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SUMMARY

In the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels
recorded before the COVID-19 pandemic, exerting a substantial burden on an already
stretched NHS through increased primary and emergency care visits and subsequent
hospitalisations. Population groups <4 years and 265 years of age, and those with
underlying health conditions, are at greatest risk of influenza-related hospitalisation. Recent
advances in influenza virus vaccine technologies may help to mitigate this burden. This
review aims to summarise advances in the influenza virus vaccine landscape by describing
the different technologies that are currently in use in the UK and more widely. The review
also describes vaccine technologies that are under development, including mRNA, and
universal influenza virus vaccines which aim to provide broader or increased protection. This
is an exciting and important era for influenza virus vaccinations, and advances are critical to
protect against a disease that still exerts a substantial burden across all populations and
disproportionately impacts the most vulnerable, despite it being over 80 years since the first

influenza virus vaccines were deployed.
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INTRODUCTION

Whilst the influenza virus has been in circulation for centuries, and vaccines available for
over 80 years, the last two decades have seen substantial advances in influenza research
and control, including the introduction of several new technologies for vaccination. In this
review we first provide a brief overview of the current epidemiological and vaccine policy
landscape, before describing the available vaccine technologies and the related clinical data

regarding their efficacy and effectiveness.

Influenza burden

Influenza viruses cause a substantial disease burden within the United Kingdom (UK) and
around the world (1-5). In 2017, there were an estimated 145,000 deaths and 9.5 million
hospitalisations globally caused by influenza-related lower respiratory tract infections (6).
Following a reduction in the number of influenza cases during the COVID-19 pandemic,
recent data suggest that the number of cases are now comparable with levels recorded
before the pandemic (Fig. 1) (7, 8). In England during the 2022/23 influenza season, there
were 8,751 hospitalised cases of confirmed influenza virus infection and an estimated
14,623 excess deaths associated with influenza (9). This is compared with 5,144 and 8,800

excess deaths in the 2018/19 and 2019/20 seasons, respectively (9).

Children =4 years and adults 265 years of age have the highest risk of influenza-related
hospitalisation (10). Other population subgroups at risk of severe influenza disease or
complications include those with chronic medical or immunosuppressive conditions,
including transplant recipients, and healthcare workers who are at high risk of increased
exposure to influenza virus (1, 11-14). The medical conditions considered at risk and for
whom influenza virus vaccination is recommended in the UK are presented in Table 1; these
groups will vary somewhat between countries (11, 15). In addition, influenza virus infection
increases the risk of hospitalisation in pregnant women and can cause harm to the

developing foetus (16, 17). Inactivated influenza virus vaccination is therefore recommended
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to pregnant women during any trimester, providing protection both to the mother and,
passively, to the infant in the first 2—3 months (18, 19). Evidence supporting this
recommendation includes results of a test-negative case control study demonstrating that
maternal influenza virus vaccination was associated with a vaccine effectiveness of 53%
(95% confidence interval [CI]: 30, 68) against influenza-related hospitalisation and

emergency department visits in infants less than 3 months of age (13).

The acute respiratory symptoms associated with influenza virus infection are widely
reported; however, more recent studies have highlighted that influenza virus infection is
associated with a broad range of adverse outcomes and long-term effects, including
exacerbation of underlying medical conditions (20, 21), increased susceptibility to secondary
bacterial infections (22), cardiovascular events such as myocardial infarction (23-25),
functional decline in older individuals with high baseline frailty (26), and complications in
pregnancy (27). Therefore, reducing disease severity through seasonal influenza virus

vaccination may lead to a range of health benefits (28-32).

Influenza virus characteristics

There are four types of influenza virus; of these, influenza A and B viruses cause seasonal
epidemics (33). Influenza A viruses are classified into subtypes, whereas influenza B viruses
are classified into two different lineages, B-Victoria and B-Yamagata (33). Influenza A viruses
exist as different subtypes with varied antigenic characteristics according to the type of
haemagglutinin (HA) and neuraminidase (NA) glycoproteins on the virus surface; these
glycoproteins facilitate infection of host cells (34-36). HA enables entry into the host cell,
while NA cleaves mature virus from the host cell (36, 37). There is evidence that HA- and
NA-targeting antibodies exert their activity via different mechanisms, and while HA
antibodies are able to prevent influenza virus infection, NA antibodies are infection-

permissive but may reduce disease severity (38).



Mutations in the HA and NA surface glycoproteins occur naturally during viral replication,
sometimes resulting in different antigenic properties (39, 40). Antigenic drift involves small
changes to HA and NA that commonly accumulate over time and may result in viruses that
are antigenically different and no longer as well recognised by antibodies that were
generated in response to infection by previous influenza strains or vaccination; over time,
this leads to reduced protection from previously acquired immunity. Antigenic drift occurs in
both influenza A and influenza B viruses (41-44) and has the potential to lead to epidemics.
Antigenic shift due to reassortment may also occur in influenza A virus and comprises a
major and abrupt change in the genes encoding HA and/or NA (45, 46). For example, a new
influenza A (H1N1) virus (S-OIV) emerged in 2009 with genes from viruses originating from
North American and Eurasian swine, humans and birds, causing a pandemic (47). If shifts
are sufficiently large, and involve subtypes which are novel in humans, they can result in a
new influenza A subtype for which the population has limited or no immunity, thus causing
pandemics (43, 44). It is also theoretically possible that a pandemic influenza virus might

emerge in the future by gradual adaptation of a novel non-human subtype to humans.

History of the development of influenza virus vaccines

Vaccination remains the most effective public health intervention for prevention of influenza
virus infection (48, 49) and its associated complications (50, 51). Influenza A virus (strain
H1N1) was first isolated in 1933 and, in 1935, the virus was subsequently grown in fertilised
chicken eggs (52, 53). The first influenza virus vaccine, developed in 1938 (Fig. 2), was an
inactivated preparation containing a single influenza type A strain, termed a monovalent
vaccine. The influenza B virus was subsequently discovered in 1940 (54) and, in 1942, an
inactivated bivalent vaccine containing influenza types A and B was developed (52). In 1977,
the re-emergence of influenza A strain HIN1 (55, 56) prompted the World Health
Organization (WHO) in 1978 to recommend a trivalent vaccine (against the HLN1 and H3N2
strains of influenza A, and a type B virus) to ensure effective protection (57). In the 1980s,

antigenic drift led to the circulation of two antigenically distinct lineages of influenza B virus



(58). The trivalent vaccine offered little to no protection against the circulating influenza B
virus in five of the 10 seasons between 2001 and 2011 (58-60). This necessitated a
guadrivalent inactivated influenza virus vaccine (QIIV), which was subsequently developed
and first approved in 2012, protecting against two influenza A (HIN1 and H3N2) and two
influenza B virus strains (B-Victoria and B-Yamagata lineages) (61). Changes in circulating
subtypes have continued and there have been no confirmed cases of influenza B-Yamagata
detected since March 2020 (62), and in 2023 the WHO recommended a return to trivalent
vaccines, omitting the B-Yamagata strain (63, 64). Given that vaccines are only effective
against circulating virus strains and B-Yamagata is no longer in circulation, removal of this
strain from the QIIV vaccine is unlikely to impact the effectiveness of the resulting trivalent
inactivated influenza virus vaccine (TIIV). This timeline highlights that the dynamic nature of

influenza and needs to be considered in the approach to vaccination (Fig. 2).

WHO recommendations on strain selection

The antigenic shift and drift of influenza viruses necessitates regular updates to the
composition of seasonal vaccines to remain effective. Each year, the WHO makes
recommendations on the viral composition of influenza virus vaccines for both the Northern
(October to February) and Southern hemisphere (September to January) influenza seasons.
These recommendations are made 6 months ahead of the respective seasons and are
based on surveillance data generated by the WHO Global Influenza Surveillance and
Response System (49, 64). Designated national influenza centres around the world, send
isolated viruses for genetic and antigenic characterisation to WHO collaborating centres,
including the Francis Crick WHO collaborating centre in the UK (65), and data from these
centres are used to inform the recommendations on the composition of the influenza virus

vaccine required for protection in the next season (64, 66, 67).

In the UK, national surveillance is conducted by the UK Health Security Agency (UKHSA),

which collates and interprets data providing information on both influenza activity and



estimates of all-cause mortality (9). Surveillance conducted during each influenza season
also permits estimates of vaccine effectiveness (68-70), which can inform local

recommendations (71).

National immunisation programmes

Most national influenza policies recommend vaccinating specific populations at increased
risk of influenza-related complications (15, 72, 73). Recommendations across National
Immunisation Technical Advisory Groups (NITAGS) continue to evolve as vaccine
technologies develop and vary somewhat between countries in terms of the ages and
populations to be vaccinated, as well as vaccine types and dosages (71, 74-76). Differences
in recommendations derive from the characteristics of available vaccines, clinical data, and

local surveillance data used, as well as affordability and cost-effectiveness criteria (77).

To ensure that NITAG policy recommendations are consistent and transparent, the WHO
recommends the use of a systematic, standardised decision-making process (78). The
guality of evidence should be assessed using methods such as Grading of
Recommendations Assessment, Development and Evaluation (GRADE) (79), although it is

not known whether all countries implement this approach.

In the UK, recommendations for population level vaccination are made by the Joint
Committee on Vaccination and Immunisation (JCVI) which reviews the criteria for a clinical
risk group requiring influenza virus vaccination (11, 76). Since 2000, the list of clinical risk
groups has been extended (Fig. 2) (11), as have the age groups of children who are eligible

for routine annual influenza virus vaccination (Fig. 2) (76, 80-84).

Vaccines for pandemic preparedness

The WHO has a framework in place to improve preparedness for pandemic influenza, which
leverages the capabilities of existing systems for seasonal influenza (85). Several countries
have advance purchase agreements for pandemic-specific influenza vaccines, including the

UK, USA and Australia (86-88). The mRNA platform will be a key part of the pandemic



vaccine response due its ability to facilitate the rapid incorporation of new antigens, as
demonstrated during the COVID-19 pandemic (89, 90). The influenza A virus subtype H5N1
is now enzootic in wild aquatic birds and is a severe, highly infectious influenza virus in
susceptible avian species (85, 91). The increased genetic exchange among influenza
viruses in wild aquatic birds, commercial and domestic poultry, pigs and humans, poses a
continuing threat to humanity (85). Public health concerns have recently been heightened by
the spillover of the novel highly pathogenic avian H5N1 influenza virus HA clade 2.3.4.4b
into dairy cattle, where it appears to be transmitting via the milk (92-95). There have been
cases of interspecies transmission to humans (93, 96-98) and the situation is being
continuously monitored by health authorities worldwide (99-102). Although there is current
interest in pandemic vaccines, particularly with respect to the influenza A H5N1 virus, this is

outside the scope of this review and has been assessed in a recent review article (103).

Influenza virus vaccine technologies

From the 1940s to the 2010s, inactivated influenza virus vaccine (11V) technology remained
largely unchanged and consisted of inactivated viruses grown in embryonated chicken eggs
(52). Influenza virus vaccines produced using egg-based technology have been available in
the UK since the 1960s. Egg-based technology remains the most commonly used influenza
virus vaccine production method worldwide, largely due to availability, manufacturing
capability and scalability, low costs, and historical use, with safety and tolerability data
collected over 50 years (104). However, technological advances in the past two decades
have enabled the development of alternative technologies for manufacturing influenza virus
vaccines, designed to overcome certain limitations of the standard egg-based vaccines. At
present, there are six different influenza virus vaccine types available in the UK, five of which
are manufactured using different technologies to that of the standard-dose egg-based IIVs
(adjuvanted QIIV, cell-based QIIV, high-dose QIIV, live-attenuated influenza virus vaccines
[LAIV] and recombinant QIIV) (105-111). Although these technologies have been previously

described to varying extents (104, 112-116), there is no recent published comprehensive and
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detailed summary of the technologies and characteristics, alongside clinical data. The
following sections represent the first comprehensive summary of advances in the influenza
virus vaccine landscape, describing vaccine technologies in use in the UK and more widely,

and reviewing associated clinical data.

METHODOLOGY

Literature searches

We conducted a literature search in the PubMed database and Cochrane Library covering a
~six-year period from 01/01/2018 to 15/07/2024, limited to English language articles. The
initial date of 2018 was chosen as this is when the enhanced influenza virus vaccines (i.e.
those other than standard-dose egg-based influenza virus vaccines) became available in the
UK and were recommended more consistently compared with standard-dose egg-based
vaccines in other countries. The full search strategy, including search terms (Table S1) and
the eligibility criteria for article selection (Table S2), is described in the supplemental
materials. Filters were applied to include only randomised controlled trials (RCTs),
systematic reviews, and meta-analyses. Articles were included if they described clinical
studies investigating the efficacy or effectiveness of influenza virus vaccines with reported
clinical outcomes such as (but not limited to) laboratory-confirmed influenza virus infection (a
documented positive influenza test by viral culture, fluorescent antibody assay, reverse
transcription-polymerase chain reaction, or a rapid influenza diagnostic test), influenza-like
illness (ILI), or influenza-related hospitalisation. There is no standard, international definition
of ILI; the majority of studies in this review defined ILI as clinical diagnosis based on
symptoms such as headache, high temperature, cough, and muscle pain. The WHO define
ILI as an acute respiratory infection with onset within the past 10 days, presenting with
cough and a measured temperature of 238°C (117), and the Centers for Disease Control

and Prevention (CDC) as fever 237.8°C and cough and/or sore throat (118).
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Although immunogenicity data are a main criterion for annual re-licensure, they are not
described here due to the lack of global standardisation for measuring protective immune
response using methods such as haemagglutination-inhibition assays (119), and
uncertainties related to correlation with clinical protection (120, 121). Some studies have
examined the impact of influenza virus vaccines on conditions more broadly associated with
influenza, e.g. cardiovascular disease (122-130), but these are not included as the focus of
the review was respiratory infection and disease. As the safety profiles of influenza virus
vaccines have been well established (49, 131), these data are not included in the results

tables but are instead discussed in the text.

Seasonal influenza virus vaccines were included in the review and grouped based on the

following technology:

e |IVs produced using egg-based technology (further sub-divided into standard dose,
adjuvanted and high-dose)

e LAIVs

e Recombinant influenza virus vaccines

e 1IVs produced using cell-based technology.

A summary of the studies selection strategy is reported in the flowchart in the supplemental

material (Fig. S1). PubMed database and Cochrane Library searches returned a total of 278
publications, and an additional four publications that met the inclusion criteria were identified
in a separate ‘manual search’ (Fig. S1). After applying the exclusion criteria, 41 articles were
selected for inclusion in this review (Table 2—7) (131-171). A narrative approach was taken to

data synthesis.

Summary of evidence

For each vaccine technology, a brief history of the development is given, followed by the key
characteristics, and a summary of the available clinical outcome data. Where available, data

for absolute and/or relative vaccine efficacy and effectiveness are summarised. Efficacy and
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effectiveness are distinct concepts related to the therapeutic performance of a vaccine (172).
Vaccine efficacy is measured under strictly controlled conditions, using RCTs; whereas
vaccine effectiveness explores the performance of a vaccine in a real-world setting,
generally using observational methods (173). Whilst observational studies have advantages,
there is an inherent risk of bias; to mitigate this, studies that use randomisation in real world

settings may be implemented.

OVERVIEW OF VACCINE TECHNOLOGIES

Manufacturing influenza virus vaccines: egg-based technology

Egg-based vaccine manufacturing is used to produce IIVs and LAIVS, by classic genetic
reassortment. This involves coinfection of the WHO candidate virus with either a selected
high-growth virus (capable of replicating at high titres in eggs and cells) for IV, or a master
donor attenuated virus for LAIV, into embryonated chicken eggs (174). Appropriate seed
viruses are then selected by amplification in the presence of antibodies against the HA and
NA of the high-growth virus or the master donor virus. The resulting viruses are used for
vaccine production (Fig. 3) (174). This egg-adapted vaccine strain virus is then mass

produced before undergoing purification and formulation (174).

The manufacturing of egg-based vaccine depends on the availability of embryonated
chicken eggs and the ability of influenza viruses to propagate in eggs, and it is both time and
biosecurity-intensive (Fig. 3) (174, 175). In particular, the manufacturing process requires a
prolonged process of planning and execution and can take several months (and usually a
minimum of 4—-6 months) (175, 176). Some influenza virus strains (especially avian strains
such as H5N1) negatively impact egg production (177), therefore the use of this technology
may be unsuitable for the production of large titres required in pandemics. Furthermore, egg-
based production can be affected by ‘egg-adaptation’ of the influenza virus, resulting in
changes to the antigenic structure of the HA protein (178-180). This egg-adaptation may
result in antigenic differences between the antigens in the vaccine and the WHO
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recommended strains. The phenomenon of antigenic mutations caused by egg adaptation is
particularly prominent in H3N2 virus; a study found that, on passage of the virus up to 15
times in eggs, mutations occurred in three amino acid sequences in HA, two of which were
located near the surface of the receptor binding site (179). Providing the WHO
recommended strains match the circulating strains, this will reduce vaccine effectiveness as
the immune response in humans may not be optimally focussed on the wild virus strain that
was recommended by the WHO (181-183). The JCVI noted the issue of egg-adaptation as a
‘real concern’ but highlighted that its impact will likely be limited to influenza seasons in
which H3N2 strains dominate (76). Egg-adaptation is more common in H3N2 viruses than in
H1N1 (184), perhaps because the former have had longer to adapt to the human airway,
becoming less like avian influenza viruses. When grown in eggs, human H3N2 viruses may
acquire mutations in the receptor-binding site of HA in order to facilitate their growth, which
can alter the antigenicity of HA (184). This, in turn, has been estimated to result in reductions
in influenza absolute vaccine effectiveness by up to 16% (185). Despite these potential
shortcomings, egg-based technology is well established, and has been used for decades to

successfully support the delivery of influenza immunisation programmes.

Although studies have demonstrated that individuals who are allergic to eggs can safely
receive egg-based vaccines (186, 187), these vaccines are not recommended in people with
certain egg allergies (18). Healthcare professionals outside of the UK should consult their
relevant local guidelines regarding the use of egg-based vaccines in egg-allergies individuals

(49).

Standard-dose inactivated influenza virus vaccines (SD-11Vs)

Technology overview

There are three types of [IV: whole virion, split-virion, and subunit vaccines (Fig. 3). Whole
vaccine inactivation is most commonly achieved through chemical modification; using
formaldehyde or B-propiolactone, or physical manipulation by ultraviolet (UV) or gamma
irradiation (188). Formaldehyde acts as a cross-linking agent; via this mechanism,

14



formaldehyde suppresses viral genome replication and initiates viral genome degradation,
thereby reducing viral infectiousness (188). B-propiolactone acts mainly as a nucleic acid
alkylating agent, inhibiting viral genome replication (188). UV radiation and gamma
irradiation primarily cause destruction of the viral genome, interfering with viral replication
and transcription in host cells. In split-virion vaccines, the viral envelope has been disrupted
using a surfactant (189). The split-virion vaccine can be further purified to remove other viral
components, such as the internal subviral core, to yield viral subunits containing HA and NA
antigens (a subunit vaccine) (115). The current standard-dose of TIIV and QIIV formulations
contain, in addition to the other viral components, a standardised 15 ug of HA per strain per

dose (49).

Clinical data: efficacy and effectiveness

IIVs have shown efficacy in all age groups, including children and adolescents 6 months—17
years of age, adults =65 years of age and pregnant individuals (Table 2) (133, 135-139, 141,
142, 145, 146, 164-166). As egg-based SD-I1Vs were the standard of care prior to
development of newer technologies, historical comparisons of vaccine efficacy and
effectiveness were predominantly made to placebo (e.g. saline), non-influenza virus vaccine
control, or no vaccination (Table 2). Newer technologies may be compared with egg-based

SD-IIVs.

A systematic review and meta-analysis that included 41 studies of children and adolescents
2-16 years of age showed that, compared with placebo or no vaccination, 11V treatment was
associated with a 64% reduction in risk of laboratory-confirmed influenza (95% CI: 52, 72;
N=1,628; high-certainty evidence), and reduced ILI by 28% (95% CI: 21, 35; N=19,044;
moderate-certainty evidence) (Table 2) (165). In a systematic review and meta-analysis of 25
studies in healthy adults 16—65 years of age comparing 11V against placebo or unvaccinated
control groups, the risk of laboratory-confirmed influenza was reduced by 59% (95% CI: 53,
64; N=71,221; moderate-certainty evidence) and risk of ILI was reduced by 16% (95% CI: 5,

25; N=11,924; low-certainty evidence) after 11V (Table 2) (164). Results from a Cochrane
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review in adults 265 years of age demonstrated that |1V reduced the risk of laboratory-
confirmed influenza over a single season by 58% compared with placebo (95% CI: 34, 73;
N=2,217; low-certainty evidence), and the risk of ILI (subjective report) by 41% compared
with those who were not vaccinated over a single influenza season (95% CI: 27, 53;
N=6,894; moderate-certainty evidence) (Table 2) (166). In a pooled estimate from three
RCTs, vaccine efficacy for QIIV, compared with control (placebo or a non-influenza
[meningococcal ACWY] vaccine), against laboratory-confirmed influenza in pregnant

individuals was 50% (95% CI: 32, 63) (Table 2) (142).

Clinical data: safety

Vaccination with IIV has some common adverse effects (AEs). Compared with placebo, 11V
was associated with an increased risk of fever in adults 218 years of age (164) and
increased risk of sore arm and swelling in adults =65 years of age (166). In a multinational
RCT in children 6—35 months of age, the safety profiles were similar for QIIV, TIIV, and
placebo, except for more frequent injection-site reactions with QIIV compared with placebo

(138).

Although egg-based SD-IIVs are progressively less used in the UK, in some countries they
are still utilised, particularly in younger cohorts, and are used in national immunisation
programmes (190, 191). Indeed, SD-IIVs are now only recommended in the UK for
individuals <65 years of age in the ‘at risk’ cohorts as a third-line option, in the event that the
first- or second-line options recommended by the JCVI are simultaneously unavailable for

vaccination (76).

High-dose inactivated influenza virus vaccines

Technology overview
Older adults (=65 years of age) are affected by waning humoral and cellular immunity that
occurs with aging, known as immunosenescence (192), which is thought to increase disease

susceptibility and severity, and reduce responses to vaccination (192, 193). High-dose IIVs
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are developed using the same egg-based technology as standard-dose egg-based vaccines,
but contain in addition to the other viral components a higher dose of HA per strain (60 ug
per strain rather than 15 ug). The higher doses of HA induce increased post-vaccination HA
specific antibody titres and provide increased protection from influenza, which makes them

particularly appropriate for use in older people (194-196).

Clinical data: efficacy and effectiveness

High-dose 11IVs have demonstrated improved vaccine efficacy compared with SD-IIVs in
terms of protection against laboratory-confirmed influenza or ILI (Table 3) (132, 150-152,
168, 169). In a meta-analysis of 21 studies that included data over 12 consecutive influenza
seasons and among 45 million individuals of 265 years, high-dose TIIV demonstrated
improved protection against laboratory-confirmed influenza or probable ILI compared with
standard-dose TIIV/QIIV (relative vaccine effectiveness of 24.1%; 95% CI: 10.0, 36.1) (Table
3) (150). Similar results were reported for efficacy against laboratory-confirmed influenza in
adults (including studies of adults 265 years of age and immunocompromised adults); high-
dose TIIV was associated with a 24% (95% CI: 10, 36) reduction in risk compared with SD-
TIIV (Table 3) (152). In a meta-analysis of five RCTs in adults 265 years of age, use of high-
dose THV/QIIV was associated with reduced risk of hospitalisation due to pneumonia or
influenza when compared with standard-dose TIIV/QIIV (pooled relative vaccine efficacy:

23.5%; 95% Cl: 12.3, 33.2) (Table 3) (170).

Clinical data: safety
In a systematic review that included 36 studies of adults (=18 years of age), high-dose IIVs
were associated with higher rates of local and systemic AEs compared with SD-11Vs,

including a higher frequency of headache, chills, and malaise (168).
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Adjuvanted inactivated influenza virus vaccines

Technology overview

Adjuvanted IIVs are developed using the same egg-based technology as standard- or high-
dose egg-based vaccines, but an adjuvant is added. Adjuvants are substances that enhance
the magnitude, breadth, and durability of the vaccine-induced immune response via various
signalling pathways, leading to enhanced chemokine and cytokine secretion and activation
of immune cells (197, 198). Common vaccine adjuvants include alum, oil-in water emulsions
(such as MF-59 and AS03), combinations of alum, emulsions, and/or liposomes, and toll-like
receptor ligands (197). As with high-dose 11Vs, the potential improved immunogenicity of
adjuvanted versus non-adjuvanted vaccines makes them suitable for older adults who have

waning humoral and cellular immunity (199).

Clinical data: efficacy and effectiveness

Results from a multicentre RCT in children 6 months to 5 years of age, over two influenza
seasons (2013-2015), showed a MF59-adjuvanted vaccine (aQllV) to be effective in
preventing laboratory-confirmed influenza compared with IV (TIIV or QIIV), in a 6-23
months subgroup (relative vaccine efficacy 31.37% [95% CI: 3.14, 51.38]), but not for the
overall study population (age 6 months to 5 years), with a relative vaccine efficacy of —0.67%
(95% CI: —19.81, 15.41) (Table 4) (153). This is perhaps because children younger than 2
years have immature immune systems that are known to respond relatively poorly to
standard influenza vaccines. Evidence from a systematic review and meta-analysis of 48
studies demonstrated that adjuvanted standard-dose egg-based influenza virus vaccines
were also effective at preventing laboratory-confirmed influenza among older adults (=65
years of age) compared with no vaccination (absolute vaccine effectiveness of 45%; 95% CI:
23, 61; from five non-randomised intervention studies across three influenza seasons), and
had similar relative vaccine effectiveness to their non-adjuvanted counterparts (Table 4)
(167). However, a systematic review of 11 analyses from nine real-world evidence studies of

adults 265 years of age, reported that adjuvanted trivalent vaccines were significantly more
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effective at reducing influenza-related outcomes than non-adjuvanted standard-dose
vaccines (relative vaccine effectiveness ranging from 7.5 to 25.6% for adjuvanted versus

non-adjuvanted TIIVs, and from 7.1 to 36.3% versus non-adjuvanted QIIVS) (Table 4) (156).

Clinical data: safety

Adjuvanted vaccines have been associated with more frequent local and systemic AEs than
non-adjuvanted standard-dose egg-based vaccines (153, 154, 167), including a higher
frequency of arm pain/tenderness, fever, myalgia, and chills (153, 154, 167). This has also
been observed with non-influenza virus vaccines (200, 201) and is likely related to the

mechanism of action of the adjuvant (202).

Live-attenuated influenza virus vaccines

Technology overview

LAIVs use ‘cold-adapted’ viruses, produced by chemical mutagenesis or serial passage of
influenza viruses in eggs at gradually lower temperatures to introduce mutations (203, 204).
Because of the segmental viral genome of the influenza virus, it is possible to mix genetic
material from different strains. In the case of LAIV, internal gene segments (PB1, PB2, PA,
NP, M NS) from the attenuated cold-adapted strain are then combined with HA and NA of the
target virus strains to create a reassortant vaccine virus (Fig. 3), which replicates efficiently
at low temperatures (in the upper respiratory tract), but not at elevated temperatures (in the
lower respiratory tract) (49, 104, 203). The specific combinations of HA and NA genes can
affect the immunogenicity of the recombinant vaccine virus (205). The interplay between the
vaccine virus and the innate immune response may shape the downstream adaptive

response (206).

The design of LAIVs, to replicate at the lower temperatures in the upper respiratory tract,
requires intranasal delivery. This method of delivery allows for ease of administration,
making them more acceptable to children compared with an injectable vaccine (11), as they

are likely to be associated with little or no pain. Compared with other routes of
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administration, LAIV provides a broader response by involving both systemic and mucosal
immune responses, additionally LAIV may also induce a strong influenza virus specific
cellular response (206-210). The mucosal immune response induced by LAIV vaccination is
mediated through mucosal Immunoglobulin A (IgA) directed at the HA surface glycoprotein
(207, 211), with the HA-specific IgA response being greater than that induced by 11V (212).
Inducing airway mucosal immune responses may be more protective than systemic

immunity alone by preventing virus infection at the point of entry (213).

A major justification for the use of LAIVs in school children, particularly those in primary
education, is that they can also provide herd immunity protecting adults and elderly adults in
the surrounding population. This was observed after introduction of LAIVs in primary school
age children, demonstrating the impact of LAIVs in reducing transmission (214). As LAIVs
stimulate a weaker immune response in adults compared with children, possibly due to pre-
existing immunity that prevents viral establishment (209, 215, 216), they are not currently
recommended nor licensed for use in those >18 years age in the UK (76). However, LAIVsS
are licensed in the USA in adults <49 years of age (217). Due to the potential risk of infection
from using live viruses for immunisation, LAIVs are not recommended for individuals who are

immunocompromised (18).

Clinical data: efficacy and effectiveness

LAIVs have demonstrated efficacy in children from 6 months of age (Table 5) (131, 140, 141,
146-149, 165). Compared with placebo or no vaccination, LAIVs were shown to reduce ILI
by 31% (95% CI: 20, 40) based on data from a systematic review of RCTs including 124,606
children 3-16 years of age (Table 5) (165). Another systematic review and meta-analysis of
children <18 years of age who were vaccinated with trivalent LAIVs showed a 48% (95% CI:

18, 68) reduced risk of laboratory-confirmed influenza compared with TIIV (Table 5) (131).

Clinical data: safety
The results of two RCTs demonstrated that quadrivalent LAIV was well tolerated in children,
with a similar AE profile to placebo (148), whilst in a Phase 3 RCT in children 3-17 years of
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age, trivalent LAIV was associated with a significantly increased incidence of fever
compared with placebo (147). In a systematic review and meta-analysis of children <18
years of age, the rate for systemic AEs was not significantly higher with quadrivalent or
trivalent LAIVs compared with placebo and trivalent LAIV showed a significantly higher rate

for at least one local AE compared with placebo (131).

Alternative platforms to egg-based technologies

Cell-based and recombinant influenza virus vaccines are alternative manufacturing platforms
to traditional egg-based vaccines, which have been developed to address issues associated
with egg-based vaccines described in the previous section (such as egg adaptation) that

reduce vaccine effectiveness (Fig. 3) (108, 218-220). The key characteristics and the clinical

data underpinning these technologies are described below.

Cell-based influenza virus vaccines

Technology overview

The manufacturing process for cell-based inactivated influenza virus vaccine uses
mammalian cells, e.g. Madin-Darby canine kidney cells (MDCK), to propagate viruses (Fig.
3). Using this method, candidate vaccine viruses cultivated by the CDC are used to inoculate
cultured mammalian cells and allowed to replicate (221, 222). The virus-containing fluid is

then collected and the virus antigen is purified (221, 222).

There are several advantages to cell-based technologies over egg-based influenza
technologies. For example, cell-based manufacturing uses a more flexible viral production in
a cell culture bioreactor; and it has a more scalable technology, a reduced manufacturing
time, and a process that unaffected by potential egg shortages (104). Furthermore, cell-
based technologies largely overcome the issues of egg-adaptation seen with egg-based
influenza manufacturing (223-225). However, cell-based mutations in the HA and NA protein
occur less frequently than mutations in egg-based technologies (179, 226, 227). The

majority of these mutations occur in either antigenic sites or the receptor-binding site, and, if
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they occur, will therefore likely have a similar effect to that of egg-adapted mutations(179,

226, 227).

Clinical data: efficacy and effectiveness

Influenza virus vaccines produced using cell-based technologies have demonstrated efficacy
for laboratory-based influenza both in children and adolescents (2—<18 years of age) and
adults (=18 years of age) (Table 6) (160, 161). In an RCT, a QIllV reduced the occurrence of
laboratory-confirmed influenza by 54.6% (95% CI: 45.7, 62.1) in children and adolescents
(2—<18 years of age) compared with a non-influenza (meningococcal ACWY) vaccine (160).
A systematic review and meta-analysis of 19 studies reported, in data from two RCTs, that
the overall absolute vaccine efficacy of trivalent, cell-based vaccines for preventing
laboratory-confirmed influenza was 70% (95% CI: 61, 77) in adults (=18 years of age) versus
no vaccination (Table 6) (161). Furthermore, in a systematic review and meta-analysis of
real-world evidence studies among individuals 24 years of age, the absolute vaccine
effectiveness of a QIIV for preventing laboratory-confirmed influenza across five pooled
studies was estimated to be 37.6% (95% CI: 19.4, 55.9) vs 26.1% (95% ClI: 6.7, 45.4) for

egg-based TIIV/QIIV (162).

Clinical data: safety

A systematic review found that cell-based influenza virus vaccines were associated with
significantly higher rates of bruising than traditional egg-based IIV; rates of other local
reactions (pain, redness, swelling, and induration) were similar between the two vaccine

groups (161).

Recombinant influenza virus vaccines

Technology overview
In contrast to egg-based or cell-based influenza virus vaccines, the antigens contained in a
recombinant influenza virus vaccine are expressed directly from a genetic sequence using

recombinant protein technology (222, 228, 229); neither chicken eggs nor a candidate
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vaccine virus are required for production (Fig. 3). For the recombinant influenza virus
vaccine, an established manufacturing platform for the production of viral vaccines and gene
therapy vectors, the baculovirus expression vector system is used (228-230). First, the
influenza HA gene is cloned into the baculovirus genome using homologous recombination

(230). The resulting recombinant baculovirus is then transfected into insect cells (228-230).

Once a host insect cell line is transfected by the recombinant baculovirus, it instructs the
cells to rapidly produce the HA antigen (Fig. 3). As the HA antigen is expressed directly from
a genetic sequence, rather than derived from the replication of influenza viruses in eggs or
mammalian cells, potential egg-adaptive and cell-adaptive mutations from the manufacturing
process of recombinant vaccines are avoided (229). Therefore, the expressed HA antigen is
genetically identical to a chosen influenza strain, e.g., the seasonal strain recommended by
the WHO. The recombinant vaccine currently available contains only HA at a concentration
three times higher than standard-dose egg-based vaccines (45 ug) which, together with
restriction of mutations, may have contributed to a higher vaccine efficacy than a standard-

dose-egg-based QIIV, as demonstrated in clinical trials (228).

Production of influenza virus vaccines using recombinant technologies takes less time (2—3
months) than with egg-based vaccines (175), and recombinant vaccines do not require
additional inactivation steps. Furthermore, unlike egg-based vaccines, recombinant vaccines
contain no trace egg proteins, antibiotics, or preservatives (229), making them suitable for all
people with egg allergy, including those who have experienced severe egg anaphylactic

reactions.

Clinical data: efficacy and effectiveness

One study identified in a systematic review (158) found that a recombinant TIIV
demonstrated a 45% (95% CI: 19, 63) relative vaccine efficacy, compared with placebo,
against laboratory-confirmed influenza in adults 18-55 years of age (Table 7) (231). Another
RCT from this systematic review found that a recombinant QIIV had a higher relative vaccine
efficacy in preventing laboratory-confirmed influenza compared with a standard-dose egg-
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based QIIV among adults 250 years of age (relative vaccine efficacy of 30%; 95% CI: 10, 47,
one RCT, moderate-certainty evidence Table 7) (158). In a systematic review and network
meta-analysis of 41 RCTs, recombinant TIIVs/QIIVs had a vaccine efficacy of 70.6% (95%
Cl: 22.9, 90.2; nine RCTs) against laboratory-confirmed influenza when compared with
placebo (Table 7) (169). Findings from a cluster-randomised observational study
demonstrated a relative vaccine effectiveness against laboratory-confirmed influenza of
15.3% (95% CI: 5.9, 23.8) for recombinant QIIV versus a standard-dose egg-based vaccine

in adults 50—64 years of age (Table 7) (171).

Clinical data: safety

A systematic review and meta-analysis demonstrated similar rates of fatigue, headache,
myalgia, or nausea between a recombinant influenza virus vaccine and traditional QIIV (158)
but a significantly higher rate of chills with the recombinant vaccine (158). There were
significantly fewer local reactions, including pain, erythema, swelling and tenderness, with

the recombinant vaccine compared with 11V (158).

FUTURE VACCINE TECHNOLOGIES

Introduction

The main focus of this review article is on the clinical data supporting the development of the
six influenza vaccine types currently available in the UK. However, in this final section we
present a brief overview of future influenza virus vaccine technologies. The development of
the previously described ‘new’ technologies for influenza virus vaccines, as well as an
increased antigen dose, has provided valuable improvements for influenza prevention
compared with standard-dose egg-based technologies. Not all vaccine technologies have
been investigated for clinical outcomes (i.e. influenza virus infection or hospitalisations) in
head-to-head randomised efficacy trials in which the comparator is the standard of care,
standard-dose egg-based vaccines. However, for those vaccine technologies that have been

investigated in this way, vaccine efficacy for the prevention of laboratory-confirmed influenza,
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relative to standard-dose egg-based vaccines, still remains moderate overall, estimated at
up to 30% (95% CI: 10, 47) in adults (Tables 3-7) (131, 152, 157, 158, 163). The overall
effectiveness of influenza virus vaccines remains largely below that of vaccines for other
vaccine-preventable infectious diseases. For example, vaccine effectiveness is >90% for
vaccines that prevent measles infection (232), and is up to 100% for the prevention of
meningococcal disease with meningococcal C conjugate vaccines (233). In comparison,
vaccine effectiveness against all laboratory-confirmed influenza presenting within primary
care in the UK is 49% (95% ClI: 42, 56) in adults 18-64 years of age and 46% (95% CI: 29,
59) in adults 265 years of age (234). Vaccine effectiveness against influenza-related
hospitalisation in England could also be improved, with vaccine effectiveness of 54% (95%
Cl: 42, 63), 31% (95% Cl: 21, 40) and 30% (95% Cl: 22, 37) in individuals 2-17 years, 18-64
years and 265 years of age respectively (vaccine effectiveness data in Scotland are

grouped with other respiratory conditions, and are not available for Wales and Northern
Ireland) (234). Similar influenza virus vaccine effectiveness has been reported in the US,
with 33% (95% CI: 16, 47) to 49% (95% CI: 47, 51) against laboratory-confirmed influenza in
outpatient settings and 41% (95% CI: 34, 47) to 44% (95% CI: 32, 54) against influenza-
associated hospitalisation (235). Therefore, there remains an unmet need for the
development of additional technologies that may overcome some of the shortcomings
associated with current technologies and improve influenza virus vaccine efficacy. Here we
present a short overview of various technologies that are currently being developed or are in

pre-licensure clinical trials.

Nucleic acid technologies, viral vectors, and virus-like particles

Technology overview: nucleic acid technologies

Vaccines based on nucleic acids (DNA and RNA) have been in development since the
1990s, and offer considerable potential to overcome limitations of established vaccine
platforms (236-238). DNA vaccines differ from the previously discussed recombinant
vaccines in that they deliver DNA, rather than recombinant antigen (229, 236, 238). In 2021,
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a DNA plasmid-based SARS-CoV-2 vaccine (ZyCoV-D) was approved in India for active
immunisation to prevent COVID-19 in individuals 212 years of age (239-241), suggesting
that the technology may be appropriate for other respiratory infectious diseases, such as

influenza.

The mRNA contained within mRNA-based vaccines encodes the viral protein that elicits the
immune response (Fig. 3) (242). Processes involved in the production of mMRNA vaccines
vary, but typical steps are as follows: the antigen of interest is sequenced, and the optimised
consensus sequence is used to create a linearised plasmid DNA template, which is then
amplified and purified (242-244). This DNA template is then used as the basis for synthesis
of the target mMRNA for the antigen by RNA polymerase enzymes (245). Finally, purified
MRNAs are encapsulated into a lipid nanoparticle (LNP) for delivery (246). A critical step for
MRNA vaccine immunogenicity and efficacy is the incorporation of modified nucleotides

(247), which can reduce the cell intrinsic response to the mRNA itself (248).

MRNA-based vaccines offer several benefits over traditional technologies, including a short
manufacturing time that would accelerate production and availability of a vaccine, particularly
during a pandemic (249-252). Furthermore, shorter manufacturing times could mean that
MRNA vaccines are developed closer to the start of an influenza season to reduce time-lag
and the potential for antigenic mismatch before or in-season, though there would also be

considerations regarding rapid licensure and distribution.

Clinical data

A number of DNA influenza virus vaccines are being investigated in Phase 1 clinical trials
(253-259). The results from a Phase 1 study of pandemic H1 DNA vaccine showed it was
well tolerated in healthy adults (24—70 years of age) (254). The H1 DNA vaccine
demonstrated modest immunogenicity when administered as a single agent (prime
vaccination) (254). DNA vaccines may also offer a potential strategy to improve

immunogenicity of current influenza virus vaccines, as evidenced in studies with influenza
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DNA vaccine prime followed by inactivated vaccine boost (258, 259). In a Phase 1 clinical
trial, H5 DNA priming followed by administration of a monovalent inactivated vaccine boost
212 weeks later, resulted in 4-fold increases in haemagglutination inhibition (HAI) titre in

91% of recipients (258).

Several MRNA influenza virus vaccine candidates are currently being investigated (260-
272). Final results of a Phase 1/2 clinical trial in healthy adults 218 years of age
demonstrated that a quadrivalent mMRNA vaccine against seasonal influenza, mRNA-1010, at
25-100 pg has a higher immunogenicity for influenza A virus and similar immunogenicity for
influenza B compared with SD-11V through 6 months after vaccination (273). Lower doses of
MRNA-1010 elicited generally higher (12.5 and 25 ug) or comparable (6.25 ug) titres to SD-
[IV for influenza A virus strains, but lower for influenza B strains (273). Solicited adverse
reactions were more common with mMRNA-1010 than with a licensed, seasonal QIIV and
were typically grade 1 or grade 2 in severity (273). Phase 3 trials to assess the safety and

efficacy of mMRNA-1010 are ongoing (260, 261).

Two Phase 1, randomised, placebo-controlled, double-blind, clinical trials were conducted to
evaluate the safety and immunogenicity of the first MRNA vaccines against avian HLONS8
and H7N9 influenza viruses, which have the potential to cause a pandemic (274). The
vaccines were well tolerated and elicited robust humoral immune responses in healthy adults
(274). Future studies investigating different valences will need to assess the tolerability of

larger doses of RNA vaccines to determine whether multiple antigens can be delivered.

Technology overview: viral vectors

Viral vector vaccines contain genomes that have been modified with genes encoding target

antigens from specific pathogens (275). The advantages of viral vectors include the ability to
elicit both antibody and cellular responses, the latter of which is important for the elimination
of pathogen-infected cells, and the ability to induce long-lasting immune responses (276).

Viral vector vaccines offer similar advantages to mRNA vaccines, including the ability to
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replace the HA cassette rapidly. However, there are potential challenges of anti-vector

immunity, especially with repeat immunisations (275, 277).

Clinical data

Results from a Phase 1 study to evaluate the safety and immunogenicity of an adenovirus
vector encoding the HA gene of HIN1 influenza, showed a 4-fold increase in HAI titres in
83% of the participants after booster vaccination (278). Phase 1-3 clinical studies have been
conducted for other infectious diseases (279), including Phase 3 trials for chimpanzee
adenovirus ChAdOX1 as a delivery vector for the coronavirus S gene, achieving 70% (96%
Cl: 55, 81) efficacy against virologically-confirmed COVID-19 (280). Further clinical trials of
viral vector influenza vaccines in humans should provide insight into whether this approach

will be more effective than conventional vaccines.

Technology overview: recombinant virus-like particles (VLPS)

Another new technology currently in development for influenza virus vaccines is recombinant
VLPs prepared in mammalian, insect, and plant expression systems (281-283). The
biological and morphological characteristics of recombinant VLPs are similar to the wild-type
influenza virus (284), thus avoiding the drawbacks associated with antigenic drift. VLPs
consist of a viral capsid without the core viral RNA required for replication (284). Therefore,
although VLPs contain immunological epitopes and are highly immunogenic, they are not

infectious (284).

Clinical data

Multimeric-001 is a vaccine formulated with conserved linear epitopes derived from influenza
type A and type B proteins that play pivotal roles in viral infection (285). Results from a
Phase 2, randomised, double-blind placebo-controlled trial in healthy adults showed that
Multimeric-001 induced a polyfunctional CD4+ T-cell response that persisted through 6
months of follow-up (286). In two Phase 3 RCTs, a plant-derived VLP influenza virus vaccine
demonstrated substantial protection against ILI compared with placebo in adults (283). In the
study with adults 18—64 years of age, the primary endpoint of 70% absolute vaccine efficacy
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to prevent laboratory-confirmed influenza with respiratory iliness for the VLP vaccine versus
placebo was not met (35.1% [95% CI: 17.9, 48.7]). The study in adults 265 years of age met
its primary non-inferiority endpoint of prevention of ILI; relative vaccine efficacy of the VLP

vaccine versus an inactivated vaccine control was 8.8% (95% Cl: -16.7, 28.7) (283).

Bi- and tri-pathogen immunisation strategies

Combination vaccines reduce the number of injections required to protect against multiple
diseases and may increase adherence to immunisation schedules (287). Combination
vaccines, for example DTaP (diphtheria, tetanus toxoid, and acellular pertussis) and MMR
(measles, mumps, and rubella) have long been available (287). More recently, following two
Phase 1/2 RCTs conducted to investigate a combination of both influenza and COVID-19
vaccine components in an mRNA vaccine (288, 289), a Phase 3 trial successfully
demonstrated greater efficacy at eliciting an immune response against both viruses in adults
250 years of age compared with vaccines that targeted only one (290, 291). Future
developments may also include combination vaccines that offer protection from influenza,
COVID-19, and respiratory syncytial virus (RSV) in a single formulation (287). Decisions
regarding the strains of SARS-CoV-2 and influenza virus to be included in combination

winter vaccines should be coordinated to optimise production.

Potential for a universal influenza virus vaccine

The risk of antigenic reassortment leading to a reduction in vaccine effectiveness
necessitates regular surveillance of circulating influenza viruses and reformulation of
vaccines each influenza season (292-295). Predicting the circulating influenza strain for
future influenza seasons is difficult and antigenic mismatch sometimes occurs. Furthermore,
there is always a risk of emergence of a pandemic influenza virus, either as a result of new,
pathogenic reassortants or zoonotic events in which highly pathogenic avian influenza

viruses, such as H5N1, H7N9 and HION2, are transmitted to humans (with additional genetic
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changes facilitating human-to-human transmission) (296). Following such events, current

vaccines would likely offer little or no protection in an ensuing pandemic.

As such, there is a need for the development of ‘next-generation’ universal influenza virus
vaccines, to protect against a wide variety of influenza subtypes — including both drifted or
heterologous seasonal influenza virus strains, and new emerging strains that could
potentially lead to a pandemic. Several candidate universal influenza virus vaccines are in
clinical development (297). One approach is to introduce new antigenic targets related to
highly conserved and stable epitopes of the influenza virus HA stem domain, as opposed to
the highly variable HA head (296, 298). As well as broadening protection, targeting
conserved epitopes for vaccination may also increase the duration of protection. Other
universal vaccine technologies include chimeric HA vaccines, which have shown the

potential to provide broad protection against influenza viruses in a Phase 1 RCT (299).

A design of vaccines that are not pathogen specific was recently proposed using a concept
termed ‘integrated organ immunity’ (300). This involves innate and adaptive immune
systems and non-haematopoietic cells interacting in tissue to elicit lasting, antigen-agnostic

immunity (300).

CONCLUDING REMARKS

With an estimated 15,000 excess deaths reported in England alone in the 2022/23 UK
influenza season, mostly among adults 265 years of age (9), effective influenza prevention
may impact the disease burden and associated healthcare costs (301). Seasonal influenza
virus vaccination is effective at preventing illness and reducing severity of the disease (48,
49, 302), and influenza virus vaccines have been widely used for over 60 years for the
immunisation of high-risk population subgroups (11). Most vaccines are manufactured using
egg-based inactivated influenza technology but over the past decade, advances in vaccine
technologies have seen the licensure of different technologies, resulting in improved

immunogenicity and efficacy in certain patient subgroups. This is the result of many decades
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of research and development, which is still ongoing, testing new and existing formulations
and platforms to develop the most effective influenza virus vaccinations. This is of particular
importance in certain population groups at risk due to underlying conditions, especially those
with immunosenescence where the protective responses induced by seasonal influenza
virus vaccination are blunted (192, 193). In the UK, non-adjuvanted egg-based vaccines
have now been relegated to reserve use, only if there are shortages of primary

recommended products (76).

Each influenza virus vaccine technology has its own advantages and constraints regarding
manufacturing time and cost, influenza strain selection and matching to the seasonal
circulating strains, cell- and egg-adaptation leading to mutations of grown viruses, and
immunogenicity and reactogenicity profiles. We have summarised key aspects relating to
each influenza virus vaccine technology and reviewed the associated clinical data. Despite
the advances in technology, there remains an unmet need for influenza virus vaccines that
are effective against multiple circulating strains; such vaccines would maximise population

protection.

There are some limitations to our review. The inclusion criteria for the literature search
focused specifically on RCTs, systematic reviews, and meta-analyses, and so the data
reviewed and summarised are biased towards these forms of evidence. Therefore, real-
world studies were not included in the literature search. Importantly, however, several
systematic reviews and meta-analyses in our search included real-world studies (132, 140,
150, 155-157, 162, 163, 185). In addition, there may have been studies published after the
search period for our literature search that have therefore been omitted from this review.
However, to our knowledge this is the first comprehensive review of the new influenza virus
vaccine technologies, situated against the clinical efficacy and effectiveness data, relating to
influenza virus infections and hospitalisations. As such, the review should provide a useful
resource for those interested in understanding more about advances in influenza virus

vaccination.
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The introduction of new influenza virus vaccine technologies highlights the need for robust
and consistent methods to assess the performance of influenza virus vaccinations and
immunisation programmes, particularly in relation to vaccine effectiveness, which may have
a substantial impact on public health and on healthcare systems. It is important that national
guidelines follow evidence-based criteria for the assessment of influenza virus vaccine
effectiveness, taking into account the robustness of study designs. Recent developments in
standardised immunological assays and identification of new immune markers as correlates
of clinical protection need to be translated into vaccine development, so that pandemic
vaccines are not reliant strain matching, a process that may take approximately 6 months,

and can result in substantial morbidity and mortality before vaccine availability (120, 121).

The recent step change in influenza virus vaccination technologies that are recommended in
the UK was motivated by the substantial public health burden of influenza at both a patient
and a population level. Ongoing assessment of comparative (product-specific) and
programmatic vaccine effectiveness, using robust methodologies, will facilitate
recommendation of the most effective vaccines. Continued investment in research and
development and demonstration of clinical efficacy of new and existing vaccine technologies

will further enhance the existing UK vaccination programme.
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FIG 1 Influenza samples analysed by GISRS for the WHO European Region from the 2016/2017 to the 2022/2023 influenza seasons (7).

Data are from FluNet (https://www.who.int/tools/flunet) (7). Changes have been made to the style and format of the figure in accordance with the license

(https://creativecommons.org/compatiblelicenses).

GISRS, Global Influenza Surveillance and Response System; WHO, World Health Organization.
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FIG 2 History of the development of influenza virus vaccines and development of the UK

immunisation programme.

Eligibility was introduced for healthy adults in 2020 in the UK, but was removed in 2023 in England,

Wales and Northern Ireland (they remain in Scotland at time of publication).

*Patients in clinical risk groups include those with chronic respiratory disease, chronic heart and
vascular disease, chronic kidney disease, chronic liver disease, chronic neurological disease,
diabetes/adrenal insufficiency, immunosuppression, asplenia/splenic dysfunction and morbid obesity.
Patients who are carers or are household contacts of an immunocompromised individual may also be

eligible. (Reference: Green book [Table 19.4]).

BMI, body mass index; EU, European Union; US, United States; WHO, World Health Organization.
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FIG 3 Overview of egg-based, cell-based, recombinant, and mRNA vaccine technologies.

DNA, deoxyribonucleic acid; HA, haemagglutinin; mRNA, messenger ribonucleic acid; WHO,

World Health Organization.
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TABLE 1 Risk groups who should be offered influenza vaccination according to UK government guidelines (11).

Clinical risk category

Examples (this list is not exhaustive and decisions should be based on clinical judgement).

Chronic respiratory disease

Asthma that requires continuous or repeated use of inhaled or systemic steroids or with previous
exacerbations requiring hospital admission.

Chronic obstructive pulmonary disease (COPD) including chronic bronchitis and emphysema;
bronchiectasis, cystic fibrosis, interstitial lung fibrosis, pneumoconiosis and bronchopulmonary dysplasia
(BPD).

Children who have previously been admitted to hospital for lower respiratory tract disease.

Chronic heart disease and

vascular disease

Congenital heart disease, hypertension with cardiac complications, chronic heart failure, individuals
requiring regular medication and/or follow-up for ischaemic heart disease. This includes individuals with

atrial fibrillation, peripheral vascular disease or a history of venous thromboembolism.

Chronic kidney disease

Chronic kidney disease at stage 3, 4 or 5, chronic kidney failure, nephrotic syndrome, kidney

transplantation.

Chronic liver disease

Cirrhosis, biliary atresia, chronic hepatitis.

Chronic neurological disease

Stroke, transient ischaemic attack (TIA). Conditions in which respiratory function may be compromised
due to neurological or neuromuscular disease (for example polio syndrome sufferers). Clinicians should

offer immunisation, based on individual assessment, to clinically vulnerable individuals including those
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with cerebral palsy, severe or profound, and multiple learning disabilities (PMLD), Down’s syndrome,
multiple sclerosis, dementia, Parkinson’s disease, motor neurone disease and related or similar
conditions; or hereditary and degenerative disease of the nervous system or muscles; or severe

neurological disability.

Diabetes and adrenal

insufficiency

Type 1 diabetes, type 2 diabetes requiring insulin or oral hypoglycaemic drugs, diet-controlled diabetes.

Addison’s disease, secondary or tertiary adrenal insufficiency requiring steroid replacement.

Immunosuppression

Immunosuppression due to disease or treatment, including patients undergoing chemotherapy leading to
immunosuppression, patients undergoing radical radiotherapy, solid organ transplant recipients, bone
marrow or stem cell transplant recipients, people living with HIV (at all stages), multiple myeloma or
genetic disorders affecting the immune system (for example IRAK-4, NEMO, complement disorder, SCID).
Individuals who are receiving immunosuppressive or immunomodulating biological therapy including, but
not limited to, anti-TNF alemtuzumab, ofatumumab, rituximab, patients receiving protein kinase inhibitors
or PARP inhibitors and individuals treated with steroid sparing agents such as cyclophosphamide and
mycophenolate mofetil.

Individuals treated with or likely to be treated with systemic steroids for more than a month at a dose
equivalent to prednisolone at 20 mg or more per day (any age), or for children under 20 kg, a dose of 1

mg or more per kg per day.
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Anyone with a history of haematological malignancy, including leukaemia, lymphoma and myeloma, and
those with systemic lupus erythematosus and rheumatoid arthritis, and psoriasis who may require long
term immunosuppressive treatments.

Some immunocompromised patients may have a suboptimal immunological response to the vaccine.

Asplenia or dysfunction of the

spleen

This also includes conditions such as homozygous sickle cell disease, hereditary spherocytosis,

thalassaemia major and coeliac syndrome that may lead to splenic dysfunction.

Morbid obesity (class Il

obesity)*

Adults with a Body Mass Index 240 kg/m?.

* Many of this patient group will already be eligible due to complications of obesity that place them in another risk category.

Adapted from Green book chapter 19 (11) under the version 3.0 of the Open Government Licence.
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TABLE 2 Overview of studies included in the review — standard-dose inactivated influenza virus vaccines.

137yt

multinational RCT in five
independent cohorts across
influenza seasons from 2011 to

2014

virus vaccine

months of age
(N=12,018

vaccinated)

PCR)-confirmed

influenza

illness was 41% less
likely (crude odds ratio
0.59 [95% CI: 0.44,

0.77]) and fever >39°C

Citation/reference Evidence type / study design Vaccine Control/ Study population Primary study Key efficacy result(s)* | Key effectiveness
investigated comparator outcome result(s)*
Infants <6 months of age
Jarvis et al. 2020 Meta-analysis of two RCTs from a 1\ Placebo Infants <6 months Laboratory (PCR)- Pooled VE of 34% N/A
(133) systematic review of RCTs and (saline) of age following confirmed influenza | (95% CI: 15, 50)
observational studies published up maternal influenza
to Oct 2019 virus vaccination
(N=5742)
Children and infants 26 months of age
Claeys et al. 2018 Multinational RCT in five Qlv Non-influenza Children 6-35 Laboratory (RT- VE was 64% (97.5% N/A
(139)7 independent cohorts across virus vaccine months of age PCR)-confirmed Cl: 53, 73) against
influenza seasons from 2011 to (N=12,018 influenza moderate-to-severe
2014 vaccinated) influenza and 50%
(97.5% CI: 42, 57)
against all influenza
(regardless of disease
severity)
Danier et al. 2019 Exploratory analysis of a Qv Non-influenza Children 6-35 Laboratory (RT- Moderate-to-severe N/A
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was 46% less frequent
(crude odds ratio 0.54

(95% CI: 0.39, 0.75)

Dbaibo et al. 2020 Multinational RCT in five Qv Non-influenza Children 6-35 Laboratory (RT- VE across the five N/A
(135)" independent cohorts across virus vaccine months of age PCR)-confirmed seasonal cohorts was
influenza seasons from 2011 to (N=12,018 influenza 57.8% (95% CI: 40.2,
2014 vaccinated) 70.8), 52.9% (95% ClI:
31.2, 68.3), 73.4%
(95% Cl: 61.7, 82.0),
30.3% (95% CI: 5.5,
48.8), and 41.4% (95%
Cl: 29.0, 51.7)
Pepin et al. 2019 Multinational RCT during the Qv Placebo or Children 6-35 Laboratory- VE was 51.0% (97% N/A
(138) 2014/2015 and 2015/2016 TIIV (split months of age confirmed influenza | Cl: 37.4, 61.9) against
influenza seasons virion) (N=5805) caused by any influenza caused by A
influenza A or B or B type, and 68.4%
types or by vaccine- | (47.1, 81.9) against
similar strains influenza caused by
vaccine-like strains
Esposito et al. 2022 RCT during three influenza Qv Non-influenza Influenza-naive Symptomatic aVE against any N/A

(136)

seasons (2017-2019)

virus vaccine

children 6-35
months of age
(N=2000

vaccinated)

influenza virus

infection

circulating influenza
strain was 54% (95%

Cl: 37, 66)

66




July 2024

Sullender et al. 2019 Cluster RCT TIIV IPV Children 6 months Laboratory- Total VE was 25.6% N/A
(145) to 10 years of age confirmed influenza | (95% CI: 6.8, 40.6) in
(N=4345) year 1 to 74.2% (95%
Cl: 57.8, 84.3) in year
3.
Mallory et al. 2020 Systematic review and meta- 1\ Not specified Children 6 months Laboratory (PCR-, Consolidated VE of N/A
(141) analysis of five studies during the to 17 years of age culture- or antigen)- | 47% (95% CI: 29, 61)
2016/2017 influenza season confirmed) against all influenza
influenza strains
Wall et al. 2021 (134) Analysis of 10 observational VE TIIV or QIIV No vaccination | Children 6 months Hospitalisations, N/A VE for all age groups were
studies from a systematic review of to 8 years of age acute respiratory higher for fully vaccinated
VE or immunogenicity studies infection, medically groups (range between
published up to Apr 2019 attended influenza 7% [95% CI: =80, 50] and
iliness, influenza- 86% [95% ClI: 29, 97])
like illness, or than partially vaccinated
pneumonia and groups (range between
influenza -41% [95% CI: =150, 20]
and 73% [95% CI: 3, 93])
Diallo et al. 2019 (144) | Cluster RCT in Senegal during the TIIV IPV Children 6 months Laboratory (rRT- N/A Total and indirect VE

2008/2009 influenza season

to 10 years of age

(N=11,670 eligible)

PCR)-confirmed
symptomatic

influenza

against seasonal A/H3N2
influenza were 43.6%
(95% ClI: 18.6, 60.9) and
15.4% (95% Cl: -22.0,

41.3), respectively
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Niang et al. 2021 Consecutive cluster RCTs in 2010 TIIV IPV Children 6 months Laboratory- N/A Total VE against all strains
(143) and 2011 to 10 years of age confirmed influenza was 52.8% (95% ClI: 32.3,
67.0) for year 2
Boddington et al. 2021 | Meta-analysis of 37 studies (test- TIIV or QIIV Not specified Children 6 months Laboratory- N/A VE for all IlVs was 67.1%
(140) negative design) published up to to 17 years of age confirmed (95% CI: 53.5, 76.8);
Jun 2020 influenza- 47.5% (95% CI: 39.5,
associated 54.4) for TIIV and 50.2%
hospitalisation (95% CI: 10.7, 72.3) for
QllvV
Jefferson et al. 2018 Cochrane review of 41 RCTs 1\ Placebo or no Children 2-16 years | Laboratory- VE for laboratory- N/A
(165) published up to Jul 2017 vaccination of age confirmed (viral confirmed influenza
isolation, was 64% (95% ClI: 52,
serological 72)
supporting
evidence, or both) VE for ILI was 28%
influenza and ILI (95% CI: 21, 35)
Adults
Demicheli et al. 2018 Cochrane review of 25 RCTs or 1\ Placebo or no Adults 16 to 65 Laboratory- VE for laboratory- N/A

(164)

quasi-RCTs published up to Jul

2017

vaccination

years of age

confirmed influenza
(viral isolation,
serological
supporting
evidence, or both)

and ILI

confirmed influenza
was 59% (95% ClI: 53,

64)

VE for ILI was 16%

(95% ClI: 5, 25)
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Adults 265 years of age
Demicheli et al. 2018 Cochrane review of eight RCTs TIIV Placebo or no Adults 265 years of | Laboratory- Over a single season: N/A
(166) published up to Jul 2017 vaccination age (N=>5000) confirmed (viral VE for laboratory-
isolation, confirmed influenza
serological was 58% (95% ClI: 34,
supporting 73)
evidence, or both)
influenza and ILI VE for ILI was 41%
(95% ClI: 27, 53)
Pregnant individuals
Omer et al. 2020 (142) | Pooled analysis of three RCTs Placebo or Pregnant Laboratory (PCR)- Pooled VE was 50% N/A
meningococcal | individuals confirmed influenza | (95% CI: 32, 63), from
conjugate (N=10,002) enrolment to follow-up
vaccine at 6 months
postpartum

*Primary outcome data only reported.

"Publications of the same clinical trial (NCT01439360) reporting different outcomes.

aVE, absolute vaccine effectiveness; Cl, confidence interval; 11V, inactivated influenza virus vaccine; ILI, influenza-like illness; IPV, inactivated poliovirus vaccine; PCR, polymerase chain reaction;

QIIV, quadrivalent inactivated influenza virus vaccine; RCT, randomised controlled trial; RT-PCR, reverse transcription polymerase chain reaction; SD-IIV, standard-dose inactivated influenza virus

vaccines; TIIV, trivalent inactivated influenza virus vaccine; VE, vaccine efficacy/effectiveness.
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TABLE 3 Overview of studies included in the review — high-dose inactivated influenza virus vaccines.

Citation / reference Evidence type / study Vaccine Control/ Study population | Primary study Key efficacy result(s)* Key effectiveness result(s)*
design investigated comparator outcome
Adults 218 years of age
Comber et al. 2022 (168) Systematic review and HD-TIIV SD-TIIV or no Adults 265 years Laboratory-confirmed VE was 24% (95% CI: 10, VE was 89% (95% ClI: 47,
meta-analysis of studies vaccination of age influenza 37) vs SD-TIIV (n=1 RCT) 100) against influenza B and
including adults 218 years 22% (95% Cl: -82, 66) for
(n=36) influenza A (H3N2) vs no
vaccination (n=1 test-negative
case control study)
Veroniki et al. 2024 (169) Systematic review and HD-TIIV Placebo or Adults 260 years Laboratory-confirmed VE was 72.9% (95% CI: N/A
meta-analysis of studies SD-TIIV of age influenza/probable ILI 43.5, 86.6) for laboratory-
including adults >60 years confirmed influenza vs
(n=41) placebo (pairwise and
network meta-analysis)
VE was 1.8% (95% CI: —
1.8, 7.2) for ILI vs SD-TIIV
(pairwise meta-analysis)
Adults 265 years of age
Lee et al. 2018 (151) Systematic review and HD-TIIV SD-TIIV Adults 265 years Laboratory-confirmed rVE was 19.5% (95% ClI: N/A

meta-analysis of studies

of age

influenza/probable ILI

8.6, 29.0)
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including adults 265 years

(n=7)

Lee et al. 2021 (132) Updated systematic HD-TIIV SD-TIIV/ISD- Adults 265 years Laboratory-confirmed Pooled rVE was 15.9% Pooled rVE was 15.9% (95%
review and meta-analysis Qlv of age influenza/probable ILI (95% CI: 4.1, 26.3) (n=2 Cl: 4.1, 26.3) (n=2 RCTs and
of RCTs and observational RCTs and n=3 n=3 observational studies)
studies (n=15) (2009—- observational studies)

2019)

Lee et al. 2023 (150) Updated systematic HD-TIIV SD-TIIV Adults 265 years Laboratory-confirmed Pooled rVE was 24.1% Pooled rVE was 11.1% (95%
review and meta-analysis of age (N=>45 influenza/probable ILI (95% CI: 10.0, 36.1; CIl: -0.1, 21.0; p=0.051) (n=8
of RCTs and observational million) p=0.002) (n=3 RCTs) observational studies)
studies (n=21) (2009—

2022)

Skaarup et al. 2024 (170) Meta-analysis of RCTs HD-TIIV/HD- SD-TIIV/ISD- Adults 265 years Pneumonia and Pooled rVE was 23.5% N/A
including adults 265 years | QIIV Qlv of age influenza (95% CI: 12.3, 33.2) for
(n=5) (N=105,685) hospitalisation pneumonia and influenza

hospitalisations vs SD-
THV/SD-QIIV

Older adults and immune-suppressed adults

Weissman et al. 2021 Systematic review and HD-TIIV SD-TIIV Older adults (n=10 | Laboratory-confirmed Pooled VE was 24% (95% | N/A

(152)

meta-analysis of RCTs

(n=16; 47,857 patients)

trials) and
immune-
suppressed
patients (n=3

trials)

influenza

Cl: 10, 36)"
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*Primary outcome data only reported.
TOutcome stemmed mainly from one trial in older adults.
Cl, confidence interval; HD, high dose; ILI, influenza-like illness; RCT, randomised controlled trial; RR, relative risk; rVE, relative vaccine efficacy/effectiveness; SD, standard dose; TIIV, trivalent

inactivated influenza virus vaccine; VE, vaccine efficacy/effectiveness.

72



July 2024

TABLE 4 Overview of studies included in the review — adjuvanted inactivated influenza virus vaccines.

(n=48)

Citation / reference Evidence type / Vaccine investigated Control/ Study population Primary study Key efficacy result(s)* Key effectiveness
study design comparator outcome result(s)*
Children 26 months of age
Vesikari et al. 2018 (153) Multicentre RCT in MF59-adjuvanted IV (TIV or Children 6 months Laboratory (RT- rVE was —0.67% (95% CI: | N/A
children over 2 vaccine (aQllV) QlV) to 5 years of age PCR)-confirmed —19.81, 15.41) in the
influenza seasons, (N=10,612) influenza overall population
from 2013-2015
rVE was 31.37% (95% CI:
3.14, 51.38) in the 6-23
months subgroup
Loeb et al. 2021 (154) Cluster RCT in MF59-adjuvanted SD 1V (QIIV) Children 6 months Laboratory- rVE against influenza A N/A
children from January vaccine (aTIlV) to 6 years of age confirmed (RT-PCR) | was 80% (HR: 0.20; 95%
2017 to June 2019 and family cluster influenza Cl: 0.06, 0.66) in the
members who did vaccinated children
not receive the
study vaccine
(N=1670)
Adults 218 years of age
Murchu et al. 2023 (167) Systematic review and | MF59-adjuvanted IV (TIV or Adults 218 years of | Laboratory- N/A VE was 45% (95% ClI: 23,
meta-analysis of RCTs | vaccine (aTllV/aQIIV) QIllV),orno | age confirmed influenza 61) for aTIIV vs no
and RWE studies vaccination vaccination in adults 265

years of age
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VE was 51% (95% CI: 54,
84) for aTIIV vs no
vaccination in adults 218

years of age

In terms rVE, there was no
significant difference with
aTIlV vs TIIV or QIIV in

adults or older adults in

five studies
Adults 265 years of age
Coleman et al. 2021 (157) Systematic review and | MF59-adjuvanted No Adults 265 years of | Outpatient and aVE was 40.7% (95% ClI: N/A
meta-analysis of RWE | vaccine (aTllV/aQIIV) vaccination, | age hospital visits due to | 21.9, 54.9) and 58.5%
from non- or SD IIV laboratory-confirmed | (95% CI: 40.7, 70.9) for
interventional studies (THV/QIIV), influenza aTIlV (vs no vaccination)
and cluster RCTs or HD-TIIV in preventing outpatient

conducted during the
2006/07-2019/20
influenza seasons

(n=16).

visits and hospital visits,

respectively

rVE was 13.9% (95% CI:
4.2, 23.5) (vs TIIV), 13.7%
(95% CI: 3.1, 24.2) (vs

QIIV), and 2.8% (95% ClI:
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-2.9, 8.5) (vs HD-TIIV) for
aTIlV in preventing
influenza-related medical

encounters.

Domnich and de Waure. 2022

(155)

Systematic review of
experimental and
observational studies
(n=10) up to April

2022

MF59-adjuvanted SD

vaccine (aTIlV)

HD-TIIV

Adults 265 years of

age

Laboratory-

confirmed influenza

N/A

aTllV more effective
(p<0.05) vs HD-TIIV
against all influenza-
related medical
encounters
(hospitalisations,
emergency room, and
outpatient visits) for
influenza (9.7%; 95% ClI:

5.0, 14.2)

aTllV was less effective
(p<0.05) vs HD-TIIV
against hospitalisations for
any respiratory condition
(and hospital encounters
for coronary artery events
(-1.2%; 95% Cl: —2.2, —

0.2)
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Gartner et al. 2022 (156)

Systematic review of
RWE over the
2006/07-2008/09 and
2011/12-2019/20
influenza seasons
(n=11 analyses from 9

studies)

MF59-adjuvanted SD

vaccine (aTIlV)

TIIV, QIIV
and/or HD-

TIIV

Adults 265 years of

age

Influenza-related

outcomes

N/A

rVE ranged from 7.5% to
25.6% for aTIIV vs TIIV
and 7.1% to 36.3% for

aTlV vs QIIV)

rVE was 7.7% [95% CI:
2.3, 12.8] for aTIIV vs HD-
TIIV in the 2017/18
season and 6.9% [95% CI:
3.1, 10.6] in the 2018/19

season

*Primary outcome data only reported.

aQllV, adjuvanted quadrivalent inactivated influenza virus vaccine; aTllV, adjuvanted trivalent inactivated influenza virus vaccine; aVE, absolute vaccine effectiveness; Cl, confidence interval; HD,

high dose; HR, hazard ratio; IV, inactivated influenza virus vaccine; QIIV, quadrivalent inactivated influenza virus vaccine; RCT, randomised controlled trial; RT-PCR, reverse transcription

polymerase chain reaction; rVE, relative vaccine efficacy/effectiveness; RWE, real-world evidence; SD, standard dose; TIIV, trivalent inactivated influenza virus vaccine; VE, vaccine

efficacy/effectiveness.
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TABLE 5 Overview of studies included in the review — live-attenuated influenza virus vaccines.

Citation / reference Evidence type/ Vaccine Control/ Study population | Primary study Key efficacy result(s)* Key
study design investigated comparator outcome effectiveness
result(s)*
Children and infants 26 months of age
Morimoto et al. 2018 (149) | Systematic review and | LAIV Subjects who were Children 6 months | Medically-attended RR (multiple vs single) for children N/A
meta-analysis of eight vaccinated for one to 11 years of age influenza according to | with antigenic match: 0.61 (95% ClI:
RCTs conducted season and not for antigenic matching 0.24, 1.57).
during 10 influenza the previous season and to whether the
seasons (single vaccine subject received the RR (multiple vs single) for children
group) vaccine for two with antigenic mismatch: 2.03 (95%
consecutive seasons Cl: 1.20, 3.41)
(multiple vaccine
group)
Boddington et al. 2021 Systematic review and | LAIV Not specified Children 6 months | Laboratory-confirmed N/A VE of 44.3%
(140) meta-analysis of 37 to 17 years of age | influenza-associated (95% CI: 30.1,
test-negative studies hospitalisation 55.7)
published up to Jun
2020
Children >2 years of age
Mallory et al. 2018 (148) Two RCTs in Japan LAIV Study 1: Children 2—6 years | Laboratory (PCR)- Study 2: VE for vaccine-matched N/A
during the 2014-2015 (quadrivalent) uncontrolled single of age in study 1 confirmed influenza strains was 100% (95% CI: -1875.3,

influenza season

arm

(N=100) and 7-18

100); VE for all influenza strains,
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Study 2: Placebo

years of age in

study 2 (N=1301)

caused by vaccine-

matched strains

regardless of match to the vaccine,

was 27.5% (95% CI: 7.4, 43.0)

Jefferson et al. 2018 (165) | Cochrane review of 41 | LAIV Placebo or no Children 3-16 Laboratory-confirmed VE for laboratory-confirmed influenza
RCTs published up to vaccination years of age influenza (viral of LAIV vs control was 78% (RR: 0.22
Jul 2017 isolation, serological [95% CI: 0.11, 0.41]) in children 3 to
supporting evidence, 16 years of age
or both) and ILI
VE for ILI of LAIV vs control was 31%
(95% CI: 20, 40) in children 3 to 16
years of age
Mallory et al. 2020 (140, Systematic review and | LAIV Not specified Children 2-17 Laboratory (PCR-, Consolidated VE of 69% (95% ClI: 46, N/A
141) meta-analysis of five (quadrivalent) years of age culture- or antigen)- 82) against all influenza strains
studies during the confirmed influenza
2016-2017 season
Wang et al. 2020 (147) RCT in China during LAIV Placebo Chinese children Laboratory-confirmed VE of 62.5% (95% CI: 27.6, 80.6) N/A
the 2016-2017 3-17 years of age | (RT-PCR) influenza against all influenza strains, and
influenza season (N=1999) 63.3% (95% ClI: 27.5, 81.5) against
H3N2
Krishnan et al. 2021 (146) RCT in rural India over | LAIV TIIV, placebo, or IPV | Children 2-10 Laboratory (rRT-PCR)- | Inyear 1, VE was 40.0% (95% CI: Not reported

2 years (2015-2017)

years of age

(N=3041)

confirmed influenza

25.2, 51.9) for LAIV vs placebo; rVE of
LAIV vs TIV was -46.2% (95% CI:

-88.9, -13.1)
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In year 2, VE was 51.9% (95% CI:
42.0, 60.1) for LAIV vs placebo; rVE of

LAIV vs TIV was 4.2% (95% CI: -19.9,

23.5)
Children <18 years of age, adults and elderly adults 261 years of age
Minozzi et al. 2022 (131) Systematic review and | LAIV (trivalent/ | SD-TIIV, HD-TIIV, Children <18 Laboratory-confirmed In children: N/A
meta-analysis of 220 quadrivalent) aTllV, aQllv, TIvr, years of age influenza rVE for trivalent LAIV vs SD-TIIV was

RCTs published up to

Dec 2020

QIVr) or placebo (no
vaccination, or non-
influenza virus

vaccine)

(N=100,677);
adults 18-60
years of age) and
elderly adults 261
years of age

(N=329,127)

48% (95% Crl: 18, 68)

In adults and elderly adults:

rVE for trivalent LAIV vs placebo was
44% (95% Cl: 26, 59)

rVE for trivalent LAIV vs SD-TIIV was

-41% (95% Cl: -29, —4)

*Primary outcome data only reported.

AE, adverse event; aQlV, adjuvanted quadrivalent influenza virus vaccine; aVE, absolute vaccine effectiveness; Cl, confidence interval; HD, high dose; LAIV, live attenuated influenza virus vaccine;

IPV, inactivated polio vaccine; QIVr, recombinant quadrivalent influenza virus vaccine; RCT, randomised controlled trial; RR, relative risk; rRT-PCR, real-time reverse transcription polymerase chain

reaction; RT-PCR, reverse transcription polymerase chain reaction; rVE, relative vaccine efficacy/effectiveness; SAE, serious adverse event; SD, standard dose; TIV, trivalent influenza virus vaccine;

TIVr, recombinant trivalent influenza virus vaccine; VE, vaccine efficacy/effectiveness.
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TABLE 6 Overview of studies included in the review — cell-based inactivated influenza virus vaccines (l1Vcs).

influenza seasons from

2017-2020

Citation / reference Evidence type / study Vaccine Control/ Study Primary study Key efficacy result(s)* Key effectiveness result(s)*
design investigated | comparator population outcome
Individuals =26 months of age
Coleman et al. 2023 Systematic review and QllvVe No Individuals 26 | Laboratory-confirmed | N/A Pooled aVE was 37.6% (95% ClI: 19.4,
(162) meta-analysis of RWE vaccination, months of influenza 55.9) for QIIVc vs 26.1% (95% CI: 6.7,
studies (n=18) over 3 TIIVe or QlIVe | age 45.4) for TIIVe/QlIVe (n=5 studies)

The overall rVE was 8.4% (95% CI: 6.5,
10.2) for QlIVc vs TlIVe/QllVe (across

all studies)

In individuals 4—-64 years of age, pooled
rVE was 16.2% (95% ClI: 7.6, 24.8) for
2017-2018, 6.1% (95% CI: 4.9, 7.3) for
2018-2019, and 10.1% (95% CI: 6.3,

14.0) for 2019-2020

In adults 265 years of age pooled rVE
was 9.9% (95% ClI: 6.9, 12.9) for 2017—
2018, and —0.8 (95% ClI: —3.5, 1.8) for

2018-2019

Children and adolescents 2—17 years of age
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no vaccination

or IV

Nolan et al. 2021 Multicentre RCT across 3 Qllve Meningococcal | Children and Laboratory (RT-PCR VE for QlIVc of 54.6% N/A
(160) influenza seasons from ACWY vaccine | adolescents and viral culture)- (95% CI: 45.7, 62.1)
2017-2019 2-<18 years confirmed influenza
of age
(N=4514)
Adults 218 years of age
Puig-Barbera et al. Systematic review and IIVce 1IVe Adults 218 Laboratory-confirmed | N/A Adjusted rVE for lIVcc vs 11Ve of 11%
2022 (163) meta-analysis of studies years of age influenza (95% CI: 8, 14) in 2017-2018 influenza
(n=12) season and 3% (95% CI: -2, 7) in
2018-2019 influenza season
Jordan et al. 2023 Systematic review of RCTs TIIVe/QlIVe Efficacy: Adults 218 Laboratory-confirmed | VE of 70.1% (95% CI: In adults 218 years, OR of 0.21 (95%
(161) and non-randomised Placebo years of age influenza 60.7, 77.3) vs placebo in Cl: -0.12, -0.44) and 0.52 (95% CI:
intervention studies (n=19) adults 1849 years of age | 0.36, 0.64) vs no vaccination (n=2
Effectiveness: (n=2 RCTs) RCTs)

In adults 265 years, OR of 0.10 (95%
Cl: -0.44, 0.44) vs no vaccination and

OR of 0.06 (95% CI: -0.46, 0.39) vs IIV

*Primary outcome data only reported.

AE, adverse event; aVE, absolute vaccine effectiveness; Cl, confidence interval; 11V, inactivated influenza virus vaccine; lIVcc, seed cell cultured inactivated influenza virus vaccine; 11\Ve, egg-based

inactivated influenza virus vaccine; OR, odds ratio; QlIVc, cell-based quadrivalent inactivated influenza virus vaccine; QllVe, egg-based quadrivalent inactivated influenza virus vaccine; RCT,

randomised controlled trial; RT-PCR, reverse transcription polymerase chain reaction; rVE, relative vaccine efficacy/effectiveness; RWE, real-world evidence; SD, standard dose; TlIVc, cell-based

trivalent inactivated influenza virus vaccine; TlIVe, egg-based trivalent inactivated influenza virus vaccine; VE, vaccine efficacy/effectiveness
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TABLE 7 Overview of studies included in the review — recombinant influenza virus vaccines.

up to February 2020

season (n=1 RCT)

rVE of 44.6% (95% CI: 18.8, 62.6)
for TIVr vs placebo in adults 18-55
years of age during the 2007—2008

influenza season (n=1 RCT)

Citation / reference Evidence type / study Vaccine Control/ Study population Primary study Key efficacy result(s)* Key
design investigated comparator outcome effectiveness
result(s)*
Adults 218 years of age
Evans et al. 2022 (159) Phase 2b RCT during Apr MVA-NP+M1 Placebo (saline) Non-immuno- Laboratory- Incidence of laboratory-confirmed N/A
and Oct 2019 suppressed adults confirmed influenza was 3.25% (95% CI: 2.31,
218 years of age influenza 4.44) for MVA-NP+M1 vs 2.14%
who received the (95% CI: 1.39, 3.14) for placebo
2019 QIIV within 28 (Fisher's exact, p=0.14)
days of
randomisation
(N=2152)
Murchu et al. 2023 (158) | Systematic review of RCTs | TIVI/QIVr TIIV, QIIV or Adults 218 years of | Laboratory- rVE of 30% (95% CI: 10, 47) for N/A
and non-randomised placebo age confirmed QIVr vs QIIV in adults 250 years of
intervention studies (n=10) influenza age during the 2014-2015 influenza
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(n=41)

Hsiao et al. 2023 (171) Cluster-randomised Qlvr SD-QIIV Adults 18-64 years Laboratory- N/A rVE of 15.3%
observational study of age confirmed (95% CI: 5.9,
including adults 18-64 (N=1,630,328) influenza 23.8; p = 0.002)
years of age versus SD-QIIV
in participants
aged 50-64
years of age
(n=675,252)
Veroniki et al. 2024 Systematic review and TIVIQIVr Placebo Adults 260 years of Laboratory- VE of 70.6% (95% ClI: 22.9, 90.2) N/A
(169) meta-analysis of studies (Combined) age confirmed versus placebo (pairwise and
including adults 260 years influenza network meta-analysis, n=9 RCTs)

*Primary outcome data only reported.

Cl, confidence interval; 11V, inactivated influenza virus vaccine; ILI, influenza-like illness; MVA-NP+M1, modified vaccinia Ankara expressing virus nucleoprotein and matrix protein 1; QIIV,

quadrivalent inactivated influenza virus vaccine; QIVr, recombinant quadrivalent influenza virus vaccine; RCT, randomised controlled trial; RR, relative risk; rVE, relative vaccine

efficacy/effectiveness; SAE, serious adverse event; SD, standard dose; TIIV, trivalent inactivated influenza virus vaccine; TIVr, recombinant trivalent influenza virus vaccine.
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Methodology

We conducted a literature search in the PubMed database and Cochrane Library using the
search terms and filters displayed in Table S1. Searches were limited to articles published
during a ~six-year period from 01 January 2018 to 15 July 2024, in English language only.
The initial date of 2018 was chosen as this is when the enhanced influenza virus vaccines
(i.e. those other than standard-dose egg-based influenza virus vaccines) became available
in the UK and were recommended more consistently compared with standard-dose egg-
based vaccines in other countries. To promote inclusion of high-quality studies filters were
applied to include only randomised controlled trials, systematic reviews and meta-analyses.
The search returned a total of 261 publications (PubMed) and 17 reviews (Cochrane
Library), and an additional four publications that met the inclusion criteria were identified in a
separate ‘manual search’ (Fig. S1). The results of the searches were screened and any
duplicates removed; titles/abstracts or, if required, full text, were examined to determine
suitability for inclusion based on prespecified inclusion/exclusion criteria (Table S2). Articles
were excluded if they were pre-clinical, non-clinical, or animal studies, pooled, post hoc, or
secondary analyses, included data on immunogenicity and/or safety only, were
descriptive/narrative reviews, reported data for vaccines not included in the criteria (or as an
intervention as co-administered with another vaccine), reported outcomes other than related
to efficacy/effectiveness, were cost-effectiveness studies, or trial registration records, or

when the vaccine type was not specified/could not be identified.



TABLE S1 Search strategy

August 2024

Search engine

Search terms

Filters

Library

OR effectiveness)

PubMed (influenza vaccine[Title/Abstract]) Publication date 01 January 2018
AND ((inactivated[Title/Abstract]) to 15 July 2024
OR (egg-based[Title/Abstract]) OR | English language only
(cell-based[Title/Abstract]) OR RCT, systematic review, meta-
(high dose[Title/Abstract]) OR analysis
(adjuvant[Title/Abstract]) OR (live-
attenuated[Title/Abstract]) OR
(LAIV[Title/Abstract]) OR
(recombinant[Title/Abstract]) OR
(MRNA[Title/Abstract)))

Cochrane (influenza vaccine) AND (efficacy | Publication date 01/01/2018—

15/07/2024
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TABLE S2 Eligibility criteria for selection of articles

Eligibility Criteria
Inclusion Studies reporting on vaccine efficacy/effectiveness
Exclusion Pre-clinical studies

Animal studies

Non-clinical studies

Immunogenicity/safety data only

Incorrect vaccine (or intervention as co-administration with another
vaccine)

Cost-effectiveness studies

Vaccine type not specified

Outcomes other than efficacy/effectiveness
Pooled analysis

Post hoc/secondary analysis

Feasibility studies

Trial registration

Reviews

Other — not specific to influenza vaccination




FIG S1 Articles selection flowchart
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