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Rapid measurement of crystal orientation is critical in the materials discovery process as it facilitates real-time 
decision-making and quality control. Acoustic inspection methods rapidly characterise microstructure without 
the need for extensive infrastructure or expense – the laser ultrasonic method known as Spatially Resolved 
Acoustic Spectroscopy (SRAS) has been developed with this intent and accurately characterises crystal orientation 
by leveraging a combination of forward modelling and an exhaustive brute force process to obtain the best-

fit orientation. While effective, this method is computationally demanding and time-intensive. We introduce 
a novel approach that utilises neural networks to classify measured acoustic signals into orientation planes to 
significantly expedite the characterisation process and demonstrate classification on real-world Inconel 617 and 
CMX4 specimens. A reduction in the orientation determination time from around 10 hours (brute force search) 
down to 15 seconds (neural network) was achieved while exhibiting an average plane angle difference of between 
5.3◦ and 13.8◦.
The microstructure of crystalline materials fundamentally influences 
its macroscopic properties – the crystallographic arrangement, in partic-

ular the grain shape, size and orientation, dictates mechanical properties 
such as strength, ductility, and hardness, as well as electrical proper-

ties such as the conversion efficiency of silicon cells [1]. Changes in 
microstructure induced by processing, for example through heat treat-

ment, can lead to alterations in the macroscopic behaviour, highlighting 
the inseparable connection between the micro and macro scales in ma-

terials science. Understanding and controlling material microstructure 
is pivotal for manufacturing tailored materials with desired properties.

Imaging the microstructure is the primary method used to evaluate 
material properties. Simple grain contrast maps can be created through 
a surface etch and optical imaging process, however, the full evaluation 
of mechanical properties cannot be obtained as the exact orientation of 
the grains is missing. Recent developments in measuring the direction 
of light from etched surfaces [2] or the polarisation state of the light [3]

show promise as attempts to reclaim this information but suffer from 
large errors (often > 20◦ disorientation when compared with established 
planes) due to registration errors and fluctuating intensity measure-

ments that are not decouplable from the orientation measurements. The 
prevailing method of crystallographic imaging instead measures diffrac-

tion patterns of radiated particles (electrons, X-ray, neutrons) as they 
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pass through or are backscattered off different crystal structures and 
orientations. The gold standard of these measurement systems, elec-

tron backscatter diffraction (EBSD), boasts high inspection resolution, 
both spatially (∼ 10 nm) and angular (∼ 1◦). While some state-of-the-

art systems being developed use EBSD to map orientation in-situ during 
the processing of materials, including recrystallization [4] and defor-

mation [5], it largely remains a post-process evaluation tool due to the 
system complexity, cost, and sample constraints.

Ultimately, the derived mechanical properties of polycrystalline ma-

terials rely on their elastic constants in relation to the constituent in-

dividual grain orientations. When considering the propagation of an 
acoustic wave through or on a material, the relation between crys-

tal orientation and stiffness can be utilised, where the speed of the 
acoustic wave is dependent on the crystal orientation it is travelling 
through [6]. Primarily, ultrasonics are used to determine the single crys-

tal elasticity values rather than for imaging the material microstructure 
based on them, largely due to the interrogation space of the techniques 
used – measurements can be obtained by measuring the bulk wave ve-

locity through a single crystal, or more commonly by using Resonant 
Ultrasound Spectroscopy (RUS) which offers material coupling advan-

tages [7]. However, it is possible to reduce the interrogation area of 
generated ultrasound using laser ultrasonics.
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Spatially Resolved Acoustic Spectroscopy (SRAS) is a non-destructive 
laser ultrasound technique that both generates Surface Acoustic Waves 
(SAWs) and detects them on different materials [8]. The acoustic waves 
are thermo-elastically generated using a broadband pulsed laser through 
a grating pattern that has a fringe separation 𝜆𝑔 – this turns the SAW into 
a wave packet. While the speed of the acoustic wave changes with the 
material properties along the propagation path, the frequency 𝑓𝑠 within 
the wave packet does not, and instead is entirely dependent on the 
material properties that dictate the wave speed only at the point of gen-

eration 𝑣𝑠 and the incident laser fringe separation, such that 𝑓𝑠 = 𝑣𝑠∕𝜆𝑔 . 
The frequency is measured using a second continuous wave laser and, 
either a simple knife edge detector if measurements are made on op-

tically smooth surfaces, or a more complicated arrangement (Speckle 
Knife Edge Detector [9], Two Wave Mixing interferometer [10]) if mea-

surements are made on rough surfaces. With a known material’s elastic 
stiffness tensor and density, it is possible to calculate the SAW velocity 
given the local crystallographic orientation and relative wave propaga-

tion direction, or more usefully, SRAS can be used to measure the wave 
velocity at all angles at a single point (phase velocity) on the surface of a 
material and by using the material’s elastic properties, it would be pos-

sible to determine the local crystallographic orientation [11]. However, 
due to this being an ill-defined problem, a brute force search algorithm 
is instead employed to find the best fit between the SAW phase velocity 
measurements made using SRAS and a complete set of calculated SAW 
phase velocities based on crystallographic planes – this is currently a 
computationally intensive and time-consuming task.

The development of artificial neural networks has led to them be-

ing used in a number of complex recognition tasks for large datasets. In 
particular, neural networks are often very useful in the categorisation 
of nonlinear and multidimensional data, and through iterative training 
can be made resilient to noisy and incomplete data. Machine learning 
algorithms have recently been utilised in materials inspection scenar-

ios, including in ultrasonic non-destructive evaluation scenarios often 
to extract measurement signals from noisy waveforms [12] or for the 
processing or microstructural characterisations, often from EBSD imag-

ing, to gain useful metrics or grain classification [13,14].

In this paper we present a neural network for the classification of 
crystallographic orientation using velocity surface measurements made 
by Spatially Resolved Acoustic Spectroscopy. The neural network de-

veloped is capable of producing Miller indices of individual inspection 
points (pixels) at a significantly higher speed than the currently used 
brute force search algorithm (BFSA) approach.

The SAW phase velocity at the different orientations of a single crys-

tal is distinct for most of the crystal structures including cubic structures 
(i.e. nickel) – this can be utilised as a distinguisher to identify the crys-

tal orientation and is calculated using the material’s elastic constants 
(𝐶𝑖𝑗 ) and its mass density (𝜌) [15]. However, depending on the ori-

entation angle different modes of surface waves (e.g. Rayleigh wave, 
Pseudo-surface wave) have dominant amplitudes – the calculated SAW 
phase velocity database is created with this consideration. The brute 
force search algorithm (BFSA) exhaustively fits measured against cal-

culated phase velocities via 2D cross-correlation – on a PC with Intel 
i7-950 (@2.8 GHz) CPU and 24 GB RAM, the orientation determination 
rate is ∼40 pixels/sec.

The expectation of this study was that Machine Learning (ML) 
methodologies could be used to classify SAW phase velocity measure-

ments into crystallographic orientation. As the resultant crystal planar 
values are known with respect to the theoretical SAW phase velocities, 
supervised learning, and specifically domain adaptive transfer learning 
can be employed to train a new neural network. Much like the currently 
employed BFSA, the newly developed algorithm will output discretised 
crystal planar values – this approach means that a simplified neural net-

work structure can be developed. In comparison with larger models that 
may be unsupervised or self-learning, the AI model presented in this pa-
2

per did not require multiple epochs for reinforcement training.
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The training data was created using calculated cubic nickel SAW 
phase velocity values based on crystal planes in Miller indices form {hkl} 
– as this model includes equivalences in lattice symmetries, all measur-

able planes can be represented by iterating through the first two Miller 
indices. Therefore, the calculated training dataset consisted of a 21 ×
21 × 180 matrix where the first two elements represented the crystals 
Miller indices from (001) to (111), with the third element containing the 
SAW or pseudo-SAW velocities with peak amplitudes in 1◦ increments 
up to 180◦ (given that at there is at least two-fold symmetry in elastic-

ity values, and therefore SAW wave speed, in all crystal systems). Since 
it is not known at which angle the SRAS measurements would be made 
relative to the underlying plane, the dataset was extended to include all 
variations of possible measurements by circularly shifting through all 
elements. The SAW phase velocity measurements acquired using SRAS 
can be tuned to collect at any rotational increment – typically this is 
set to 10◦ as a good compromise between measurement speed and error 
on determined angular output [16]. For the final step in preparing the 
training dataset, the number of peak SAW values is reduced to 18 out 
of the 180 initially calculated at 10◦ angular steps to make up the fea-

tures of the training data. Generally neural network layers can either be 
fully connected (FCNN) or more sparingly connected via convolution 
functions (CNN) – having convolutional layers allows for more flexi-

bility in learning but requires large datasets for training making them 
more suited to image classification for example [17]. However for the 
task identified in this paper, as there is a fixed physical link between the 
identifying features and the singular set of outputs they correspond to, 
the use of a fully connected (FC) neural network is justified. The neu-

ral network structure is bilayered with the first- and second-layer sizes 
equal to 18 and 441 respectively. The network uses a ReLU activation 
function between each FC layer to provide non-linearity without affect-

ing positive data flow, and a Softmax function before the classification 
output of Miller index values due to its ability to provide a probability 
distribution for each output of this multi-class model.

To evaluate the performance of the conceived neural network, it un-

derwent 5-fold cross-validation (against the original training dataset). 
The average validation accuracy across all folds was equal to 93.6%. 
Fig. 1a shows the confusion matrix for the trained network, which con-

sists of an extensive 441 (21 × 21) classification planes, with the order-

ing of plane classes illustrated in Fig. 1b. While the majority of planes 
are correctly classified (blue pixels), the predominant locations of mis-

classification (red pixels) occur at the boundary of each h iteration and 
one k-l iteration off the true class (which would appear similar from a 
crystal plane perspective).

One of the great benefits of the SRAS system is its capability to scan 
large specimens non-destructively and robustly [8] – for this study, SRAS 
was used to collect SAW phase velocity measurements to assess the func-

tionality of the presented neural network. The wave generation patch 
size was equal to 200 μm (giving an interrogation area of 100 μm [8]) 
with fringe spacing (wavelength) equal to 24 μm. A total of 18 rotational

measurements were made (separated by 10◦ from 0◦-180◦) at spatial

step sizes of 50 μm on a large grain Inconel 617 (Nickel superalloy) spec-

imen to improve the image appearance in the presence of noise. Overall 
∼1.425M points of SAW phase velocity measurements were fed through 
both the brute force search algorithm (BFSA) and the fully connected 
neural network (FCNN) to output spatially resolved Miller indices. For 
visualisation, the resultant orientations were mapped akin to inverse 
pole figures as shown in Fig. 2a (determined by BFSA) and Fig. 2b (de-

termined by FCNN). An enlarged area in both images is shown in Fig. 2c 
(BFSA) and Fig. 2d (FCNN). A comparative processed image of the same 
area (3x stitched) scanned using Electron BackScatter Diffraction (EBSD) 
is shown in Fig. 2e – the EBSD scan was conducted using a FEI Sirion 
200 field-emission SEM system at spatial step sizes of 10 μm.

The large maps show good agreement between the BFSA and FCNN 
determined crystal orientation. In the enlarged FCNN image, some pixels 
within clearly identifiable grains are being noticeably classified differ-
ently from neighbouring pixels – this makes the image appear noisier
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Fig. 1. a) The confusion matrix of the designed bilayer FCNN for Nickel: Input 
→ FC → ReLU → FC → Softmax → Output. Correct classification is indicated 
by blue pixels, misclassification is indicated by red pixels. b) A schematic of 
the classification set number and its relation to all cubic crystallographic planes 
obtained through hkl iteration. Four representative (primary) planes are illus-

trated; class 1 is (001), class 21 is (011), class 421 is (101), class 441 is (111). 
(For interpretation of the colours in the figure(s), the reader is referred to the 
web version of this article.)

than the BFSA determined image. The area of interrogation determines 
the SRAS measurement spatial resolution – while some grains are resolv-

able, locations where multiple smaller grains are present introduce ori-

entation ambiguity in both fitting methods due to multiple SAW phase 
velocities being measured. This is also an issue at the boundaries of each 
large grain [8].

Despite this, features are broadly recognisable across all three im-

ages largely due to orientation (colour) similarity. As evident from the 
EBSD image, the advantage of scanning large samples using SRAS is that 
the sample does not require segmentation. The other advantage of using 
SRAS is the rapid scanning capability, where rather than operating over 
days to complete an EBSD scan, a physical SRAS scan would take hours. 
However the application of the BFSA fitting algorithm has been the cur-

rent bottleneck in determining orientation — at 40 pixels/sec, 9.9 hrs 
3

was required for this image. In utilising the presented neural network, 
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Fig. 2. Mapped crystallographic orientation of a large Inconel 617 specimen in 
Miller index using SRAS measurement data (50 μm step) as determined by a) 
BFSA and b) FCNN. A small section from the c) BFSA and d) FCNN enlarged 
for comparison with each other and with e) a (3x) stitched and processed EBSD 
scan of the same area (10 μm step).

a determination speed of 90k pixels/sec was achieved, shortcutting the 
mapping of orientation down to 15.8 seconds.

With the Miller index values produced of the Inconel specimen by 
the BFSA and FCNN methods, the plane intersection angle difference 𝜃𝑑
relative to (001) can be calculated per pixel. Fig. 3 shows a histogram 
of the per-pixel angular difference when accounting for all pixels (red 
bars) – the absolute mean difference when considering all pixels is 13.8◦

with a standard deviation of 17.3◦ . By excluding boundary pixels from 
consideration (blue bars), the absolute mean difference decreases to 8.5◦

and the standard deviation to 12.7◦.

To complement the results obtained from the Inconel specimen, the 
orientations of 10 different CMX4 (another nickel superalloy) single-

crystal specimens were obtained using the Rolls Royce SCORPIO X-Ray 
Diffraction (XRD) system [18]. A table outlining the plane angular dif-

ferences 𝜃𝑑 between the orientations determined between XRD mea-
surements, the BFSA and FCNN methods are shown in Table 1. Given 
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Fig. 3. Histogram showing plane intersection angle difference 𝜃𝑑 as determined 
between BFSA and FCNN methods of determining orientation from SAW phase 
velocities as captured using SRAS. The red bars consider all measurement pixels 
while the blue bars exclude boundary pixels as determined through Sobel edge 
detection (width 6px).

Table 1

Plane intersection angle differences 𝜃𝑑 relative to 
(001) of 10 different signal-crystal CMX4 (nickel 
superalloy) specimens as determined between XRD, 
BFSA and FCNN (using SRAS measurements). The ab-

solute mean |�̄�| and standard deviation 𝜎 between the 
three comparisons are also shown.

Sample 
No.

𝜃𝑑 XRD 
vs BFSA

𝜃𝑑 XRD 
vs FCNN

𝜃𝑑 BFSA 
vs FCNN

01 4.61◦ -4.07◦ 8.35◦

02 3.03◦ -7.01◦ 5.86◦

03 3.81◦ -9.07◦ 8.41◦

04 -1.72◦ -5.57◦ -3.96◦

05 -1.22◦ -4.51◦ 4.03◦

06 1.93◦ -3.10◦ 3.87◦

07 -3.08◦ -5.80◦ 2.84◦

08 9.91◦ 4.49◦ 6.25◦

09 1.87◦ -5.18◦ 2.83◦

10 -4.14◦ -9.28◦ 6.10◦

|�̄�| 3.53◦ 5.81◦ 5.25◦

𝜎 4.20◦ 3.87◦ 3.58◦

that there are far fewer orientation ambiguities across all these spec-

imens (single-crystal therefore no cross-boundary measurements), the 
absolute means |�̄�| and standard deviations 𝜎 are much lower between 
all methods.

This paper has outlined a new approach in determining crystallo-

graphic orientation using surface acoustic wave phase velocity measure-

ments as collected by the SRAS technique. A speed benefit of 2250× was 
achieved over the established brute force search and fitting algorithm as 
was demonstrated on a large (∼30×50 mm) Inconel 617 specimen. Typ-

ically SAW velocity measurements can be obtained at speeds of up to 
2000 points/sec, largely determined by the wave generating laser repe-

tition rate [8] – with the Inconel specimen, a single direction velocity 
scan took 11.8 minutes to complete. Constructing the SAW phase veloc-

ity spectrum using 18 directional measurements took 3.5 hours. With the 
presented neural network, a complete SRAS orientation routine on this 
sample would be complete entirely within that 3.5 hours rather than tak-

ing over 13 hours when combining the time required for scanning and 
4

applying the BFSA method.
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The focus of this study was to develop a small and simple proof-of-

concept fully connected neural network for orientation determination 
of a single material – this achieved 93.6% validation accuracy which 
initially seems at odds when compared with the spread in angular dif-

ference between the FCNN and BFSA methodologies. An explanation 
for this could be that the signal-to-noise in the collected phase velocity 
spectra and the discrete nature of the neural network would lead some 
pixels to be incorrectly classified beyond what the validation accuracy 
would suggest – further investigation and improvement to the neural 
network would be required. However due to the reduced computational 
load in using the neural network for classification, both methods could 
be utilised sequentially to obtain complementary orientation results. In-

deed, it is envisioned that such neural network architectures could be 
used to rapidly determine not only orientation for single materials, but 
to also determine the material itself from the velocity spectra alone (e.g. 
multi-material specimens), and to estimate material properties of un-

known specimens such as its elasticity or phase.
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