against 14 mL of 

either pH 5.5 NaOAc buffer (0.1 M) or pH 7.4 phosphate buffered saline (PBS). After 1, 3, 5, 

7 and 24 h dialysis, drug concentration was measured by UV-Vis spectroscopy. Storage 

stability of AFt formulations at 4 °C, over 7 days, was also monitored for AFt and drug stability 

by using Malvern Zetasizer nano ZS, Bradford assay and UV-Vis spectrophotometer.

Cell culture studies: Human cell lines used include GBM, U373V (MGMT -) and U373M 

(MGMT +) (gifted by Schering Plough Corporation), colorectal carcinoma (CRC) HCT116 

(MGMT +; hMLH1 -) and HCT116 VR (vincristine resistant; Pgp +)38 and non-tumorigenic 

fetal lung fibroblast, MRC-5 (American Type Tissue Collection (ATCC)) cell lines. GBM cells 

were cultured in RPMI-1640 medium with 10% v/v fetal bovine serum (FBS), 1% v/v non-

essential amino acids (NEAA), 50 μg/mL gentamicin and 400 μg/mL G418 (Corning). 

HCT116 cells were cultured in RPMI-1640 medium with 10% v/v FBS and MRC-5 cells were 

cultured in minimum essential medium (MEM) with 10% v/v FBS, 1% v/v NEAA, 1% v/v 

penicillin/streptomycin, 2 mM L-glutamine, 10 mM Hepes buffer and 0.075% v/v sodium 

bicarbonate. Cells were maintained in 5% CO2 at 37 °C. All media and cell culture assay 

components except where otherwise specified were purchased from Sigma-Aldrich.

Growth inhibition of cells was monitored using the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. The MTT assay was performed in 96-well plates 

following 6-day test agent (naked drug, encapsulated drug and naked vehicle) exposure, and at 

the time of treatment at time zero (T0). Seeding densities for GBM cells were 650 cells/well 

and for HCT116 and MRC-5 cells, 400 cells/well. Test agent was introduced into wells (5 

replicates per concentration) 24 h after cell-seeding. MTT reagent (400 μg/ml, Alfa Aesar) was 

added to each well and plates were incubated for 2 h at 37 °C.  After 2 h, medium containing 

non-metabolized MTT was aspirated and the insoluble formazan product was dissolved in 
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DMSO (150 μL). Plates were placed on an orbital shaker for 5 mins and the absorbance was 

measured at λ = 570 nm with the Perkin Elmer Envision plate reader. At least 3 independent 

repeats for each test agent were performed. 

For clonogenic assays, cells were seeded in 6-well plates (400 cells/well) and were exposed to 

TMZ, AFt-TMZ and AFt (50 μM TMZ; 0.057 μM AFt) for 24 h and 6 days. Thereafter, 

medium containing test agent was removed, cells were washed with PBS and fresh medium 

was introduced into wells. Plates were incubated at 37 °C and the assays terminated when 

colonies of ≥ 50 cells were observed in control wells. Colonies were washed with PBS, fixed 

with 100% methanol, stained with 0.05% methylene blue and counted. Duplicate repeats for 

each test agent were performed in at least 3 independent trials. 

For live cell counts, GBM cells were seeded in 6-well plates at 1 x 104 cells/well and treated 

with TMZ, AFt-TMZ (TMZ: 50 μM; AFt: 0.057 μM) and AFt vehicle (0.057 μM) for 6 days. 

Then cells were collected by centrifugation (1200 rpm, 5 mins, 4 °C). Live cells were counted 

with a hemocytometer using trypan blue (Sigma-Aldrich). 

Flow cytometry was carried out to examine cell cycle and for γH2AX foci analysis on GBM 

cells. For cell cycle analysis, cells were seeded in 6-well plates at 1 x 105 cells/well and  treated 

with TMZ, AFt-TMZ (TMZ: 50 μM; AFt: 0.057 μM) and AFt (0.057 μM) for 72 h. Cells were 

collected and washed with PBS by centrifugation (1200 rpm, 5 mins, 4 °C). Cells were then 

incubated overnight at 4 °C, in the dark, with 500 μL of hypertonic fluorochrome solution 

(0.1% sodium citrate, 0.1% triton X-100, 50 μg/mL propidium iodide (PI) and 0.1 mg/mL 

ribonuclease A (RNase A) in deionized water). For γH2AX foci analysis, cells were seeded in 

10 cm tissue culture treated Petri dish at 5 x 105 cells/dish and treated with TMZ, AFt-TMZ 

(TMZ: 50 μM; AFt: 0.057 μM and 100 μM; AFt: 0.1 μM) and AFt (0.057 and 0.1 μM) for 48 

and 72 h. Cells were collected and stained using mouse anti-human phospho-histone H2A.X 

(Ser139) primary antibody (1o Ab), clone JBW301 (1:3333; Merck) and F(ab')2-goat anti-
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mouse IgG, IgM (H+L) Alexa-Fluor 488 secondary (2o) Ab (1:1750; Invitrogen). The 

fluorescence of 10000 mean gated events (single cells) was obtained using the Beckman 

Coulter FC500 flow cytometer. The data were processed using Weasel v3.0.2 software. 

Indirect enzyme-linked immunosorbent assay (ELISA) was carried out for DNA O6-MeG 

quantification in GBM cells. Cells were seeded in 6-well plates at 0.1-1 x 105 cells/well and 

treated with TMZ and AFt-TMZ (50 μM) for 4, 24, 72 and 144 h. The purification of DNA 

from cells was carried out using the QIAGEN Blood & Cell Culture DNA mini purification 

kits, following the manufacturer’s procedure. Double-stranded DNA (1 µg) was then digested 

with the Timesaver MspI restriction enzyme kit (New England Biolabs), following the 

manufacturer’s procedure, and made single-stranded by heating at 95 °C for 10 mins before 

rapidly transferring to ice for at least 15 mins. ELISA was then performed using the IgG (Total) 

Mouse Uncoated ELISA kit (Invitrogen), following the manufacturer’s procedure with some 

modifications. Briefly, a 96-well plate was pre-coated with 1% w/v protamine sulfate (Sigma-

Aldrich) at RT for 1 h, removed and washed 5 times with a jet of milli-Q water. Wells were 

then coated with DNA (10 ug/mL; 100 µL) diluted in coating buffer 1x and incubated overnight 

on a shaker at RT. Wells were washed (3x) with eBioscience wash buffer 1x (Invitrogen) and 

blocked with blocking buffer 2x for 2 h, at room temperature (RT). Samples were incubated 

with the 1o monoclonal Ab, mouse anti-human O6-MeG (0.2 µg/mL; Axxora) for 1.5 h at RT, 

followed by incubation with 2o HRP-conjugated anti-mouse IgG polyclonal Ab (1:250) for 1 h 

at RT. Wells were then treated with the tetramethylbenzidine (TMB) substrate solution (100 

µL) for 15 mins at RT in the dark, quenched with stop solution (100 µL; Invitrogen) for 5 mins 

at RT and absorbance read at λ = 450 nm on a Perkin Elmer Envision plate reader. At least 3 

independent repeats for each test agent were performed. 

Western blot: For protein extraction, cells were collected by centrifugation (1200 rpm, 5 mins, 

4 °C) and lysed in Nonidet-P40 lysis buffer. Protein concentrations were determined by 
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Bradford assay.36,37 Protein fractions (50 μg) were separated by SDS-PAGE (10% resolving 

gel), transferred onto a nitrocellulose membrane (GE Healthcare Life Sciences) using the 

Trans-Blot Turbo Transfer System (Bio-Rad) and blocked in 5% skimmed milk in TBST (tris-

buffered saline, Tween 20) for 1 h. Membranes were incubated at 4 °C overnight with the 

following monoclonal 1o Abs, rabbit anti-human TfR1 (1:1000), MGMT (1:1000), 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH; loading control; 1:1000) (all from Cell 

Signaling Technology), mouse anti-human Scavenger Receptor Class A Member 5 (SCARA5; 

1:1000) and transferrin receptor 2 (TfR2; 1:250) (both from R&D systems a bio-techne brand). 

Membranes were then incubated with 2o Ab (1:4000) for 1 h at RT using either goat anti-rabbit 

or goat anti-mouse polyclonal antibodies conjugated with horseradish peroxidase (Dako). 

Bands were visualized on a C-DiGit blot scanner (LI-COR Biosciences) after incubating the 

membranes with ECL reagent (GE Healthcare) for 5 mins.

Imaging cellular morphology: For environmental scanning electron microscopy (ESEM), a 

TGS1x0.2 Gold Slot grid (EM Resolutions) was placed at the bottom of a 6-well plate and cells 

were seeded at 1 x 105 cells/well. After 24 h exposure to TMZ and AFt-TMZ (50 μM), cells 

were fixed with 3.7% v/v formaldehyde in PBS for 5 mins. The grids were washed and stored 

in PBS. Immediately prior to imaging, grids were rinsed with deionized water and mounted on 

a stage set at 3 °C. The chamber pressure was dropped to 5.15 Torr, with humidity set to 87 %. 

Images were acquired using FEI Quanta 650 ESEM operating using a 5 kV electron beam and 

magnification x1000. For confocal microscopy, GBM cells were seeded in an 8-well μ-slide 

plate (Ibidi) at 1 x 104 cells/well and treated for 24 h with TMZ and AFt-TMZ (50 μM). 

Following treatment, cells were washed with PBS, fixed with 3.7% v/v formaldehyde (15 mins) 

and permeabilized with 0.1% v/v triton X-100. Cells were then co-stained for 1 h with F-actin 

phalloidin-iFluor 633 (1x) and nuclear DAPI (0.02 μg/ml) stains. Wells were washed twice 

with PBS before storing in PBS (200 μL) for imaging. Imaging was performed with a 63x water 
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magnification lens using Zeiss Elyra PS1 super resolution microscope with DAPI excitation at 

405 nm and phalloidin excitation at 633 nm. Confocal images were analyzed using the Fiji 

Image J software.

Statistical analysis. Two-way or three-way ANOVA analysis function on GraphPad Prism 

version 8.2.1 was used to determine the differences between multiple groups (n ≥ 3). Values of 

*P or #P < 0.05, **P or ##P < 0.01, ***P or ###P < 0.001 and ****P or ####P < 0.0001 were 

considered as statistically significant. Data are represented as the means ± SD. 

3. RESULTS AND DISCUSSION

The AFt protein cage has an external diameter ~ 12 nm suitable for passive targeting via the 

enhanced permeability and retention (EPR) effect.39 TfR1 binding sites on the H-polypeptide 

subunits of AFt allow active targeting of AFt-encapsulated cargo. TfR1 has been shown to be 

overexpressed by GBM (but not glial) and present on BBB endothelial cells, but not peripheral 

endothelium.30 TfR1 has been shown to be an important receptor for cancers due to their 

increased iron demand.40 We hence evaluated the loading of TMZ into AFt for GBM targeting, 

with the goal to achieve enhanced transport of the molecules across the BBB, delivery to, and 

accumulation within cancer cells. AFt-encapsulation of TMZ may also minimize premature 

degradation and elimination, efflux (mediated by Pgp) and drug-related side effects. The small 

size of the test agent (< 300 g/mol) allows its encapsulation via the ‘nanoreactor’ route, where 

passive diffusion across the 0.3 - 0.4 nm channels is feasible.37,41,42 Briefly, test agent was 

added gradually over 4.5 h to AFt at pH 5.5 to permit encapsulation under diffusion to take 

place (Figure 1b) and to avoid TMZ degradation, which occurs at physiological pH ~ 7.4 (in 

vitro t½ of TMZ at pH 7.4 is 1.9 h;8 at pH 5.5 t½ > 100 h). We achieved 84.3 ± 5.2% 

encapsulation efficiency (EE) and 18.7 ± 2.3% drug loading (DL), which corresponds to ~ 520 
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drug molecules per AFt cage (see also Supplementary Information, SI1). The integrity of the 

AFt cage following drug encapsulation and absence of drug attachment to the AFt exterior was 

confirmed by DLS and zeta potential measurements; no noticeable change in either 

hydrodynamic size or zeta potential was observed, with average hydrodynamic diameter of 

13.3 ± 0.9 nm and zeta potential of -12.7 ± 0.3 mV for AFt before and after TMZ encapsulation 

(Figure 1c). Native PAGE of AFt-TMZ revealed protein bands at molecular weight (MW) ~ 

480 and 720 kDa (dimer), comparable to those of AFt alone (Figure 1d), confirming successful 

encapsulation of the agents inside the AFt cavity. By optimizing the encapsulation conditions 

and performing step-wise addition of the drug, we achieved improved drug loading (~ 520 

molecules per AFt cage) compared to previously reported values of up to 100 – 350 molecules 

of GW608 and its derivatives and 185 molecules of triazene, 5-(3-methyltriazen-1-yl) 

imidazole-4-carboxamide (MTIC).37,43 We attribute enhanced DL, to the small molecular 

weight and good solubility profiles of TMZ.

We assessed the release of drugs from AFt under physiologically relevant conditions 

(T = 37 °C, pH 7.4 and pH 5.5; see Supplementary Information SI1, Figure S2) and observed 

slower drug release within the first 3 h at pH 7.4 compared to pH 5.5. This observation is 

consistent with the expectation that AFt channels are narrower at more alkali pH and gradually 

widen as the capsule relaxes with increasing acidity.44 The storage stability of the AFt 

formulation (at T = 4 °C) was monitored and no apparent change in protein size, zeta potential 

or drug:AFt ratio were observed over a period of at least 7 days (Supplementary Information 

SI1, Figure S3). 

The in vitro anti-cancer activity of TMZ delivered by AFt was subsequently evaluated. 

Initially, MTT assays were employed and the following cell lines utilized for our studies: 

U373V (MGMT -), U373M (MGMT +) GBM; HCT116 (MMR deficient), HCT116 VR (Pgp 

+) CRC and non-cancerous MRC-5 fibroblasts. The growth inhibitory activity of AFt-TMZ 
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was compared to unencapsulated (naked) TMZ. The cells were exposed to test agent with 

concentrations ranging from 0.001 - 1000 µM. Cellular growth inhibition (estimated GI50 

values) was determined (Figure 2). Cells were exposed to test agents for 6 days, allowing 

enough time for a minimum of 2 cell cycle rounds, DNA methylation and MMR activation. 

AFt-TMZ demonstrated markedly enhanced activity over naked TMZ. GI50 values of 35 µM 

and 376 µM were calculated for TMZ in U373V and U373M cells respectively. Remarkably, 

AFt-TMZ demonstrated significantly lower GI50 values (enhanced activity) of < 1.5 µM in both 

U373V and U373M cell lines. Of interest, and contrary to expectations, AFt-encapsulated TMZ 

displayed enhanced activity over naked TMZ in cell lines that showed resistance to TMZ, 

where resistance was conferred by MGMT (532-fold enhanced activity in U373M), MMR loss 

(22-fold in HCT116) and additionally Pgp expression (24-fold in HCT116 VR). 

Cancer-selective activity was also seen, with AFt-TMZ demonstrating enhanced 

activity against cancer cells over fibroblasts by ~ 5-fold. Alone, AFt did not display growth 

inhibitory activity against any of the cell lines at concentrations ≤ 1 µM (equivalent to the 

highest concentration of AFt in AFt-drug used in the assay). In support of this study, live cell 

count assays (Supplementary Information, SI2) demonstrated greater significant loss of viable 

cells with AFt-TMZ treatment against U373M compared to naked TMZ (P < 0.0001). 

Interestingly, Fang et al. demonstrated that conjugation of TMZ to chitosan nanoparticles could 

partially overcome TMZ-resistance.23 Kumari et al. also reported this phenomenon with TMZ-

loaded lactoferrin nanoparticles.24 Recently reported is the AFt-encapsulation of the combined 

TMZ-intermediate, MTIC, with copper.43 We postulate that the enhanced activity of TMZ 

encapsulated within AFt is due to a different mode of cellular uptake (via TfR1 recognition). 

AFt rapidly enters and accumulates inside lysosomes following TfR1 receptor mediated 

endocytosis,27 therefore evasion of Pgp efflux may be possible. Consequently, enhanced 

intracellular accumulation of TMZ results in greater potency. 
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In order to test this hypothesis, we examined cellular expression of proteins responsible 

for AFt uptake and resistance to TMZ. Protein lysates prepared from the cancer cells used in 

this study revealed TfR1 expression whereas in MRC-5 lysates, expression was below the limit 

of detection (Figure 3 and supplementary Figure S5). Since the expression of SCARA5 and 

TfR2 was not observed, we conclude that TfR1 is the receptor responsible for AFt uptake, 

providing some selective anti-cancer activity for our formulation. Western blot also confirmed 

the presence of MGMT, which confers TMZ resistance, in U373M and its absence in U373V.

To substantiate the results of AFt-TMZ activity against TMZ-resistant U373M, 

clonogenic assays were employed. Figure 4 illustrates the survival fraction of U373V and 

U373M colonies after 24 h and 6 days exposure to naked and encapsulated TMZ (see also 

Supplementary Information SI2). AFt alone had negligible effect on colony numbers 

confirming the biocompatibility of this drug delivery vehicle, however, AFt-encapsulation of 

TMZ augmented the drug`s inhibition of colony formation in both U373V and U373M GBM 

cells. TMZ alone (50 µM) potently inhibited U373V colony formation by 68% and 84% after 

24 h and 6 d exposure, respectively; whereas, U373M cells demonstrated much greater 

resistance to naked TMZ challenge (colony formation inhibited by 14% and by 35% after 24 h 

and 6 d exposure, respectively). In contrast, 24 h and 6 d AFt-TMZ exposure potently inhibited 

U373M colony formation by 47% and 76% respectively. U373M cells were significantly less 

able to survive AFt-TMZ challenge (compared to naked TMZ) and form progeny colonies; 

AFt-TMZ displayed 2.7-fold enhanced toxicity compared to naked TMZ, supporting MTT 

assays and cell counts further demonstrating that AFt-delivery of TMZ is able to weaken tumor 

resistance to TMZ mediated by MGMT.   

Following the assessment of AFt-TMZ cytotoxicity, GBM cell cycle progression was 

probed after 72 h exposure of cells to TMZ and AFt-TMZ. Treatment periods of 72 h were 

adopted to allow cells to complete at least one division for detection of putative cell cycle 

Page 14 of 32

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



15

perturbation by AFt-TMZ. It is known that TMZ (in the absence of MGMT) alkylates DNA 

causing S and G2/M arrest.13,14 G2/M arrest can be seen following treatment with TMZ in 

U373V cells only; however, both U373V and U373M cells expressed greater G2/M- and S-

phase arrest following exposure to AFt-TMZ (Figure 5a, and Supplementary Information, 

SI2). Compared to U373V control populations, S-phase arrest was increased by ~ 2.5- and 2.6-

fold with TMZ and AFt-TMZ, respectively; G2/M-phase arrest was increased by ~ 2.3- and 

2.8-fold, respectively. As for U373M, S- and G2/M-phase arrest was increased by 1.87- and 2-

fold, respectively, following treatment with AFt-TMZ. TMZ alone failed to significantly 

perturb U373M cell cycle progression. Cell cycle profiles indistinguishable from controls were 

observed following exposure of cells to AFt alone. Assessment of O6-MeG levels in the DNA 

of cells following treatment with TMZ and AFt-TMZ (4 – 144 h), revealed that AFt-TMZ 

delivered significantly more (P < 0.001) methyl groups to O6-guanine then TMZ alone (Figure 

5b). 

Since AFt-TMZ was shown to transcend the resistance systems in GBM cells, evoking 

significantly enhanced activity over TMZ alone, we sought to establish whether the increased 

O6-MeG levels and S- and G2/M-phase arrest translated to greater DNA damage following 

treatment for 48 and 72 h. The presence of γH2AX foci is indicative of DNA double strand 

breaks and as such, our studies have demonstrated that greater levels of γH2AX foci were 

observed following treatment of U373V and U373M cells with AFt-TMZ (compared to TMZ 

alone; Figure 5c). These levels were shown to increase in both a time- and concentration-

dependent manner. In U373V and U373M, 72 h exposure to 50 µM AFt-TMZ yielded 

respectively 1.2- and 1.4-fold significantly more DNA double strand breaks over TMZ alone 

(P < 0.001). This corroborated well with the trends observed in cell cycle and O6-MeG 

analyses.
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We further evaluated the effect of AFt-TMZ treatment on GBM cells using ESEM in 

order to observe changes to the cell surface after brief exposure of cells to test agents. It was 

apparent that the spread of the cells was greatly affected by AFt-TMZ, more so than by naked 

TMZ after 24 h treatment exposure (Figure 6). In contrast to the control cells, those treated 

with AFt-TMZ appeared more shrunken, with blebs apparent on their surfaces; being most 

obvious on U373M. Confocal microscopy studies carried out on stained actin filaments using 

phalloidin further corroborated the ESEM work. The intensity of the phalloidin stain was at its 

lowest with AFt-TMZ; a more shrunken cellular morphology most likely indicates reduced 

uptake of F-actin stain (Supplementary Information, SI2, Figure S9). Cell shrinkage and 

blebbing may signify apoptosis. F-actin cytoskeleton is an essential component in regulation 

of cell shape, migration and division and its reduction infers loss of these capabilities.45 These 

methodologies have demonstrated that AFt-TMZ affects cellular morphology as early as 24 h 

post treatment.

The promising, enhanced anti-cancer activity achieved with AFt-TMZ encouraged us 

to pursue AFt-encapsulation of N3P, an analog of TMZ where N3-methyl has been replaced 

with a propargyl moiety (Figure 7). N3P was designed to deliver propargyl lesions onto 

susceptible DNA bases that cannot be removed by MGMT. Indeed, TAQ polymerase assays 

demonstrated alkylation at runs of guanine – akin to those caused by TMZ, and anti-tumor 

activity was seen irrespective of MGMT or MMR status.19,20 However, N3P possesses inferior 

(in comparison to TMZ) pharmacokinetic properties (t½ = 49 min at pH 7.4), potentially 

thwarting efficient delivery to the brain and therapeutic utility. Like TMZ, N3P is acid-stable 

(t½ > 100 h at pH 5.5), therefore, N3P was encapsulated within AFt cages using the same 

diffusion method optimized for TMZ. Similar loading efficiency of ~ 525 molecules per AFt 

capsule was achieved (EE = 70.5 ± 3.3% and DL = 20.5 ± 3.1%). No noticeable change in 

hydrodynamic size and zeta potential was observed, with average hydrodynamic diameter of 
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13.1 ± 0.7 nm and zeta potential of -12.5 ± 0.4 mV for AFt before and after N3P encapsulation 

(Figure 7a). Native PAGE of AFt-N3P revealed protein bands at MW ~ 480 and 720 kDa, 

comparable to those of AFt alone; confirming successful encapsulation of the agent inside the 

AFt cavity. In vitro growth inhibitory studies on GBM cell lines, U373V (MGMT –) and 

U373M (MGMT +), HCT 116 (MMR deficient) and non-cancerous MRC-5 fibroblasts (Figure 

7b) demonstrated enhanced activity with lower GI50 values compared to TMZ in both GBM 

cell lines: GI50 value of < 0.25 µM for AFt-N3P. The AFt-N3P formulation retained a degree 

of selectivity, with ~ 9-fold greater activity in cancer cells compared to fibroblasts. 

Therefore, development of AFt-formulations of TMZ and N3P represents a promising 

strategy to challenge TMZ resistance in malignant brain tumors such as GBM, and wider 

spectrum cancer phenotypes. Furthermore, the surface of AFt can be modified with additional 

surface ligands (e.g. GKRK peptides) for enhanced tumor accumulation in vivo and BBB 

penetrance.31,46 Preclinical effects of AFt delivery of imidazotetrazine molecules will be further 

evaluated in vivo.

4. CONCLUSIONS

In conclusion, we have successfully loaded > 500 molecules of TMZ and N3P per AFt cage, 

via the nanoreactor route, achieving EE > 70% and DL > 18%, and maintaining AFt capsule 

integrity. In vitro studies demonstrated that both AFt nano-formulations displayed significantly 

enhanced activity over naked drugs against MGMT +/- GBM cell lines. Most intriguingly, this 

includes AFt-TMZ, which in vitro overcame tumor resistance mediated by MGMT. 

Accumulation of O6-MeG adducts, cell cycle arrest and subsequent generation of γH2AX in 

U373M support the hypothesis that TfR1, expressed by cancer cell lines used in this study, 

mediates increased intracellular accumulation of TMZ that is able to overwhelm the suicide 

repair protein MGMT and confer sensitivity to TMZ in MGMT + GBM cells. If O6-guanine 
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methylation outpaces MGMT protein synthesis, its depletion would ensue 47 – as is indicated 

following exposure of U373M cells to AFt-TMZ (Bouzinab unpublished results). Moreover, 

evidence suggests other mechanisms conferring tolerance or resistance to TMZ may be 

weakened (including MMR-deficiency and Pgp expression) following its encapsulation in AFt. 

In addition, AFt encapsulation of imidazotetrazine analog N3P resulted in enhanced anti-tumor 

activity and cancer cell line-selectivity. Importantly, AFt alone was non-toxic. These findings 

lay the foundations for AFt, a biocompatible, species-specific nanosized biomaterial with built 

in targeting, to deliver concentrated amounts of anti-cancer small molecules to tumors. 
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Figure 1. (a) Chemical structures of TMZ and N3P. (b) Illustration of the encapsulation of 
TMZ into AFt by the nanoreactor route. (c) Hydrodynamic size distribution of AFt and AFt-
TMZ measured by dynamic light scattering and (Inset) corresponding zeta potential values. (d) 
Native-PAGE of AFt and AFt-TMZ performed on a 4-16% gradient gel.  
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a) b)

Figure 2. (a) In vitro cytotoxicity profiles for U373M (GBM cells, MGMT +) and non-
cancerous MRC 5 fibroblasts following 6-day exposure to AFt, TMZ and AFt-TMZ. (b) A 
summary of GI50 values for TMZ and AFt-TMZ in all studies cell lines. Values are reported as 
mean ± SD (n > 3). **P < 0.01 and ****P < 0.0001.
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Figure 3. Cellular characterization of protein expression. (a) Western blot analysis of 
membrane bound receptors responsible for AFt uptake and intracellular proteins responsible 
for TMZ resistance. (b) Quantification of target protein band intensity expressed as a ratio of 
target protein to loading control (GAPDH) band intensity using the LICOR software. Values 
are reported as mean ± SD (n = 3). Significant difference from MRC-5 are expressed as ****P 
< 0.0001; Significant difference from U373V is expressed as ####P < 0.0001.  
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a)
Control AFt TMZ AFt-TMZ

b)

Figure 4. In vitro characterization of cell proliferation proficiency following treatment. (a) 
Representative images of the clonogenic assay conducted on U373M for a 6-day treatment 
(TMZ 50 µM, AFt-TMZ 50 µM, AFt 0.057 µM or media alone) exposure. (b) Percentage 
survival fraction of GBM; MGMT +/- cells following either a 24 h or 6-day treatment regimen 
with 1, 10 or 50 µM TMZ/ AFt-TMZ and 0.057 µM AFt (equivalent to AFt concentration of 
AFt-TMZ 50 µM). Values are reported as mean ± SD (n = 5). Significant difference from the 
control are expressed as *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001. Significant 
difference from TMZ are expressed as # P < 0.05.  ####P < 0.0001. 
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Figure 5. The mechanism of action of TMZ versus AFt delivered TMZ in GBM, MGMT +/- 
cells. (a) Summary of the number of gated events i.e. cells (expressed as a percentage from 
10000 gated events), arrested in different phases of the cell cycle after 72 h treatment (TMZ 50 
µM, AFt-TMZ 50 µM, AFt 0.057 µM or media alone) exposure. (b) ELISA DNA O6-MeG 
quantification following exposure of cells to 50 µM of TMZ or AFt-TMZ. (c) Summary of the 
fluorescence intensity of γH2AX foci (expressed as a percentage from 10000 gated events), 
after a 48 or 72 h treatment exposure to 50 or 100 µM of TMZ and AFt-TMZ and 0.057 or 0.1 
µM of AFt. Values are reported as mean ± SD (n = 3). Significant difference from the control 
are expressed as *P < 0.05, ***P < 0.001 and ****P < 0.0001. Significant difference from 
TMZ are expressed as ###P < 0.001. 
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Figure 6. Morphological changes to GBM cells following 24 h treatment exposure (TMZ/ AFt-
TMZ 50 µM). Cell surface morphology was monitored by a combination of ESEM and 
confocal microscopy (phalloidin (red) - F-actin staining; DAPI (blue) – nucleus staining). Scale 
bar is 50 µm. 
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Figure 7. (a) Hydrodynamic size distribution of AFt and AFt-N3P measured by dynamic light 
scattering and (inset) corresponding zeta potential measurements. In addition, native-PAGE 
carried out on AFt and AFt-N3P showing protein integrity was performed on a 4-16% gradient 
gel. (b) In vitro cytotoxicity MTT studies with naked and encapsulated N3P (TMZ analog; 
inset chemical structure shown). Summary of concentration values leading to growth inhibition 
at 50% (GI50) for test agents against GBM (MGMT +/-), HCT116 (MMR -) and non-cancerous 
MRC-5 cells. Values are reported as mean ± SD (n=5). ****P < 0.0001.
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