
The Computational Bottleneck
of Basal Ganglia Output
(and What to Do About it)
Mark D. Humphries

School of Psychology, University of Nottingham, Nottingham, UK

Abstract

What the basal ganglia do is an oft-asked question; answers range from the selection of actions to the
specification of movement to the estimation of time. Here, I argue that how the basal ganglia do what
they do is a less-asked but equally important question. I show that the output regions of the basal
ganglia create a stringent computational bottleneck, both structurally, because they have far fewer
neurons than do their target regions, and dynamically, because of their tonic, inhibitory output. My
proposed solution to this bottleneck is that the activity of an output neuron is setting the weight of a
basis function, a function defined by that neuron’s synaptic contacts. I illustrate how this may work
in practice, allowing basal ganglia output to shift cortical dynamics and control eye movements via
the superior colliculus. This solution can account for troubling issues in our understanding of the
basal ganglia: why we see output neurons increasing their activity during behavior, rather than only
decreasing as predicted by theories based on disinhibition, and why the output of the basal ganglia
seems to have so many codes squashed into such a tiny region of the brain.

Significance Statement

The basal ganglia are implicated in functions ranging from action selection to timing and in dysfunc-
tions from Parkinson’s disease to obsessive compulsive disorder. Yet, however, the basal ganglia
cause these functions and dysfunctions they must do so through a group of neurons that are dwarfed
in number by both their inputs and their output targets. Here, I lay out this bottleneck problem for basal
ganglia computation, and propose a solution to how their outputs can control their many targets. That
solution rethinks the output connections of the basal ganglia as a set of basis functions. In doing so, it
provides explanations for previously troubling data on basal ganglia output, and strong predictions for
how that output controls its targets.

Introduction
How do the basal ganglia do any useful work? I will argue here that they suffer from a

severe computational bottleneck. Their output nuclei, through which they connect with
the rest of the brain, are markedly smaller than both their input sources and output
targets. Moreover, the standard view is that the basal ganglia’s output nuclei encode by
disinhibition, by the cessation of their inhibitory output (Chevalier et al., 1985; Chevalier
and Deniau, 1990; Hikosaka et al., 2000; Basso and Sommer, 2011), which provides
limited capacity for carrying information. Yet the moment-to-moment dynamics of the
basal ganglia are implicated in a lengthy list of proposed functions, including action
selection (Redgrave et al., 1999; Klaus et al., 2019), motor program selection (Mink,
1996), kinematic gain control (Turner and Desmurget, 2010; Park et al., 2020), perceptual
decision making (Ding and Gold, 2013; Yartsev et al., 2018), duration estimation (Buhusi
and Meck, 2005; Gouvêa et al., 2015; Mello et al., 2015; Monteiro et al., 2023), signal
routing (Stocco et al., 2010), and more. How one or more such complex functions areContinued on next page.
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enacted through an output signal that has limited capacity in both size and dynamics
is unclear.
I will begin here by defining this computational bottleneck problem, first detailing the

anatomical expansion between the basal ganglia output nuclei and their targets, then
arguing that the disinhibition view of basal ganglia output is limited. This sets up two fun-
damental problems for the basal ganglia output: one, how does it re-expand? And, two,
what dynamics does it use to code?
I propose a solution to both these size and coding problems: that the basal ganglia out-

put neurons’ projections to their targets are a set of basis functions, and the output neu-
rons’ activity sets the weights of those functions. All of these ideas will be elaborated
below. This solution explains both how basal ganglia output can expand to the same scale
as its targets, and why it would need to both decrease and increase its activity. It can also
account for troubling features of basal ganglia output, including why it has somany appar-
ently different coding schemes. Consequently, it is a step towards reconciling the basal
ganglia’s many apparent functional roles and may shed further light on why dysfunction
of the basal ganglia is implicated in so many neural disorders.

The computational bottleneck problem
The structural bottleneck
In rodents, the basal ganglia output nuclei are traditionally considered to be the subtan-

tia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP). In primates, the latter is
equivalent to the internal segment of the globus pallidus (GPi). Regardless of their names,
these all share common anatomical properties: they receive input from the striatum and
output to structures including multiple regions of the thalamus, the superior colliculus,
and the upper brainstem (Deniau and Chevalier, 1992; McElvain et al., 2021).
The striatum dwarfs the output nuclei. In rats, the striatum in one hemisphere contains

around 2.8million neurons, whereas the SNr and EP combined contain around 30,000
(Oorschot, 1996), smaller by a factor of 100. In mice, the striatum contains about
400,000 projection neurons and the SNr around 12,000 neurons (numbers from the Blue
Brain Project Cell Atlas, Rodarie et al., 2022); assuming that half of all projection neurons
are D1-expressing and so project to the SNr, this gives a ratio of about 16:1 striatal pro-
jection neurons projecting to every SNr neuron in mice. This convergence of striatal pro-
jection neurons onto the basal ganglia output nuclei is well known, but we know little about
the sizes of the target regions of the output nuclei.
To better understand the scale of the structural bottleneck, I used data from the Allen

Mouse Brain Connectivity Atlas (Oh et al., 2014) to first identify a complete set of projec-
tion targets of the mouse SNr. The Atlas contains six experiments in which a fluorescent
anterograde tracer was injected into the right SNr and filled at least 20% of its volume.
For each experiment, I found which of a set of 295 nonoverlapping target brain regions
had evidence of projections from the SNr, by checking if the density of tracer in that
region exceeded some threshold. A threshold was necessary to eliminate image noise
and other artefacts: without one, all 295 regions contained fluorescent pixels, implausi-
bly implying the SNr projects to every area of gray matter in the mouse brain, from
medulla to olfactory bulb (Methods). The number of neurons in each retained target
region was found from the Blue Brain Project’s Cell Atlas for the mouse brain (Rodarie
et al., 2022).
The total number of neurons in SNr target regions scaled with the size of the tracer’s

injection volume (Fig. 1a). All injection volumes were smaller than the volume of the
mouse’s SNr. Fitting a linear model to the scaling let me extrapolate to the number of
neurons targeted by the whole SNr (Fig. 1a, gray lines), and so estimate the ratio of target
neurons to SNr neurons. This ratio fell to a stable value with increasingly stringent thresh-
olds for eliminating noise (Fig. 1c), estimated as 154:1.
The extrapolation to the whole SNr’s projection was based on three experiments that

had less than 40% of their injection volume inside the SNr (black symbols in Fig. 1a),
potentially including neighboring regions of the SNr that have different connection pat-
terns. Weighting the linear model fit by the proportion of the injection inside the SNr
gave practically identical ratios of target to SNr neurons (not shown). Estimating the
number of target neurons directly for each of the three tracer injections almost wholly
within the SNr (non-black symbols in Fig. 1a), by extrapolating from the volume of their
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injection (Methods), also resulted in similar and stable ratios for the total number of target neurons to the number of SNr
neurons (Fig. 1e).
The total number of neurons in the target regions is an upper bound on the number of connections made by SNr neu-

rons. To estimate a lower bound, I approximated the arborization of the axons from SNr in the target region by the volume
density of the tracer in that region, scaling the number of neurons in each target region by the proportion of its volume

Figure 1. The structural bottleneck of basal ganglia output in the mouse. a, The total number of neurons in SNr target regions scales with the volume of
tracer injection. Each symbol is an estimate from one tracing experiment of the AllenMouse Brain Atlas; non-black symbols are experiments withmore than
90% of the injection within SNr. Red lines show linear fit and 95% confidence interval. Gray line is the extrapolated total neurons in SNr targets from its
volume. b, As panel a, but estimating the targeted neurons in each region from the density of tracer in that region’s volume (Methods). c, The ratio of target
neurons to SNr neurons for a range of thresholds on the minimum tracer density needed to include a target region. Data in panel a is for a threshold of 0.05.
Number is the asymptotic estimate of the ratio. d, As panel c, but estimating the targeted neurons in each region from the density of tracer in that region’s
volume (Methods). e, As panel c, for each of the three tracer experiments with injection volume confined to the SNr (non-black symbols in panel a). Here, the
expected number of neurons in SNr target regions is computed by scaling that experiment’s total number of target neurons by the proportion of SNr filled
by the injection. Number is the asymptotic estimate of the ratio averaged over the three experiments. f, As panel e, but estimating the targeted neurons in
each region from the density of tracer in that region’s volume. g, Schematic of the upper bound of the SNr bottleneck. Target size from panel e; striatal D1R
population estimated at 200,000 neurons (see text). h, As for panel g, for the lower bound of the SNr bottleneck, target size from panel f.
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occupied by the tracer (Methods). This lower bound estimate of target neurons also scaled with the tracer’s injection vol-
ume (Fig. 1b), reached a stable value with increasing noise threshold (Fig. 1e), and was robust to alternative calculation
using the three within-SNr experiments (Fig. 1f ).
The estimated expansion from the basal ganglia output nucleus SNr to its targets ranges from about 1:154 down to 1:13

(Fig. 1). Even the lower bound on this expansion is thus about as large as the compression of inputs from striatum: the
basal ganglia’s output is then a considerable bottleneck, compressing its inputs by at least 10:1, and re-expanding
them in its output targets by at least 1:10 (Fig. 1g,h).

The dynamic bottleneck (or, why not disinhibition)
Basal ganglia output neurons are constantly active. In rodents, they typically average 30 spikes/s; in primates, around

60 spikes/s. They are also all GABAergic. This constant stream of high-frequency GABA release on to their target neurons
has naturally led to the assumption that they constantly inhibit their targets. From that has followed the disinhibition
hypothesis (Chevalier et al., 1985; Deniau and Chevalier, 1985; Chevalier and Deniau, 1990) that releasing this inhibition
is key to how the basal ganglia encode information, by allowing their target neurons to respond to their inputs. This sig-
naling by disinhibition is the basis for most prominent conceptual (Mink, 1996; Redgrave et al., 1999; Hikosaka et al., 2000)
and computational (Gurney et al., 2001; Frank, 2005; Humphries et al., 2006; Leblois et al., 2006; Bogacz and Gurney,
2007; Vitay and Hamker, 2010; Liénard andGirard, 2014; Lindahl and Hellgren Kotaleski, 2016; Dunovan et al., 2019) mod-
els of the basal ganglia.
Yet, it is a myopic view of basal ganglia output that places a strong limitation on the potential dynamic range of the out-

put neurons, allowing coding by only a decrease in activity, and then often reduced to just whether the activity is on or off, a
binary signal (e.g., Hikosaka et al., 2000). There is no role for increases in activity, or changes to the patterns of activity
(there are other theories: for example, there is evidence that the output of the basal ganglia in songbirds controls the timing
of activity in their thalamic targets Goldberg et al., 2013). This compounds the structural bottleneck by then further limiting
how each neuron can send information. For example, taking the binary on/off signal literally, disinhibition reduces the infor-
mation coding capacity of the whole basal ganglia output to just one bit per neuron, a few thousand bits in total.

A solution: basal ganglia outputs are dynamic weights
The basal ganglia’s computational bottleneck problem is, then, that we have a limited number of free parameters—the

output neurons and their dynamical range—compared to the number of outputs that we need to control. My proposed
solution to this problem is a reframing of what the basal ganglia output encodes.
I propose that the basal ganglia’s output connections are best understood as basis functions, and the level of basal gan-

glia output activity sets the weights on those functions. Let’s unpack those ideas, starting with a definition of basis
functions.
Basis functions are a typical solution for how to use a few parameters to control a large range of output. Figure 2a shows

the key ideas. We first tile the output range we want to control with a set of basis functions, such as the five Gaussians in

Figure 2.Basis functions and basal ganglia output. a, Schematic of basis functions. A range of values is tiled by a set of basis functions, here fiveGaussians
(top). Each basis function’s contribution is controlled by a single weight: the middle panels show two different weightings. Summing these weighted basis
functions creates a continuous function spanning the range of values (bottom), controlled by just five parameters, the weights on the basis functions.
b, Basal ganglia output connections define basis functions. Top: idealized network showing distribution of basis function strengths, fanning from the out-
put nuclei to a larger target region; colour intensity is proportional to strength. Bottom: the basis functions created by the connection strengths. c, Basal
ganglia output activity parameterizes the basis functions. Using the network in panel b, two examples of how basal ganglia output activity (top) scales each
neuron’s basis function (middle), which when summed as the input to each target creates a continuous inhibition function (bottom). Gray line indicates
baseline output activity (top) and consequent inhibition of targets (bottom).
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the example of Figure 2a. Each basis function has a single weight that sets its contribution, such as the amplitude of a
Gaussian (Fig. 2a, middle). Summing basis functions of different weights can then create many different output functions
over a large range of outputs (Fig. 2a, bottom). Basis functions thus create an expansion from a few controllable param-
eters—the weights—to a much larger target space.
Now consider that the connections of the basal ganglia output neurons will have a distribution of strengths (Fig. 2b, top),

the strength of a connection between an output neuron and its target being the product of the number of synapses and the
conductances of those synapses. The idea then is that this distribution of strengths defines the basis functions (Fig. 2b,
bottom).
Consequently, the amplitude of basal ganglia output activity sets the weights of those basis functions. Figure 2c shows

two examples of what this would look like: a particular vector of basal ganglia output activity scales the basis functions
created by the output strengths; when summed at each target, the larger target region as a whole receives a continuous
function of inhibition, specified by far fewer basal ganglia output neurons than target neurons.
This idea rests on just two assumptions: that connections of the output neurons have a distribution of strengths, and that

these distributions overlap. It seems vanishingly unlikely that a given output neuron has an identical effective influence on
each of its target neurons, so a distribution of strengths seems reasonable. And because the output of the basal ganglia is
topographically organized (Deniau and Chevalier, 1992; Hoover and Strick, 1993; Lee et al., 2020; Foster et al., 2021;
McElvain et al., 2021), with adjacent neurons projecting to adjacent targets, we might also reasonably expect these dis-
tributions of strengths to overlap. Beyond that, I emphasize that the schematics in Figure 2 are for illustration, not theory:
I’m not claiming that distributions of output strengths have to be symmetric, nor that their “centers” are distributed equi-
distant from each other in some topographic space, nor that the distributions have to be the same, nor that they have to
follow any specific basis function used in the literature (such as radial basis functions). Rather, the theory proposed is per-
haps best expressed as: basal ganglia output activity is a dynamic weight on some function defined by the strengths of the
output connections. Let’s now state the most general form of the theory and derive some general predictions from it.

The general form of the theory and its predictions
Consider that b basal ganglia output neurons project to a set of n target neurons.We have already established that b< n,

the structural bottleneck. The theory proposes that the goal of basal ganglia output is to create a specific function of inhi-
bition across those n target neurons, which we can describe in a n-dimensional vector f with entries fi≤ 0. The theory can
thus be expressed as the linear system

Da = f, (1)

where a is the b-dimensional vector of basal ganglia output activity, and D is the n×bmatrix of connection weights from
the basal ganglia output to the set of target neurons (Fig. 3a). Their values are also constrained: ai≥0 as neural activity
cannot be negative, andDij≤0 because basal ganglia output is inhibitory. MatrixD defines the basis functions, one column
per output neuron. For example, in the schematic model of Figure 2b each column of D is a shifted version of the same,
symmetric basis function. Thus the vector a of basal ganglia activity are the dynamic weights on the basis functionsD that
gives the target function f.

Prediction of non-uniform inhibition from uniform output
Basal ganglia output neurons a are tonically active, firing at rest at a rate of around 30 spikes/s in rodents and 60 spikes/s

in primates. That a has non-zero values means a non-trivial target function f is always defined.

Figure 3. Linear system model of basal ganglia output. a, Schematic of the linear model in Equation 1. b, Scaling of the number of possible functions
f defined by basal ganglia outputs. Each line give the number of unique functions possible with that number b of output neurons. Different lines correspond
to the different number of states each output neuron can meaningfully be in: constant (1); disinhibition (2: on/off); triple (3b) is up/down/unchanged.
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However, many theories implicitly assume that this tonic firing necessarily means there is a uniform level of inhibition,
such that all values of f are the same. This is implied by theories that tonic inhibition defines the “no-go” or “off” signal for
selecting responses, actions, or motor programs (Mink, 1996; Redgrave et al., 1999; Hikosaka et al., 2000). The model in
Equation 1 shows this is only true if the rows of D have the same sum. But this is unlikely as only the columns of D, being
the projections of each output neuron, are defined by development and plasticity. Consequently, the model predicts that
tonic activity of a set of output neurons causes a nonuniform inhibition of their targets.

Prediction of increased output activity
Traditionally, it is the cessation of this tonic inhibition, the disinhibition, that has been the basis for key conceptual (Mink,

1996; Redgrave et al., 1999; Hikosaka et al., 2000) and computational (Gurney et al., 2001; Frank, 2005; Humphries et al.,
2006; Leblois et al., 2006; Bogacz and Gurney, 2007; Vitay and Hamker, 2010; Liénard and Girard, 2014; Lindahl and
Hellgren Kotaleski, 2016; Dunovan et al., 2019) models of the basal ganglia’s function.
The model offered in Equation 1 places no constraints on the values of a around the baseline tonic activity. Rather, the

tonic activity values of a define a default f from which behaviorally necessary changes to f must occur. This predicts that
both increases as well as decreases in output neuron activity can change fwhen basal ganglia output must cause or influ-
ence some behavioral event.
This prediction is borne out by data. Basal ganglia output neuron activity does increase in many tasks (Gulley et al.,

1999; Handel and Glimcher, 1999; Gulley et al., 2002; Sato and Hikosaka, 2002; Jin and Costa, 2010; Fan et al., 2012;
Rossi et al., 2016; Schwab et al., 2020) and the increases are as equally time-locked to action as the decreases (Sato
and Hikosaka, 2002; Jin and Costa, 2010; Fan et al., 2012). In some reports output neuron activity can seemingly contin-
uously encode parameters both above and below the nominal “tonic” firing rate (Barter et al., 2015).
Allowing for increased output activity increases the basal ganglia’s scope for control. Restricting ourselves to classic

disinhibition allows just two output states, on and off. The number of possible unique output combinations is then 2b

(Fig. 3b). But adding just onemore output state, the increase above the tonic level, makes the number of unique input com-
binations 3b (Fig. 3b): at 100 output neurons this triple state can achieve more than 5 × 1047 unique dynamic weight com-
binations and hence that many different functions of inhibition f. Consequently, even a small group of basal ganglia output
neurons could control a wide repertoire of states in its target structures.

Prediction of low variability in output activity
Stating the theory as the linear system Equation 1 lets us ask an interesting question: is basal ganglia output degener-

ate? That is, in some behavioral event for which the basal ganglia are necessary, can different combinations of increases
and decreases of output neuron activity achieve the same behavioral effect?
Let’s assume that the same behavioral effect means achieving the same target function f. Then we are asking howmany

solutions exist to Equation 1 (Druckmann and Chklovskii, 2012): how many different basal ganglia outputs a achieve the
same target function f.
A heterogeneous linear system like Equation 1 can have no, one, or an infinite number of such solutions. As we are inter-

ested in events where the basal ganglia have a necessary role, then by definition we are interested in the set of f that can be
achieved by the basal ganglia output given D. So there must be at least one solution a for a given, behaviorally relevant,
target function f. But is there more than one?
It seems unlikely. This is because the matrix of connection weights D is almost certainly full rank, having no linearly

dependent columns. For structured basis functions, where each column of D is approximately a shifted version of the
same function (like Fig. 2a), we can guarantee that D is full rank by construction (Methods). For random basis functions,
selecting the values of D from a wide range of symmetric probability distributions would guarantee it was full rank
(Rudelson and Vershynin, 2009). A linear system with full rank D has at most one solution. Thus, either the basal ganglia
output connections have a genetically defined low-rank structure or there is only one basal ganglia output a that can
achieve a given target function of inhibition f.
Having exactly one solution a to Equation 1 predicts that individual basal ganglia neurons would show little variability

between repeated behavioral events that need the same f. I am proposing here that the necessary solution to a is for each
behavioral event, so the predicted time-scale of this variation is around the gross changes in firing rate time-locked to an
event, not precise spike-timing.
Conversely, observing considerable variability in basal ganglia output activity between repeated events would imply

either that f is not the goal of basal ganglia output, so the theory here is incorrect, or that the connections of the basal
ganglia to their targets are linearly dependent and so basal ganglia output is redundant. This in turn would imply strong
constraints on how basal ganglia output is wired, in order to achieve this linear dependence.
I am unaware of convincing data either way. While there is a considerable literature on single neuron activity in both

rodent SNr (e.g., Gulley et al., 1999, 2002; Bryden et al., 2011; Fan et al., 2012) and primate GPi/SNr (e.g., Handel and
Glimcher, 1999; Sato and Hikosaka, 2002; Nevet et al., 2007; Sheth et al., 2011) during tasks, I am not aware of any
that have quantified the trial-to-trial variability in that activity during exact repetition of a behavior for which the basal gan-
glia are necessary. Close examination of example raster plots of individual SNr neurons aligned to the onset of eye move-
ments (e.g., Handel and Glimcher, 1999; Sato and Hikosaka, 2002) suggests that gross changes of activity are highly
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consistent between trials, unlike, say, the rate variation of individual cortical neurons between repeated sensory stimuli
(Tolhurst et al., 1983).

How the solution could work in practice
Let’s illustrate the idea of basal ganglia outputs as dynamic weights in two concrete instantiations: the control of cortical

state by basal ganglia output to thalamus; and the control of superior colliculus’ coding of saccade target by its inputs from
the SNr.

Basal ganglia output control of the repertoire of cortical states
The basal ganglia’s output to the thalamus is the main focus of much theorizing because of its potential to control the

dynamics of the cortical targets of those thalamic regions (e.g., Humphries and Gurney, 2002; Frank, 2005; Dunovan et al.,
2019; Möller and Bogacz, 2019; Athalye et al., 2020; Logiaco et al., 2021). But the thalamic regions contain more neurons
than the basal ganglia output nuclei, and the thalamus in turn is dwarfed by the numbers of cortical neurons (consider, for
example, that of all the synapses arriving onto layer 4 neurons in the visual cortex, thalamic synapses make up just 5% of
the total Peters and Payne, 1993). Here I illustrate how the idea of dynamic weights defined by the combinations of a few
basal ganglia output neurons can allow control of cortical dynamics. In general, the problem of how a few inputs can drives
the states of a larger dynamical system is studied under the control theory concept of controllability (Sontag and
Sussmann, 1997; Liu et al., 2011; Gu et al., 2015; Kao and Hennequin, 2019); an interesting extension of the work here
would use controllability approaches to identify what form of target function f is ultimately necessary to control cortical
states, and which elements of the cortical circuit must be targeted to do so.
Let’s consider a recurrent neural network (RNN) to model a region of cortex, as these nicely capture the basic problem: a

network of mixed excitatory and inhibitory neurons that is capable of producing complex dynamics (Fig. 4a). A brief step in
input to this network produces a population response (Fig. 4b, top). We can characterize this population response by the
trajectory it creates in a low-dimensional space (Fig. 4b, bottom). Such trajectories of neural activity in cortex correspond
to specific armmovements (Churchland et al., 2012; Gallego et al., 2017; Rodriguez et al., 2024), elapsed durations (Voitov
and Mrsic-Flogel, 2022), or choices (Harvey et al., 2012).
A small fraction of these inputs, 10%, are from the thalamus. These thalamic inputs are in turn controlled by a small

handful of basal ganglia output neurons, whose outputs create a set of basis functions to control thalamic activity.
These basis functions are symmetric, overlapping, and tiled in a ring as shown in Figure 4a (inset). The Appendix
discusses the constraints on the number of thalamic neurons and basal ganglia weight distributions implied by this
model.
Despite the small number of basal ganglia outputs they are sufficient to qualitatively change the state of the cortical

circuit. With all other inputs held the same, different vectors of basal ganglia output create different trajectories of activity
in cortex (Fig. 4c). They do so by creating different functions of inhibition in the thalamus, defined by both decreases
(disinhibition) and increases in basal ganglia output activity. Crucially, we see that these changes in trajectory would alter
cortical coding (of an arm movement, a delay, a choice) without need for that coding in the basal ganglia output.

Figure 4.Basal ganglia output control of cortical dynamics. a, Schematic of the recurrent neural network (RNN)model, its inputs from other cortical regions
(arrows) and its inputs from thalamus. Basal ganglia output to thalamus is a set of overlapping symmetric basis functions (inset; gray-scale indicates
strength of connection, white indicates no connection). Thalamus projects to 10% of the cortical RNN units. Example simulations use 5 basal ganglia out-
puts, 20 thalamic units, and 200 cortical units. b, Example response of all RNN units to stepped input (top), and projection of that RNN activity into a low-
dimensional space (PC: principal component). The trajectory of low-dimensional activity captures themove away from and return to baseline activity (black
dot). c, Trajectories of RNN activity in response to different basal ganglia outputs. Each line plots the trajectory in response to a different basal ganglia
output vector, with all other inputs held constant. Output vectors were sampled from a uniform distribution centered on tonic activity, modelling both
increases and decreases of output. d, Variation in basal ganglia output maps to variation in the trajectories of RNN activity. ρ: Spearman’s rank.
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Work in songbirds has argued that basal ganglia activity is necessary to explore the repertoire of potential movements,
including the variation of syllable generation in songs (Ölveczky et al., 2005; Singh Alvarado et al., 2021). The dynamic
weights view is also consistent with this argument: the trajectories of activity in the cortical circuit vary in proportion to
the distance between the output vectors of the basal ganglia (Fig. 4d ). So greater variation in basal ganglia output could
map to greater exploration of the cortical repertoire of dynamics, and thus to motor behavior or choices (de A Marcelino
et al., 2023).

How output neurons can control superior collicular activity to influence the orientation of the eyes and body
Another major target of basal ganglia output is the intermediate layers of the superior colliculus. This structure plays a

key role in orienting the eyes and body (Hikosaka et al., 2000; Felsen and Mainen, 2008; Villalobos and Basso, 2022), with
activity in its intermediate layer acting as a command signal for eye movements to a particular location (Hikosaka et al.,
2000). Much ink has thus been spilt on how the inhibitory signals emanating from the basal ganglia to the superior colli-
culus may in turn control the direction of gaze (Hikosaka and Wurtz, 1985; Jiang et al., 2003; Girard and Berthoz, 2005;
Basso and Sommer, 2011).
Most theories agree on the following (Hikosaka et al., 2000; Jiang et al., 2003; Girard andBerthoz, 2005; Chambers et al.,

2011; Thurat et al., 2015). The intermediate, or motor, layer of the superior colliculus represent the direction of gaze in two-
dimensional retinotopic co-ordinates. For convenience we’ll consider them as a Cartesian grid of (x,y) positions in a two-
dimensional plane. Neural activity in the intermediate layer thus represents a motor command to direct gaze towards the
location represented by the active neurons (Anderson et al., 1998; Lee et al., 1988). Basal ganglia inhibition of these col-
licular neurons is able to suppress changes in gaze direction to remembered locations (Mahamed et al., 2014) and possibly
stimulus-driven locations. Consequently, a pause in basal ganglia output directed at collicular neurons representing a par-
ticular location allows the change in gaze to happen (Hikosaka and Wurtz, 1985).
Less clear is how the basal ganglia output can provide that fine control over neural activity in the colliculus. The straight-

forward solution (Dominey and Arbib, 1992; Dominey et al., 1995; Jiang et al., 2003; Girard and Berthoz, 2005) is that the
basal ganglia output also has a two-dimensional retinotopic map, and hence provides point-to-point control over collicular
activity (Fig. 5a, top). But this scheme scales poorly because the number of possible co-ordinates scales linearly with the
number of neurons (Fig. 5b, blue). And it seems at odds with the few neurons involved: of the basal ganglia output nuclei,
only the substantia nigra pars reticulata (SNr) projects to the superior colliculus; that projection originates from at most
two-thirds of the SNr (Deniau and Chevalier, 1992; McElvain et al., 2021); and even within that region the SNr neurons pro-
jecting to the superior colliculus are potentially in the minority, as antidromic stimulation of the colliculus activates far less
than half of all sampled SNr neurons (Hikosaka and Wurtz, 1983c; Jiang et al., 2003).
The basis function idea provides a different solution, of the output neurons defining weights on basis functions tiling the

two-dimensional plane. I give one example of how this solution might work; others are possible. In this spanning code,
the projection of each basal ganglia output neuron (or group of) is a basis function that spans one row or one column
of the two-dimensional co-ordinates for gaze direction. Then a particular co-ordinate is specified by the overlapping
output of just two neurons (Fig. 5a, bottom).
The spanning code scales well, with the number of controllable co-ordinates rising quadratically with the number of neu-

rons (Fig. 5b, red). As the spanning code uses just two output neurons to signal a particular location, its scaling is slower
than a purely combinatorial code (Fig. 3b), and its scaling is slower when the grid is asymmetric (Fig. 5c). But it still scales
better than standard theories of basal ganglia output to superior colliculus: for a given number of output neurons there are
always more controllable co-ordinates for the spanning code than for the point-to-point wiring of a topographic map
(Fig. 5b,c). So let’s check that the spanning code can indeed control collicular activity to provide appropriate motor com-
mands for gaze direction.
Imagine a model where input specifying the target gaze direction (from e.g., the frontal eye fields or the superficial layer

of the superior colliculus) arrives at a grid of intermediate layer collicular neurons (Fig. 5d; Methods). Activity at a location
on that grid would represent a motor command to shift gaze to that target. At the same time, these neurons receive cons-
tant inhibitory input from a set of basal ganglia neurons, each of whose output spans rows or columns of the collicular grid
as in Figure 5a. This constant inhibition suppresses all response to the target input (Fig. 5d ), preventing a shift in gaze
direction. Dropping the activity of basal ganglia output neurons whose projections intersect at the target location results
in a hill of activity in the intermediate layer in neurons representing that location (Fig. 5e). Basis functions can thus allow
suppression and selection of gaze direction changes.
This selection requires only a decrease in basal ganglia output, but I have been arguing that they encode bidirectional

“dynamic weights”: what then might an increase in basal ganglia output encode here? One answer is to correct for
unwanted loss of inhibition elsewhere on the two-dimensional map of gaze directions. Consider two competing target
locations that lie on the same column (Fig. 5f, left): pausing intersecting basal ganglia outputs for one target could now
result in a hill of activity at both target locations on the superior colliculus’ map (Fig. 5f, implying two simultaneous but
different changes in gaze direction. However, increasing the output of basal ganglia neurons whose basis functions are
the corresponding row of the unwanted target location will suppress the hill of activity at this location (Fig. 5g).
Increasing basal ganglia output could ensure that at most one target location for gaze direction becomes active in the
intermediate superior colliculus.
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Discussion
Basal ganglia output neurons are vastly outnumbered by their target neurons in the thalamus and brainstem. To this struc-

tural bottleneck is added the further dynamical bottleneck that this output is both constant and inhibitory. It is unclear how the
basal ganglia’s output re-expands, both structurally and dynamically, to provide suitable control over its target regions.

Figure 5.Basal ganglia output control of superior colliculus. a, Potential schemes for basal ganglia inhibition of saccade targets in the intermediate layers of
superior colliculus. The black circles are collicular neurons representing saccade targets in Cartesian co-ordinates. Top: topographic mapping of basal
ganglia output to superior colliuclus, one output neuron per co-ordinate (blue). Bottom: a spanning code created by basis functions, with one output neu-
ron’s projection spanning one row or column (red). b, Scaling of the number of controllable Cartesian co-ordinates by topographic or basis function map-
ping of basal ganglia output to superior colliculus. Topographic mapping is the best-case scenario of 1 neuron per co-ordinate. c, Scaling of controllable
co-ordinates with grid asymmetry. For a fixed number (50) of basal ganglia output neurons, the scaling of the number of controllable co-ordinates as the
superior colliculus grid moves from a single row (ratio ∼ 0) to a symmetric grid (ratio = 1). d, Simulations of basis function control of saccadic activity in
superior colliculus. External input via the superficial layers specifies a saccade target in Cartesian co-ordinates (left), input to a 20 × 20 grid of collicular
neurons middle. Twenty basal ganglia output neurons per side provide tonic inhibition of the superior colliculus: we plot here the inhibition received by
each superior colliculus neuron (right). Unchanging inhibition prevents the build-up of saccadic activity at the target location (middle). e, As for panel d,
but now the basal ganglia neurons whose basis functions include the x-coordinates or the y-coordinates of the target location pause their firing, thus allow-
ing at their intersection (right) the build up of saccadic activity (middle). f, Two competing external inputs (left) could cause saccadic activity to increase at
both locations in colliculus (middle), even if only a few basal ganglia output neurons paused their firing (right), because the second, upper target falls in the
column covered by paused basal ganglia neurons whose basis functions are the y-coordinates. g, As for panel f, but with other basal ganglia neurons
increasing their firing and hence inhibition of collicular neurons (right, darkest rows), thus suppressing the build-up of saccadic activity (middle) at the sec-
ond target location.
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I’ve offered as a solution the following idea: the activity of a basal ganglia output neuron defines the weight on a basis
function defined by the pattern of its connections to its target regions. In this way, basal ganglia output can re-expand, for
arbitrarily complex functions can in principle be constructed from the summation of a set of basis functions. The complex
function approximated in this model is the level of inhibition across the target neurons of the basal ganglia output.
This model makes three predictions. First, output neurons all in their tonic state of constant firing do not necessarily

imply uniform inhibition of their targets. Second, that both decreases and increases of output neuron firing are necessary
to create the target function. Third, that individual output neurons will show low variation in their activity between identical
events.

Implications for our understanding of the basal ganglia
There are three main implications of these ideas and their predictions.
The first is that disinhibition is not the key to how basal ganglia output operates. Weights need to change in both direc-

tions to control basis functions, and create the desired target function by their summation. So under this account we’d
expect basal ganglia output to both increase or decrease as necessary to set the desired target function of inhibition in
its target. This provides a functional explanation for why basal ganglia output activity increases as well as decreases dur-
ing movement or action (Gulley et al., 1999, 2002; Jin and Costa, 2010; Fan et al., 2012; Barter et al., 2015; Rossi et al.,
2016; Schwab et al., 2020), which cannot be accounted for by classic disinhibition-based theories.
The second is that we can think of basal ganglia output as allowing rapid exploration of different activity patterns in a

target region, which could be crucial in learning; for example of new actions such as skilled limb movements or songs.
This is why I’ve called the basal ganglia output “dynamic weights” throughout, as simply by changing their activity the
output neurons define a new function of inhibition in their target, which creates a different response in that target to the
same input (Fig. 4).
The third is that basal ganglia outputs have no intrinsic “code”, but are control signals for a target region. The SNr has

many apparent codes. Changes in SNr activity align to the onset of changes in gaze direction in monkeys that are stimulus
or memory-driven (Hikosaka and Wurtz, 1983a,b; Handel and Glimcher, 1999, 2000; Basso and Wurtz, 2002; Sato and
Hikosaka, 2002) and changes in movement in rodents (Lintz and Felsen, 2016). Jin and Costa (2010) report that SNr activ-
ity changes at the beginning and end of an action sequence, not at each action (though such discrete stop and start coding
has not been found in striatum Sales-Carbonell et al., 2018). By contrast, Rossi et al. (2016) report SNr activity changes
align to each individual lick a mouse makes on a spout. Fan et al. (2012) demonstrate that a pause in SNr activity can last
for as long as a mouse holds down a lever, seemingly coding duration or a sustained action, rather than action onset or
offset. And Barter et al. (2015) offer a startling demonstration of apparently continuous coding of a mouse’s head position
in the (x,y) plane by the activity of individual SNr neurons, which typically coded either the x- or y-axis displacement of the
head from its central position. Worse, as they are the bottleneck between striatum and the rest of the brain the basal
ganglia output nuclei likely inherit other variables known to be encoded in striatum, and there are many of those, including
time (Gouvêa et al., 2015; Mello et al., 2015), decision variables (Ding and Gold, 2013; Yartsev et al., 2018), possible
actions (Klaus et al., 2019), their predicted value (Samejima et al., 2005; but see Elber-Dorozko and Loewenstein,
2018), and their kinematics (Rueda-Orozco and Robbe, 2015; Yttri and Dudman, 2016). How so few neurons could seem-
ingly encode such a range of different variables is unclear. A starting point for a solution could be the dynamic weights
theory offered here: basal ganglia output is not coding these variables, but are control signals for encoded variables in
their target regions.

Predictions for effects in target brain regions
The interpretation of basal ganglia output as encoding “dynamic weights” is a general principle for how that output can

do useful work in its many target regions of the brain. Further specific predictions of this idea depend on the region
targeted.
One prediction is that this re-expansion allows the basal ganglia output to shift cortical activity across an extensive rep-

ertoire of different states, via the shaping of thalamic output to cortex. The idea that basal ganglia output shifts the state or
trajectory of cortical activity has been gaining traction: Athalye et al. (2020) looked at the problem of how motor cortical
activity re-enters a desired state after a reward, and proposed a conceptual model for how plasticity at cortico-striatal syn-
apses may alter basal ganglia output to shift cortical activity; Logiaco et al. (2021) looked at the problem of how motor
cortex can drive sequences of movements, developing and analysing a model of how shifting basal ganglia output can
switchmotor cortical activity states and thus create movement sequences (though based only on disinhibition setting tha-
lamic units on or off). Which regions of cortex this prediction extends too is unclear; speculatively, it would be in the layers
(II/III and V) of cortical regions that receive direct input from the motor and intralaminar thalamic nuclei that the basal gan-
glia output directly influences (Nishimura et al., 1997; Kha et al., 2001; Middleton and Strick, 2002; Bodor et al., 2008;
Kuramoto et al., 2011). This prediction is consistent with data from primates (Sauerbrei et al., 2020), rodents (Inagaki
et al., 2022) and songbirds (Moll et al., 2023) showing that motor thalamic input to motor cortex is necessary for initiating,
or changing to, a discrete element of movement.
It follows that manipulating the state of basal ganglia output projections to thalamus should change the state of cortical

activity, and hence alter behavior. Recent studies that optogenetically manipulated SNr axon terminals in motor thalamus
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reported that inhibiting these SNr terminals during a licking task biased licking to the contralateral side, whereas activating
these terminals stopped licking all together (Morrissette et al., 2019) or prevented impulsive licking (Catanese and Jaeger,
2021). These data are consistent with shifting the state of cortical activity; but they are also consistent with classic disin-
hibition ideas that pauses in basal ganglia output are a go signal and increases in the output are a stop signal. Such opto-
genetic stimulation that broadly targets all terminals with a stereotyped pattern of stimulation is repeatedly setting all the
dynamic weights to approximately the same values. Distinguishing classic disinhibition and dynamic weight accounts of
basal ganglia output would instead need selective stimulation of non-overlapping sets of SNr terminals: the dynamic
weights idea predicts this would result in different states of cortical activity, and hence potentially different behavioral
responses.
If the basis functions defined by the connections of basal ganglia output neurons have some topographic organization,

as in the example of superior colliculus, then different predictions arise for manipulating their activity. Selective optoge-
netic activation of a few SNr neurons that project to the superior colliculus would be predicted to maximize the weight
on their basis functions, strongly inhibiting a region of the intermediate superior colliculus, and so create a region of visual
space that it is difficult to shift gaze or orient towards. The shape of that region would depend on the shape of the basis
functions. The specific spanning code advanced here (Fig. 5) would predict that the region of visual space would cover
entire x- or y- co-ordinates. This prediction is consistent with reports that the activity of individual SNr neurons encodes
the entire x-axis or y-axis displacement of the head in mice (Barter et al., 2015). That said, as noted above the spanning
code is not an optimal form of basis function tiling, and other tilings of the collicular representation of gaze direction,
including random projections, would be worth further exploring.

What the dynamic weights idea does not yet address
There are a few key issues that further development of this “dynamic weights” idea could usefully address. The first is its

precise role in behavior. Most current basal ganglia theories focus on how its output controls action, but fall largely into two
opposing camps. One is that basal ganglia output controls action selection, via pauses in its tonic inhibition (Redgrave
et al., 1999; Bogacz and Gurney, 2007; Liénard and Girard, 2014; Klaus et al., 2019); the other is that basal ganglia output
controls action specification, by its reduced activity modulating some aspect of the kinematics or gain of movement
(Turner and Desmurget, 2010; Park et al., 2020; Thura et al., 2022). The dynamic weights idea is currently agnostic to these
theories: indeed, it suggests that coding is in the target region, not in basal ganglia output per se. Changes in cortical state
by basal ganglia output could be the selection of action or change in the kinematics of an action. Similarly, the example
given of superior colliculus control follows previous models of SNr output to colliculus (Girard and Berthoz, 2005) in inter-
preting the hill of activity as selecting an action, the new direction of gaze; but one could interpret this as specifying action,
setting the velocity of the change in gaze direction by controlling the size of the hill of activity.
Both canonical action selection (e.g., Gurney et al., 2001; Frank, 2005; Humphries et al., 2006; Liénard and Girard, 2014;

Lindahl and Hellgren Kotaleski, 2016) and specification (e.g., Yttri and Dudman, 2016; Park et al., 2020) theories also
assume basal ganglia output are organized as a collection of parallel populations or “channels,” each one representing
an option to be selected or specified.While this assumption is the basis for powerful explanations of how the basal ganglia
circuit can implement selection or specification, it also strongly restricts the coding capacity of the basal ganglia output.
The theory here is as yet agnostic to the size of the basal ganglia output population a over which a target function f could
be specified. Given the broadly overlapping targets of neighboring SNr neurons (Deniau and Chevalier, 1992) there could
be just one population whose goal is to create a specific trajectory of activity in its targets (Wärnberg and Kumar, 2023).
A second issue is of how control of the dynamic weights can be learnt. The theory outlined here assumes the connec-

tionsmade by the basal ganglia output nuclei have fixed strengths (Fig. 2), defining the basis functions, and it is the activity
of the output neurons that set the weights of those functions. Unlike traditional views of basis functions with weights that
are learnt, these dynamic weights can be adjusted on the fly by input from upstream nuclei of the basal ganglia. Learning
when and how to adjust them becomes a question of how feedback from the environment can change the input to the
output nuclei. An obvious answer is that environmental feedback is the prediction error signal conveyed by phasic dopa-
mine release in the striatum (Schultz et al., 1997; Bayer and Glimcher, 2005; Rutledge et al., 2010; Hart et al., 2014; Howe
and Dombeck, 2016); and that this modulates plasticity at cortico-striatal synapses (Reynolds et al., 2001; Shen et al.,
2008; Gurney et al., 2015) to change the input to the basal ganglia’s output nuclei. Extending the theory here to include
explicit striatal input and cortico-striatal plasticity would be an interesting line of work.
That striatally targeted dopamine acts like a reward prediction error andmodulates cortico-striatal plasticity are key rea-

sons why the basal ganglia are often viewed as a central part of the brain’s distributed system for reinforcement learning
(Ito and Doya, 2011). In this view, the value of a state or action is represented in the cortex, cortico-striatal connection
weights, or striatal activity (Houk et al., 1995; Joel et al., 2002; Khamassi et al., 2005; Samejima et al., 2005; Bogacz
and Larsen, 2011; Collins and Frank, 2014; Blackwell and Doya, 2023) [see also Elber-Dorozko and Loewenstein, 2018
for dissenting evidence], and the downstream basal ganglia circuit enact policy by selecting (Frank, 2005; Humphries
et al., 2012; Collins and Frank, 2014) or specifying (Yttri and Dudman, 2016) an action based on that value. As reinforce-
ment learning algorithms place no constraints on how policy is implemented, this view is silent on how the basal ganglia
circuit selects or specifies action, and silent on the existence of the bottleneck and of any solutions to it. Some forms of
reinforcement learning use basis functions to approximate a continuous space of states or actions (Sutton and Barto,
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2018). This use of basis functions is distinct from the ideas offered in this paper: here, the basis functions are a property of
anatomy, not abstract quantities, and are not explicitly representing anything. Indeed, all theories mapping elements of
reinforcement learning algorithms to the basal ganglia could turn out to be false, but if they were false it would not affect
the ideas in this paper. The converse may not hold: an open question is whether the re-expansion of basal ganglia output
places any limits on mappings of reinforcement learning algorithms to the basal ganglia circuit.
Finally, while the dynamic weights idea provides a solution to the problem of the computational bottleneck, it does not

explain why this bottleneck exists. Some ideas seemworth pursuing here. Producing spikes makes upmuch of a neuron’s
energy demand (Attwell and Laughlin, 2001; Laughlin, 2001; Sengupta et al., 2010), and so if the high activity rates of the
output nuclei are necessary to their function, this could place energetic constraints on their size. Such bottlenecks can
also occur as networks evolve when the mapping between their input and output has fewer dimensions than either of
the input or the output itself (Friedlander et al., 2015). But, however it arose, the computational bottleneck of basal ganglia
output provides a strong challenge to any theories for functions of the basal ganglia.

Materials and Methods
Code availability. All MATLAB code is available under a MIT License from https://github.com/mdhumphries/Basal_

Ganglia_Bottleneck_simulations. The code is also available in Extended Data 1.

Estimating the expansion of basal ganglia output
Targets of the mouse SNr were accessed from the Allen Mouse Brain Atlas (Oh et al., 2014) at https://connectivity.brain-

map.org/. The Atlas contains seven experiments that had the injection of a fluorescent anterograde tracer targeted to the
SNr of the right hemisphere. One experiment (ID:3035444) filled a volume (0.04mm3) an order of magnitude smaller than
the others, occupying less than 3% of the SNr, and so was not used here. Table 1 gives data on the six retained
experiments.
Each experiment contained a complete list of all regions in the Allen Common Coordinate Framework V3.0 that had

tracer found in them, in both hemispheres, and the volume and density of fluorescent pixels in each region. The Allen
Common Coordinate Framework follows a hierarchy from the whole brain, through the gray matter, down to fine-grained
subdivisions of nuclei: identified target regions thus overlapped with, or were subdivisions of, others. To find a single, non-
overlapping set of targets, I used the list of 295 non-overlapping gray matter regions from Oh et al. (2014), their
Supplementary Table 1.
A complete set of neuron numbers for each of those regions in the mouse brain was obtained from Blue Brain Cell Atlas

dataset published in Rodarie et al. (2022), their S2 Excel file.
With these data to hand, for each experiment I did the following:

1. Found all targets within the list of 295 unique regions, in both hemispheres
2. Rejected any target region that had a fluorescent pixel density less than some threshold θ
3. Looked up the neuron count nt in each target region t from the Blue Brain Cell Atlas
4. Computed the total potential SNr connections: summed neurons across all N retained target regions

∑N nt
5. Computed an estimate of SNr connections by estimating axonal arborization in each target: weighted the neuron

count in each region by its density dt∈ [0, 1) of fluorescent tracer
∑N nt × dt.

Thresholding by the density of fluorescence within each target region (step 2) eliminated image noise and other arte-
facts: without a threshold, all 295 regions contained fluorescent pixels implausibly suggesting the SNr projected to the
entire brain (Fig. 6).
Linearmodels were fit to the scaling of the total number of target neurons (step 4) and of the estimate of SNr connections

(step 5) with the volume of injection in each experiment (fitlm, MATLAB2023a). Extrapolating these models to the volume
of the SNr (predict, MATLAB2023a) gave upper and lower bounds on the total number of SNr target neurons. From
these were computed upper and lower bounds on the ratio of target to SNr neurons. Computing the upper and lower ratio

Table 1. Allen mouse Brain Atlas experiments

ID Volume injected (mm3) Proportion in SNr Proportion of SNr injected

478096249 0.49 0.41 0.30
158914182 0.54 0.29 0.23
478097069 0.43 0.32 0.21
100141993 0.23 0.95 0.32
299895444 0.36 0.94 0.51
175263063 0.17 0.96 0.24

The proportion of each injection that fell in the SNr was manually scraped from each experiment’s webpage at https://connectivity.brain-map.org/. Proportion of SNr
injected used the SNr volume of 0.69mm3 from the Blue Brain Cell Atlas.
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bounds for a range of density threshold θ between 0 and 0.05 in steps of 0.005 revealed they reached an asymptote with
increasing θ (Fig. 1c,d) implying a stable estimate. The asymptote itself was detected as three consecutive bound esti-
mates that changed by less than 1, and was reported as the final of these estimates.
As Table 1 shows, three of the experiments had injections that considerably exceeded the bounds of the SNr.

Robustness to this limitation was tested in two ways. In the first, the linear model was fit weighting the data points by
the proportion of SNr filled in each experiment: this gave the same results for the asymptotic ratios as the unweighted
linear model.
In the second, I separately considered each of the three experiments with more than 90% of their injection within the

SNr. For each experiment, I first computed the estimated total number of target neurons and the estimate of SNr connec-
tions (steps 4 and 5 above). I then computed the estimated number of SNr neurons Ŝwithin the injection volume, given by

Ŝ = # neurons in SNr× Injection volume
Volume of SNr

, (2)

and finally computed the ratio of target neurons to Ŝ. The resulting upper and lower bound ratios of target to SNr neuron
numbers also reached an asymptote for each of three experiments (Fig. 1e,f). The asymptote was computed as above
separately for each experiment; the mean of these is reported.

Using basis functions for expansion
My proposal here stems from the use of basis functions to approximate a target function, so I give a brief account of that

here to make the analogy clear.
The target function is f (x), which can be of any dimension (for example, I use one-dimensional functions in Figs. 2 and 4,

and two-dimensional in Fig. 5). In the most general form of approximating f (x), we choose some basis function g(x, Ω),
which is defined on some interval x and takes parameters Ω, and we obtain the approximation f ′(x) of f (x) by

f ′(x) =
∑B

i=1

wig(x, Vi), (3)

the sum of B such basis functions each parameterized by Ωi.
Approximating a function typically uses the radial basis functions g(x− c, σ), which are symmetric about their center c

and have a single parameter σ that defines their width. Gaussians are one type of this class of functions, as shown in
Figure 2a. The approximation of f (x) is then

f ′(x) =
∑B

i=1

wig(x − ci, s), (4)

the sum over a set of B such basis functions, placed at centers c1, c2, …, cB, and each with its own weight wi.
Approximating f (x) then depends on choosing g(x), setting an appropriate number B of these, and finding appropriate
weights to minimize some error function e(f (x)− f ′(x)). When using basis functions to fit curves (in one dimension) or sur-
faces (in two or more dimensions) to sampled data, typically the number and location of sampled data-points respectively
determines B and the set of ci.

Figure 6. The need for a threshold for noise in tracing experiments. Here, I plot the total number of target neurons when including every target region of the
SNr with detectable fluorescent pixels in the Allen Mouse Brain Connectivity Atlas experiments. As all or almost all regions had detectable pixels, the total
number of neurons is at or close to the total number of neurons in the mouse brain. Also note how the number of neurons does not scale with the injected
volume.

Theory/New Concepts 13 of 18

April 2025, 12(4). DOI: https://doi.org/10.1523/ENEURO.0431-23.2024. 13 of 18

https://doi.org/10.1523/ENEURO.0431-23.2024


Expansion occurs because we want the target function f (x) to be defined over n points in one dimension (or n×m points
in two dimensions, and so on), and typically B≪n. This is especially true when using basis functions to approximate func-
tions across a full range of n points using just B sampled data points.

The basal ganglia output as a set of dynamic weights
The theory outlined here is that g(x) is realized by the strength distribution of an output neuron and the weights wi are

defined by the activity of that neuron (or equivalently, the strength distribution of a group of output neurons taken collec-
tively, and their collective activity). Then f ′ is the inhibition function defining the input to every neuron in the target nucleus.
To make this more concrete, consider that there are b basal ganglia output neurons that project to target region(s) con-

taining n neurons, with b≪n. Then expressing the basis function idea in matrix form, we get:

Da = f, (5)

where a is the b-length vector of basal ganglia output activity, f is the n length vector of inhibition arriving at the target
neurons–the target function in Equation 4–and D is the n×b matrix that defines the basis functions. For example, for a
one-dimensional set of overlapping basis functions that define a ring (cf Fig. 4a), each column of D is a basis function,
shifted circularly across columns.
If the columns of D are each a circularly shifted version of the same basis function v, and no column can be identical,

then the construction of D is:

D =
∑b

i

ai ⊗ vi, (6)

where vi is the ith shifted version of v and ai is a vector with a 1 at the ith entry and 0s at all others. Consequently, Equation 6
defines a full rank matrix, i.e., its columns are linearly independent.

Recurrent neural network modelling of cortex
The recurrent neural network model of cortex contained N=200 units, 80% excitatory and 20% inhibitory, whose

dynamics were given by:

t
dx
dt

= −x+Wr(x)+ I(t), (7)

where x is the N-length vector of unit potentials, τ=20ms is the network’s time constant, W is the N×N connectivity
matrix, r() is a function that defines each unit’s firing rate, and I(t) is an N-length vector of inputs to each unit at time t.
I used here the stabilized supra-linear network (Ahmadian et al., 2013; Rubin et al., 2015; Hennequin et al., 2018) in which
the firing rate of the ith unit was given by the rectified power-law,

r(xi) = k⌊xi⌋h, (8)

with k=0.1 and η=2. Numerical simulations used forward Euler with a time-step of 0.1ms.
Random connectivity matricesW of size N×N were created by connecting units with probability p=0.1, then randomly

assigning columns to be excitatory or inhibitory units. Weights of connections in a column were then defined asw0/
��
N

√
for

excitatory connections and ( − gw0)/
�
(

√
N) for inhibitory connections, where w0 = R/

����������������������
p(1− p)(1+ g2)/2

√
, the E:I weight

ratio γ=3, and the spectral radius R=10 (Rajan and Abbott, 2006; Hennequin et al., 2014). I tested versions with and with-
out further stability optimization of the resulting random matrix W; further optimization used the algorithm of Hennequin
et al. (2014) that minimizes themaximum real eigenvalue ofW, resulting in networks whose dynamics recapitulate those of
motor cortex (Hennequin et al., 2014; Rodriguez et al., 2024). Similar results were obtained in both random and optimized
W; results from a random network are plotted in Figure 4. Similar results were also obtained in networks with a 50:50 ratio
of excitatory and inhibitory units (not shown).
The vector I(t) comprised inputs from unmodeled regions of cortex and from thalamus. Background input of I(t) = 0.1 was

applied for t<1,000 and t>2,000. For time 1,000≤ t≤2,000 the inputs stepped up or down from background.
The stepped thalamic input to cortex was assigned to n=0.1N randomly chosen entries of I(t). It was modeled as the

vector Twhose n entries were given by T=Tb−Da, where Tb=1 was baseline thalamic activity, awas the b=0.25t length
vector of basal ganglia output activity randomly chosen in [0, 0.4], and D was the n×bmatrix of connection weights from
basal ganglia output to thalamus. Each column ofDwas thus the basis function defined by each basal ganglia output neu-
ron’s projections to thalamus: here each basis function was symmetric with 1 at the center and steps down of 0.2 on either
side; the basis functions were circularly shifted to uniformly tile the matrix (Fig. 4a).
The stepped cortical input was modeled by the remaining 0.9N entries in I(t), which were randomly assigned an initial

value in [0, 1]. The stepped thalamic and cortical input were then held constant for 1,000≤ t≤2,000.
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When simulating the effects of changing basal ganglia output, only the entries of a were resampled in each simulation,
with all other stepped inputs I(t) sampled once and then held constant across simulations.

Superior colliculus grid model
The build-up layer of the superior colliculus wasmodeled as aN×N grid of units, withN=20 here. The dynamics of units

on the grid were given by

t
ds
dt

= −s+ u(t)+Da, (9)

where s was the N×N length vector of collicular unit activity and τ=10ms was the unit’s time constant. Inputs specifying
the saccadic target location were represented in theN×N-length vector u. Input from b=2N basal ganglia output neurons
was defined by the b-length vector of their output a and the (N×N ) ×b matrix D that defined the basis functions. The
entries of D were −1 or 0, set so that each output neuron connected to either an entire row or column of the collicular
grid (Fig. 5a, bottom).
Colliculus output activity plotted in Figure 5 is given by the rectified linear function r = max (0, s).

Appendix: Limits on the number of thalamic neurons reachable by basal ganglia output
The model of basal ganglia output to thalamus adopted in the main text (Fig. 4a) gives some interesting insights into

potential constraints on the divergence of basal ganglia projections to thalamus.
In the model, each of the b basal ganglia output neurons has a symmetric distribution of output strengths (Fig. 4a, inset),

which defines its basis function. Given the number of possible discrete strength values Nb, the width of this distribution is
NT=2Nb− 1, which defines the number of thalamic neurons reachable by one basal ganglia output neuron.
Each basal ganglia output strength distribution is centred on a specific thalamic neuron ti. Let’s assume the

distributions tile the thalamus in a one-dimensional ring to avoid edge effects, and the centres of the distributions are
spaced the same number d of thalamic neurons apart. The number of possible thalamic neurons in this ring model is
then T=d ·b.
If wewant every thalamic neuron to receive basal ganglia input, then themaximumdistance d between the centres of the

distributions must also be the width of the distributions: dmax = 2Nb− 1. Consequently, the maximum number of thalamic
neurons must be Tmax = (2Nb−1)b.
But if the basal ganglia output distributions are spaced at distance dmax then each thalamic neuron receives only one

basal ganglia input, and so the basis functions are not overlapping. The distance between basal ganglia output distribu-
tions must therefore be d<dmax. How much smaller would depend on the minimum desired number of overlapping basal
ganglia inputs to each thalamic neuron.
Table 2 gives the minimum number of overlapping basal ganglia output neurons in this ring model, for a range of dis-

tances d between, and resolutions Nb of, the basal ganglia output strength distributions. For example, with the centres
of the distributions spaced d=3 thalamic neurons apart, and the distributions having NS=6 possible strength values,
each thalamic neuron receives input from at least three basal ganglia output neurons.
We see that the minimum number of inputs falls rapidly with increasing distance between distributions. If the distance is

greater than 4, then increasing theminimum number of inputs above 2 or 3 requires a large increase in the possible number
of strength values. What then should d and Nb be?

Table 2.Minimumnumber of basal ganglia inputs to one thalamic neuron. Each entry is theminimum number of inputs each thalamic
neuron receives at the specified strength resolution (Nb) and distance d between strength distributions. These were numerically
enumerated, using b=2 ·maxNb

Nb

d 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 5 7 9 11 13 15 17 19 21 23 25 27 29 31
2 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 2 3 3 4 5 5 6 7 7 8 9 9 10
4 1 1 2 2 3 3 4 4 5 5 6 6 7 7
5 1 1 1 2 2 3 3 3 4 4 5 5 5 6
6 0 1 1 1 2 2 2 3 3 3 4 4 4 5
7 0 1 1 1 1 2 2 2 3 3 3 3 4 4
8 0 0 1 1 1 1 2 2 2 2 3 3 3 3
9 0 0 1 1 1 1 1 2 2 2 2 3 3 3

10 0 0 0 1 1 1 1 1 2 2 2 2 2 3
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A conservative lower bound on the estimated ratio of thalamic to basal ganglia output neurons is on the order of 5:1
(Figure 1). As the number of thalamic neurons in our ring model here is T=d ·b, so this ratio implies d=5. And with that
distance between strength distributions, that implies a strength resolution of at least Nb≥11 for each thalamic neuron
to receive input from at least four basal ganglia output neurons.
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