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Abstract—The growing use of intervals in fields like survey
analysis necessitates effective aggregation methods that can
summarize and represent such uncertain data representations.
The Interval Agreement Approach (IAA) addresses this by
aggregating interval responses into Fuzzy Sets (FSs), capturing
both intra- and inter-participant agreement, while minimizing
information loss. While offering a powerful modeling tool, the
TAA does not natively offer a measure of central tendency, which
is itself an interval of particular utility in real-world applications.
In contrast, the Interval Weighted Average (IWA) has been used
for directly measuring the central tendency of intervals. While
straightforward and effective, it is not designed, nor able to,
summarize interval data in terms of their agreement, as the IAA
does. To bridge this gap, this paper introduces Interval Agree-
ment Weighted Average (IAWA), which is specifically designed to
reflect both the central tendency and agreement. This is achieved
by first modeling interval agreement as FSs using the IAA, and
then transforming these FSs into intervals using the IWA. We
demonstrate the approach by conducting sensitivity analyses to
explore the behavior of the proposed approach in detail. Our
findings suggest that the IAWA is a highly effective measure of
central tendency. Additionally, it also partially inherits IAA’s
ability to reflect the agreement of sets of intervals. We conclude
by highlighting the potential and growth of the use of intervals
in information elicitation, within, and beyond survey research,
underpinning a new degree of understanding of both intra- and
inter-source uncertainty.

Index Terms—Intervals, Uncertainty, Survey, Interval Agree-
ment Approach

I. INTRODUCTION

Collecting comprehensive quantitative survey responses ac-
curately and effectively is key to understanding insights from
people in various fields. This enables the aggregation and
statistical analysis of responses, thereby facilitating an un-
derstanding of the collective viewpoints of specific groups
and subgroups within the surveyed population. Since the
early twentieth century, the primary approach for capturing
responses in surveys has largely remained the use of single-
point scales, such as Likert, numeric, semantic differential,
and visual analogue [1]-[4]. While discrete response scales
have advantages such as being easy to collect and analyze, by
limiting responses to a single choice along a given continuum,
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these scales are potentially restrictive to participants’ authentic
expression [5]-[8]. Specifically, these scales are limited in
their capacity to capture both forms of uncertainty: the com-
plex viewpoints or uncertainty within individual participants
(intra-participant uncertainty), and the diverse opinions among
different participants (inter-participant uncertainty).

For intra-participant uncertainty, this is particularly prob-
lematic due to the inherent cognitive uncertainty and im-
precision in individuals’ subjective judgments [9]-[12]. For
example, in a railway context, responding to a question like
‘What is your overall satisfaction with the train station during
your journey?’, participants are compelled to select a single
term, despite potentially having varied and complex experi-
ences at different stations. Requiring a single selection in such
scenarios can limit the natural expression of intra-participant
uncertainty, leading to information loss and distortion.

For inter-respondent uncertainty, previous research empha-
sises that it is vital to determine whether survey response
variations accurately reflect participants’ diverse opinions or
if they are influenced by survey method [7]. However, the
requirement for a single response can obscure or exaggerate
individual differences. Consider a scenario where two individ-
uals faced the same train delay. When asked about the delay
duration, for instance, ‘How many minutes of delay did you
experience?’ their responses may differ, as one person might
be clear about the delay time, while another may not have paid
close attention to it. This difference might not truly represent
distinct experiences but could instead be a result of the forced
precision of the survey scale. Such nuances in responses can
lead to an inaccurate capture of inter-participant uncertainty,
potentially distorting the authenticity of survey findings.

The interval-valued (IV) response mode was proposed as an
alternative to traditional single-point response modes [3], [13].
It allows participants to provide their answers by specifying
an interval on a continuous scale, for example by circling
an area of the scale. Crucially, the response mode does not
restrict respondents to IV responses of a pre-determined size.
As a result, respondents have full freedom in their expression,
affording the effective and efficient capture of both intra- and
inter-participant uncertainty [3]. The usability and efficacy
of the IV scale have been tested in a variety of areas;
from vulnerability assessments in cybersecurity, to consumer



perceptions of products, patient understanding in healthcare,
and environmental management [14]—[20].

Fuzzy Sets (FSs), known for their ability to model uncer-
tainty in human perceptions, have been widely used in interval
analysis methods, enhancing the modeling of uncertainty in
IV data. These include the Interval Approach (IA) and the In-
terval Agreement Approach (IAA), along with extensions: the
Enhanced Interval Approach (EIA) and Hao-Mendel Approach
(HMA) as the extensions for IA, and Efficient IAA (elAA) for
TIAA [13], [21]-[25]. IA creates normal, convex Interval type-
2 (IT2) FSs to represent a set of intervals, while the TAA is
designed to model agreement amongst samples and/or sources
using type-1 or type-2 FSs, which can be non-normal and non-
convex. Notably, IAA-based methods are designed to avoid the
need for data preprocessing, model assumptions (e.g. Gaussian
distribution) or the elimination of outliers [22].

While valuable, the IAA does not natively provide an
IV measure of central tendency for interval data, which is,
however, desirable in practice. For example, to succinctly
communicate data to stakeholders. In contrast, a method like
the Interval Weighted Average (IWA) [26] was designed to
generate an IV central tendency by directly calculating the
weighted average of the endpoints of intervals. While straight-
forward and effective, IWA is not designed for, nor capable
of, capturing the agreement among respondents as IAA does.

To bridge this gap, in this paper, we put forward the
Interval Agreement Weighted Average (IAWA) as a means to
succinctly generate a measure of central tendency for a set of
intervals while capturing agreement. While this approach will
have general utility, for example in fuzzy set defuzzification—
which we are exploring in a future publication—this paper will
focus on introducing the method and analyzing its behavior in
detail through sensitivity analysis. Discussion will be limited
to type-1 IAA sets in this paper due to space limitations.

The paper is structured as follows: Section II describes IV
data and its features, provides background on interval methods,
including IA, TAA, «-cut, and IWA. Section III describes
the details of IAWA. Section IV demonstrates the sensitivity
analysis of IWA and IAWA in respect to different features of
interval sets. Section V presents the summary, conclusions,
and directions for future research.

II. BACKGROUND

In this section, we briefly discuss IV data sets and their fea-
tures. Later, we review commonly used methods for analyzing
interval data, including the IA, IAA, a-cut and IWA.

A. Interval-Valued Data Sets and their Features

A closed crisp interval a, defined by its endpoints—the
lower bound a~ and the upper bound a*, where a~ < at—
can be expressed as @ = [a™,a™]. Its width a¥ = |a™ — a ™|
represents the interval’s range. Alternatively, a can be de-
scribed by its center a© = a’ta” and radius " = %w, offering
a comprehensive characterization [27].

Besides a crisp interval, there is also an uncertain interval,
where each endpoint is itself a crisp interval [13]. However,

collecting such complex data often poses real-world adminis-
trative challenges. Hence, this paper focuses on crisp intervals.

Despite the inherent complexity of IV data sets, they can be
categorized and evaluated using a collection of fundamental
features: the mean range, standard deviation of individual
interval ranges, and the standard deviation of interval centers,
indicating positional diversity. Ferson et al. [28] defined IV
data sets with narrow ranges as ‘skinny’ and those with
wider ranges as ‘puffy’. These data sets vary in disjointedness
and overlap, from completely separate to partially or fully
overlapping intervals [18].

B. The Interval Approach

IA is a primary method for modeling IV data as FSs [22].
It collects interval endpoint data from subjects to represent
linguistic uncertainty. The process involves two stages: data
pre-processing to eliminate outliers and unsuitable data, fol-
lowed by using the refined data to build IT2 FS models. The
EIA [24] extends IA by refining data pre-processing for better
control of interval widths, while the HMA [25] improves the
process of constructing a FS by identifying the most common
overlap of intervals and building a FS around it. However,
IA, EIA, and HMA all involve data pre-processing, which
may lead to significant data loss. Moreover, these methods
presume unimodality in data, potentially resulting in critical
information loss in certain real-world scenarios [22].

C. The Interval Agreement Approach

TAA is another widely used method for modeling IV data as
FSs [13], aiming to encompass the full range of data without
removing any intervals. Unlike IA and its extensions, IAA
neither pre-processes data nor assumes unimodality [13]. It
follows the least commitment principle to minimize informa-
tion loss [29]. IAA captures both inter- and intra-participant
uncertainty, representing these into various FS types (Type-
1, IT2, and GT2 FSs). IAA’s process involves up to two
steps: firstly, creating a Type-1 FS (or IT2 for uncertain
interval responses) to model either inter- or intra-participant
uncertainties, and optionally, forming a GT2 FS based on step
1 to model both uncertainties.

To create a Type-1 FS X using [AA, for a given set of
intervals X = {Z1,...,T,}, where @, represents an interval
with left and right endpoints x; and z;}, its membership
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function (denoted as px (z')) is described as follows [13]:
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A type-1 FS created by IAA, shown in Fig.1’s upper section,
aggregates three IV responses from the lower section, with
higher agreement in overlapping areas.

There is also elAA [23], an extension of IAA that sim-
plifies IAA’s membership function for enhanced efficiency.
The decision between IAA and eIAA should be based on the
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Fig. 1. Tllustrative example of how the IAA (outline of the shaded area)
captures the agreement between three intervals ([4,6], [3,7], and [2,5]), and
how it is transformed into an interval by using a-cuts and IWA.

application’s priority—whether to retain all information or to
optimize computation [22]. Given the scope of this paper, our
focus will be on Type-1 FSs generated by IAA. This approach
is selected for its ability to offer a direct and interpretable
representation of interval data, which is particularly beneficial
for real-world applications.

D. Alpha-cut

The a-cut decomposes a FS into a crisp set, represented by
a single interval in convex FSs or multiple intervals for non-
convex FSs, depending on the specified « level. This method
is widely used to address the complexity and computational
challenges in FSs [26], [30], [31]. The a-cut of a convex FS
A at a level « is a crisp set (represented by a single interval)
containing all the elements of the domain whose membership
values in A are greater than or equal to «. In mathematical
terms, the a-cut, A, is defined as

Ay ={z € X | pa(x) > a} 2)

where (4 (x) is the membership function of the FS A and X
is the domain. The a-cuts at level a on the FS A provides
a closed interval, expressed as A, = [A,,A}]. Through
decomposition with a-cuts at various levels, distinct intervals
representing the FS are created. As illustrated in Fig.1, the FS
from TAA decomposes into a set of intervals, I = Ag3s3, J
= A7, and K = Ay, using a-cuts with agreement levels of
0.33, 0.67, and 1.

When FS A is non-convex, applying a-cuts at certain levels
can result in multiple intervals. For instance, Fig. 2 shows
that an a-cut at 0.33 results in two intervals, /1 and 2.
These intervals should be conceptualized as parts of a single
discontinuous interval, processed sequentially and combined
by conjunction (union) [31], [32]. This ensures the original
FS’s features at the «-cuts level are accurately represented.

As a-cut simplifies transforming fuzzy uncertainty into
interval uncertainty, it has been used to aggregate multiple FSs
into one by aggregating resulting intervals at various « levels
[31], [33]-[39], as well as deconstructing and reconstructing
FSs [40], [41]. a-cut is also widely used for fuzzy number
ranking, comparison, and defuzzification — i.e., transforming
a FS to a single crisp value, which can aid decision-making.
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Fig. 2. Tllustrative example of how the IAA (outline of the shaded area)
captures the agreement between three intervals ([6,8], [6,7], and [1,3]), and
how it is transformed into a discontinuous interval by using a-cuts and IWA.

However, while useful in producing crisp values from FSs,
defuzzification can lose critical uncertainty information. While
effort has been made for defuzzifying fuzzy numbers into in-
tervals to maintain some aspects of uncertainty [42], [43], there
has been very little attention given to the IV defuzzification
for different types of general FSs [44](i.e., FSs not bound by
the specific requirements of fuzzy numbers such as normality,
convexity, and unimodality [33]).

E. Interval Weighted Average

The concept of averaging, a key measure of central ten-
dency, is foundational in data analysis. When uncertainties in
data points or weights (or both) can be better represented using
IV data, the IWA offers an alternative to IV central tendency.
IWA can be calculated by taking the weighted average of the
lower and upper bounds separately [26].

For intervals X = {[z],z]],..., [z, , 2]} and associated
crisp weights W = {wq, wa, ..., w,}, the IIW A is given by:

D Wiy iy wlzj
D Wi i wi
When all the weights are crisp and equal, i.e., w; = wy =
- = wy,, the IWA simplifies to what we refer to as the
‘Interval Average’, denoted as IW A, (for ‘equal’ weights) in
this paper, to avoid any confusion with the Interval Approach
(IA). In this case, since each weight w; is the same, the
formula for IW A, becomes:

3)

IWA=g=[y ,y"]=

n — n +
IH)A_Q_ [y—7y+] sznl 7 , Zz;Ll 7 (4)

Here, the IW A, is essentially the arithmetic mean of the
interval endpoints, reflecting an equal contribution from each
interval in the set X. IWA can also compute cases where
the weights are intervals [26]. However, as we only use crisp
values as weights in this paper, this is beyond the scope.

III. THE INTERVAL AGREEMENT WEIGHTED AVERAGE

This section introduces IAWA as an extension of IAA. We
will begin by outlining our objectives, followed by a detailed
description of our proposed method, illustrated with synthetic



examples. Lastly, we will explore potential extensions of
TAWA to accommodate IT2 and GT2 FSs in future research.

A. Context

A set of IV data from a single participant across multiple
surveys over time can show where the participant agrees
with their own previously surveyed responses (intra-participant
uncertainty). In contrast, IV data from multiple participants in
a single survey can reveal where they align with the opinions
of the rest of the group (inter-participant uncertainty). The
established TAA method [13], utilizing type-1 FSs, effectively
captures both uncertainties. The objective of the proposed
method is to extend IAA by introducing a step that transforms
a FS into an interval (IV defuzzification). This step enables
IAWA to provide a measure of the central tendency for IV
datasets and concurrently reflects agreement among intervals.

B. Method

For a given IV data set from a survey or repeated surveys,
TAWA firstly models intra- or inter-participant uncertainty as a
type-1 FS A using IAA [13]. Under IAA, the maximum pos-
sible number of distinct agreement levels n in A are decided
by the number of surveys for intra-participant uncertainty or
participants for inter-participant uncertainty. Secondly, this FS
A is transformed into its representative interval through a-cuts
and IWA. This involves the following sub-steps:

1) A Priori o Levels: Define the a priori « levels as
{a1,...,a,}, where 0 < a,, < 1 and n, the number
of agreement levels, is predetermined. These levels,
equally spaced between 0 and 1, are represented as
{1/n,...,1}. For instance, with three participants, the
a levels would be 1/3, 2/3, and 1, ensuring all opinions
are considered.

2) «-cuts: Decompose the Fuzzy Set A into intervals
A=1{A,,,...,A,, } using a-cuts. These intervals are
defined as {[AOQ,A+ - [An AL 1)

3) IWA: Compute the weighted average of intervals A
using IWA [26], as per Equation (3). Replace the interval
endpoints x; and xj in Equation (3) with A7 and
Ai from A. The weights w; are substituted by their
respective « values, «;. As such, the proposed TAWA
can be expressed as:

IAWA=g=[y",y"]
2?21 aiA;i Z?:1 O‘iA;L (5)
n k) n
Doim1 Qi Dim1 Qi

Furthermore, for a non-convex Fuzzy Set A, applying a-
cuts as in step 2 can result in discontinuous intervals. Each
continuous interval within it is processed sequentially in subse-
quent steps and rejoined via union. This method is intended to
capture the non-convexity or discontinuity of the original data
in the resulting interval. The total number of combinations,
denoted as N, is determined by multiplying the number of

continuous intervals at each level. For example, if there were
three « levels of 2, 3, and 1 intervals respectively, N would

be calculated as 2 x 3 x 1 = 6 total combinations. The final
results are the union of all these combinations:

TAWA=[y;,y{1U s, y31U... Uy u] (6

C. Synthetic Examples

In this section, we simulate two use cases where a partic-
ipant provides opinions on a topic in three repeated surveys.
As there’s only one participant, we use IAWA to model and
reflect intra-participant agreement uncertainty over time. The
first use case results in a convex type-1 FS, and the second
results in a non-convex type-1 FS, both modeled using [AA.
Given the three repeated measures, we choose three levels for
a-cuts: 1/3 = 0.33, 2/3 = 0.67, and 3/3 = 1.

1) convex: The response intervals and IAA for case 1 are
depicted in Fig.1. Applying a-cuts at the selected « levels
decomposes the FS into three intervals: I = Ag 33 = [2,7],
J = Ager = [3,6], and K = A; = [4,5]. In Fig.1, IAWA is
denoted as (I, J, K) and is calculated as follows:

TAWA=1[y ,y"]
B 0.33
T 0.3340.67+1
0.67
t o3 toer 1 B0
1
- s[5
tom ooyt < 4P
0.33 2+—067x3+1x4
IR 2
033 . 067 1

= [3.33,5.67]

x [2,7]

2) non-convex: The response intervals and TAA for case 2
are depicted in Fig.2. Applying a-cuts at the selected « levels
decomposes the FS into three intervals. At the 0.33 agreement
level, due to non-convexity, there are [1 = Ag 335 = [1, 3]
and 12 = Agss_;7 = [6,8]; at the 0.67 level, J = Aggr =
[6,7]; and none for the 1 level. In Fig.2, IAWA is represented
as (I1,J) U (I2,J) and is calculated as follows:

TAWA = [y1, 41U [y2,v5 ]

0.67
1
<131+ G 0.67 6’7]>U

X 6,8 + ot

_ 0.33
“\0.3340.67

0.67
033+067

033 0.67

0.33
0.33 + 0.67
06T, 6,233 +—><7}U

0.33
{ T XL+ x
0.33 0.67 0.33 0.67
[1 X 64 X 6= % 8+T”}
= [4.35,5.68] U [6.00, 7.33]

D. Potential Extension

It is noteworthy that IAA is capable of constructing IT2
and GT2 FSs from IV data responses. These FSs offer a
more nuanced representation of participant uncertainties, but
their application is frequently constrained by the perceived



complexity of computation. The use of a-cuts to decompose
FSs into intervals presents a solution by simplifying the com-
putational process from handling FSs to computing intervals.
Given that the proposed IAWA method specializes in interval
analysis, extending IAWA to accommodate these FSs shows
promise. For instance, within IAA, a GT2 FS, which captures
both inter- and intra-participant uncertainties, is generated
by combining multiple Type-1 FSs derived from various IV
data sets. By applying IAWA to these Type-1 FSs, we can
effectively transform multiple IV datasets into a single dataset.
This dataset can then be processed by IAA, or alternatively by
TAWA again, to reflect the combined uncertainties.

Due to the limited scope of this paper, we will cover the
details of these extensions along with the IV defuzzification
method for different types of FSs — not just those built using
IAA — in a future publication.

IV. DEMONSTRATION AND ANALYSIS

This section presents a sensitivity analysis to evaluate and
compare IWA and IAWA. Given the direct influence of TAA
on IAWA, it is also visualized and discussed within this
analysis. The primary comparison focuses on IWA and IAWA,
as both methods offer interval-based measures for assessing
the central tendency of IV sets. Following the sensitivity
analysis, the cross-set results from IWA and TAWA are vi-
sualized and compared to highlight how IV central tendency
enables comparisons across various IV datasets. For further
exploration or application of these methods, the source code
and synthetic data used in this analysis are available on
GitHub: https://github.com/Carina- YuZhao/TAWA.git.

The sensitivity analysis follows three key features of IV data
sets:

1) Increase in the mean range (size) of intervals (uxw);

2) Gradual increase in the standard deviation of ranges
(oxw);

3) Gradual dispersion in the positioning of intervals, de-
noted by an increased standard deviation in the centers
of intervals (o x-<).

For this study, ten synthetic interval data sets, adapted
from [27], were utilized to simulate a scenario in which five
participants provide their opinions on a specific topic across
ten different surveys over time. Each survey was modeled
using ITAWA and IWA with equal weight, denoted as [W A,
to ensure all participants’ opinions are treated equally. These
data sets, within the range of [0,20], share the same mean of
center (ux-) for their intervals. They are categorized into two
main types: ‘skinny’ and ‘puffy’, based on their mean range of
intervals (feature 1). Set 1 and Set 2 serve as the foundational
‘skinny’ and ‘puffy’ data sets, respectively. For the ‘skinny’
type, Sets 1, 3, and 4 were used to analyze the second feature,
while Sets 1, 7, and 8 were employed for the third feature.
Conversely, for the ‘puffy’ type, Sets 2, 5, and 6 were utilized
for the second feature analysis, and Sets 2, 9, and 10 for
the third feature. This structure facilitates a comprehensive
comparison and analysis across different data sets and features.
All data sets and aggregated results are visualized.

In each figure, the lower section displays the intervals for
the respective data set and the result from /W A.. The upper
section depicts the result from TAWA and the FS modeled
by TAA, with a vertical dotted line indicating its centroid (i.e.,
position), dotted horizontal lines across the upper section mark
the chosen agreement levels for the a-cuts, set from 0.2 to 1.0
in increments of 0.2 as there are 5 participants.

In this section, the term ‘position,’ refers to the center of
the interval for /W A, and IAWA, and centroid for TAA.

A. Increase in the mean range (size) of intervals

For this analysis, we utilize Set-1 (‘skinny’) and Set-2
(‘puffy’), as illustrated in Fig.3. In both sets, intervals are
overlapping, with identical central positions and the same
standard deviations within their ranges, to control for their
potential impact. The primary distinction between them is
in their mean range of intervals; notably, Set-2 (‘puffy’)
has a larger mean range than Set-1 (‘skinny’). For all three
methods, the positions of the results remain largely the same,
whereas the range of the results from all methods widens as
the width of the original data set increases from ‘skinny’ to
‘pufty’. Furthermore, the shape of the IAA remains consistent,
displaying a convex, nearly uniform distribution for both sets.
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TAWA: [7.84, 13.65]
IW A, : [7.75,13.75]

IW A, : [9.72,11.78]

Fig. 3. Visualization of ‘skinny’ and ‘puffy’ IV data sets, illustrating the
impact of different mean range of intervals on aggregation result.

B. Gradual increase in standard deviation of interval ranges

In Fig. 4, we explore two additional ‘skinny’ synthetic cases,
Set-3 and Set-4. These were created by gradually increasing
the standard deviation of the ranges from the baseline es-
tablished by Set-1, as shown in Fig. 3. The aim here is to
analyze how an increase in standard deviation influences the
aggregation methods when the mean range of intervals and the
centers of the intervals remain unchanged.

Likewise, in Fig. 5 for the ‘puffy’ synthetic scenarios, we
assess two further sets, Set-5 and Set-6. These sets are derived
from Set-2, also initially presented in Fig. 3, by similarly
increasing the standard deviation of the ranges. This allows
us to evaluate the impact of greater standard deviation within
‘puffy’ sets on our aggregation methods.
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Fig. 4. Visualization of ‘skinny’ IV data sets, illustrating the impact of an
increase in standard deviation of interval ranges on the aggregation result.
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Fig. 5. Visualization of ‘puffy’ IV data sets, illustrating the impact of an
increase in standard deviation of interval ranges on the aggregation result.

The results suggest that for both ‘skinny’ and ‘puffy’ sets, an
increase in the standard deviation of ranges does not influence
the W A, outcomes, with no change at all in both position and
range. For IAA, there is no substantial change in its position
with an increase in the standard deviation of the ranges.
However, the shape shifts noticeably; it becomes sharper and
more triangular as the standard deviation increases, leading to
a smaller range at higher agreement levels and a wider range
at lower levels. IAWA also shows no substantial change in its
position, while its range gradually decreases when the IAA
shifts to a more triangular form, with a pointier peak.

C. Gradual dispersion of interval centers

In Fig. 6, we further introduce two new synthetic cases, Set-
7 and Set-8. These sets build upon the original ‘skinny’ set,
Set-1 (introduced in Fig. 3). Set-7 is designed to be slightly
scattered, while Set-8 is more extensively scattered. To create
these sets, we adjust the centers of the intervals, effectively
increasing their spread (or standard deviation) while keeping
their range and the standard deviation of their range constant.

This approach allows us to explore the impact of the relative
positioning of intervals (whether scattered or densely placed)
on our aggregation methods.
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Fig. 6. Visualization of ‘skinny’ IV data sets, illustrating the impact of
dispersion of interval centers on the aggregation result.

Similarly, for the ‘puffy’ set analysis, we developed Set-9
and Set-10, as shown in Fig. 7, as counterparts to the ‘puffy’
Set-2. To ensure comparability between ‘skinny’ and ‘puffy’
sets, Sets-7 and Set-9 have identical interval centers, as do
Sets-8 and Set-10. This setup enables us to examine whether
the range of intervals affects the aggregation methods when
the relative positioning of intervals becomes more scattered.
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Fig. 7. Visualization of ‘puffy’ IV data sets, illustrating the impact of
dispersion of interval centers on the aggregation result.

The results suggest that for both ‘skinny’ and ‘puffy’ sets,
an increase in the standard deviation of center positions does
not influence the IW A, outcomes, with no change at all
in both position and range. For TAA, with both ‘skinny’
and ‘puffy’ sets, there is no substantial change in position
when the standard deviation of the center increases. However,
for the ‘skinny’ sets, the shape changes significantly; the
FS becomes non-convex and discontinuous, developing more
peaks with lower heights (agreement level) as the sets become



more scattered. For the ‘puffy’ sets, the initial change mirrors
that in Fig.5, transitioning from a more rectangular to a
triangular shape. As the data set becomes more scattered, the
FS develops into a non-convex, continuous form, with multiple
peaks exhibiting lower heights (agreement level). For IAWA,
with both ‘skinny’ and ‘puffy’ sets, there is no substantial
change in its position. In the ‘skinny’ set, JAWA’s range
increases significantly when multiple peaks appear in TAA.
Additionally, IAWA produces a disjoint result in response to
further multiple peaks with lower levels of agreement. For the
‘puffy’ set, its range initially decreases as the IAA shape shifts
from rectangular to triangular. Subsequently, as multiple peaks
emerge in IAA, the range of IAWA increases significantly.

D. Cross-sets comparison and discussion

A visualization of the results from both methods across ten
sets is displayed in Fig.8. This section will discuss how /W A,
reflects changing features and represents central tendencies in
these IV sets, then use this as a basis to compare how IAWA’s
results differ.

Set
PRV S T S SN e R s B o e )

4 g 12 16
rating (x)

Fig. 8. IW Ac (red) and IAWA (blue) results for all ten synthetic data sets.

For IW A, Set 1, 3, 4, 7, and 8 have identical small ranges,
from all five ‘skinny’ sets, while Set 2, 5, 6, 9, and 10 have
the same, wider range, from all five ‘puffy’ sets. The trend
is simple and straightforward, suggesting that the only feature
of the IV dataset influencing the result of IWAe is the mean
range (size) of intervals. This is as expected, since IWAe is
essentially the equivalent of the mean for IV data.

In comparison, for IAWA, the results for Sets 1 - 6, and Set
9 are very close to, and slightly narrower than, those of W A..
Considering that the IAA FSs generated from these sets are all
normal, convex, and unimodal, which indicates a high level of
agreement among participants, this suggests that when TAWA
produces a range similar to or slightly narrower than /W A,, it
reflects a high level of participant agreement. While seemingly
trivial, the slightly narrower range of IAWA compared to
IW A, suggests a more specific or certain agreement among
participants, as represented by a narrower peak in the IAA.

Furthermore, for Sets 7, 8, and 10, the results of JAWA are
noticeably wider than those of 1T/ A,. The IAA FSs generated
from these sets are all abnormal, nonconvex, and multimodal,
indicating a lower level of agreement among participants (i.e.,
no single value has been unanimously selected or satisfies
everyone). In particular, the result of IAWA for Set 8 is dis-
continuous. This is by design, as this discontinuity arises from

the a-cuts of non-convex FS. Such discontinuity can therefore
reflect the non-convex nature or the diverse agreements among
participants as represented in Set 8 (i.e., participants are
divided into three different agreements, represented by three
peaks). It is worth noting that the discontinuity in [AWA results
must come from the non-convexity of the IAA FS, but not
the other way around. This is because the multiple intervals
generated by a non-convex FS can result in a continuous
interval through union, as demonstrated in Set 10.

Therefore, while /W A, provides a straightforward measure
akin to an average of the crisp data, reflecting the central
tendencies with simplicity, IAWA emerges as a more intri-
cate method, capable of further indicating details regarding
participant agreement within IV set. In addition, for both
methods, by compiling results from all ten sets, we can observe
the changes in responses of all participants as a whole over
repeated measures. Since this is effectively an new IV set, it
can be further analysed using IWA, IAA, or JAWA as required.

V. SUMMARY, CONCLUSION AND FUTURE WORK

This paper introduced an extension of the TAA method
called TAWA, which reflects the IV central tendency and
agreement of IV data set. We conducted a sensitivity analysis
evaluating IAWA and compared it to IWA. Our focus was
on how these methods respond to various features of IV
data sets. Specifically, we explored the effects of (1) wider
mean range (i.e., from ‘skinny’ to ‘puffy’ data set), (2) higher
standard deviation of ranges, and (3) higher standard deviation
of centers on the aggregated results.

Our findings demonstrate distinct impacts of IV data set
features on these two methods. IWA (with equal weight)
directly mirrors the mean position and range of the interval
set, unaffected by the standard deviation of ranges or centers.
It effectively summarizes intra-participant uncertainty, i.e.,
reflecting ‘skinny’ or ‘puffy’ data sets and the uncertainty or
flexibility within individual responses. IWA’s utility is evident
in real-world scenarios, where it aids in comparing intra-
participant uncertainty across diverse data sets. Conversely,
IAWA, while lacking the detailed distribution found in IAA,
largely retains IAA’s capability to represent either intra- or
inter- participant agreement among responses. It is particularly
sensitive to the width and height (i.e., the agreement level) of
peaks in IAA. This sensitivity means that focused agreements
lead to shorter ranges in IAWA, while dispersed agreements
result in wider or even discontinuous ranges.

In conclusion, as an extension of IAA, TAWA provides
a valuable measure of IV central tendency to the methods
available for analyzing, comparing, and summarising IV data.
These methods are particularly relevant for capturing informa-
tion from real-world, which tends to be more complex than the
scenarios presented in our examples. The next step in our re-
search involves applying these methods to the analysis of real-
world data, with a specific focus on enhancing service quality
measurement. Given that IV data is specifically designed
for capturing uncertainty and imprecise human subjective
judgment, we believe it is well-suited to address the inherent



challenges in measuring the intangible and heterogeneous
nature of services. More broadly, considering IAA can also
model intervals in IT2 and GT2 FSs, we expect to explore the
proposed approach in a more general defuzzification context
while also conducting broader experimental evaluation in
future work.
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