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Abstract. Working in homotopy type theory, we introduce the notion of
n-exactness for a short sequence F → E → B of pointed types, and show that
any fiber sequence F ↪→ E � B of arbitrary types induces a short sequence

‖F‖n−1 ‖E‖n−1 ‖B‖n−1

that is n-exact at ‖E‖n−1. We explain how the indexing makes sense when
interpreted in terms of n-groups, and we compare our definition to the existing
definitions of an exact sequence of n-groups for n = 1, 2. As the main appli-
cation, we obtain the long n-exact sequence of homotopy n-groups of a fiber
sequence.
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1. Introduction

Homotopy type theory (Univalent Foundations Program, 2013) is not only a
foundational system (univalent foundations); it also allows us to reason synthetically
about ∞-groupoids (synthetic homotopy theory). By viewing higher groups in terms
of certain pointed ∞-groupoids as laid out by Buchholtz, van Doorn, and Rijke,
2018, it also allows us to do synthetic higher group theory.

From this point of view, a 1-group G is (represented by) a pointed connected
1-type BG (its classifying type). Loosely speaking, these are types that only have
an interesting fundamental group, and no non-trivial higher homotopy groups. Of
course, it is not quite as simple if there are non-contractible ∞-connected types
around, as can happen if Whitehead’s principle fails. Recall that homotopy type
theory has models in (∞, 1)-toposes (Shulman, 2019, Thm. 11.2),1 and there are

Date: January 16, 2023.
1More precisely, the quoted theorem includes the interpretation of many higher inductive types,

including the truncations we use here, but not yet the closure of univalent universes under these.
1
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plenty such where Whitehead’s principle fails.2 The underlying type of a 1-group
is therefore a set equipped with the usual structure of a group, so a group in the
traditional sense of the word is a 1-group.

Likewise, an n-group G is represented by a connected n-type BG. The principal
example of an n-group is the fundamental n-group of a pointed type X, represented
by the n-truncation of the connected component at the base point.

Many n-groups G have further structure because they come with further de-
loopings of BG. The higher homotopy n-groups, π(n)

k (X), of a pointed type X
are examples of such n-groups with additional symmetries. These capture the
structure of X in dimensions k to n + k − 1, inclusive, just like the usual higher
homotopy 1-groups, πk(X), capture the structure of X at dimension k. So whereas
the usual homotopy groups discard any interactions between different dimensions,
the homotopy n-groups for n > 1 retain some of that information, while still being
more algebraically tractable than X itself.

Our main result in this paper is Theorem 5.5, where we show that any fiber
sequence F ↪→ E � B induces a long exact sequence of homotopy n-groups. The
basic observation that enables this result is Proposition 5.4, in which we establish
that the n-truncation operation – although it is not left exact – preserves k-cartesian
squares for any k < n. A square

C B

A X

is called k-cartesian if the gap map C → A×X B is k-connected. In particular, any
pullback square is (n− 1)-cartesian, so the n-truncation of a pullback square is an
(n− 1)-cartesian square.

We work in homotopy type theory with a predicative hierarchy of univalent
universes closed under n-truncations. Although we recall the basic definitions, we
refer to (Univalent Foundations Program, 2013, Sec. 7) for some results about
n-types and the n-truncation modality, and we also assume some familiarity with
the basic theory of k-symmetric n-groups as developed in Buchholtz, van Doorn,
and Rijke, 2018.3

1.1. Outline. We start by establishing some basic definitions and notation in
Section 2. In Section 3 we define the notion of ∞-exactness and show that any fiber
sequence induces a long ∞-exact sequence of homotopy ∞-groups. In Section 4
we turn to n-exactness of k-symmetric n-groups and show that it is equivalent
to n-exactness of the map on underlying (n − 1)-types. Our main results are in
Section 5, and in Section 6 we point to some related work in the classical setting.

2An (∞, 1)-topos satisfying Whitehead’s principle is also called hypercomplete. Examples of non-
hypercomplete (∞, 1)-toposes (in a classical metatheory) include the (∞, 1)-topos of parametrized
spectra (an object is hypercomplete if and only if the spectrum part is trivial) and the (∞, 1)-topos
of continuous Zp-equivariant spaces, where we view the group Zp of p-adic integers as a profinite
group (Lurie, 2009, Warning 7.2.2.31). The latter example is even boolean, hence satisfies the law
of excluded middle internally.

3The terminology is a bit in flux: In loc.cit. the term was “k-tuply groupal (n− 1)-types, which
is more in line with the classical notion of group-like Ek-algebra in (n− 1)-types, where Ek is the
little k-cubes ∞-operad. Another proposed term is “(k − 1)-commutative n-group”.
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2. Basic definitions and notation

Just as in (Univalent Foundations Program, 2013), we write x = y for the type
of identifications of x and y, provided that both x and y have a common type X.
Sometimes we call identifications paths. We write

apf : (x = y)→ (f(x) = f(y))

for the action of a function f on paths. Path concatenation is written in diagrammatic
order, i.e., we write p � q for the concatenation of p : x = y and q : y = z. The fiber
of a map f : A→ B at b : B is defined to be the type

fibf (b) :≡
∑

(x:A)
f(x) = b.

If B is a pointed type with base point y0, we define the kernel of f as the fiber of
f at y0, ker(f) :≡ fibf (y0).

Definition 2.1. A map f : X → Y is said to be an n-truncation if Y is n-
truncated, and for any family P of n-truncated types over Y , the precomposition
map

– ◦ f :
(∏

(y:Y )
P (y)

)
→
(∏

(x:X)
P (f(x))

)
is an equivalence. We assume that every type X has an n-truncation

η : X → ‖X‖n.

Definition 2.2. Consider a pointed type B with base point x0 and a family
E : B → U equipped with a base point y0 : E(x0) in the fiber over x0. The type
of pointed sections

∏∗
(x:B)E(x) is the type of pairs (f, p) consisting of a section

f :
∏

(x:B)E(x) and an identification p : f(x0) = y0.
Given two pointed sections (f, p), (g, q) :

∏∗
(x:B)E(x), we define the type of

pointed homotopies as

f ∼∗ g :≡
∏∗

(x:B)
f(x) = g(x),

where we equip the family of identifications given by x 7→ (f(x) = g(x)) with the
base point

p � q−1 : f(x0) = g(x0)

in the fiber over x0.

In the case of a non-dependent type family, we recover the notions of pointed
maps and pointed homotopies between these.

Definition 2.3. A k-symmetric n-group G is a pointed (k − 1)-connected
(n + k − 1)-type BkG. Its underlying type is the k-fold loop space ΩkBkG. A
homomorphism f : G→ H of k-symmetric n-groups is represented by a pointed
map Bkf : BkG→∗ BkH.

We call BkG the classifying type of G.

Definition 2.4. The m-connected cover X〈m〉 of a pointed type X is the kernel
of η : X → ‖X‖m, equivalently,

X〈m〉 :≡
∑

(x:X)
‖x0 = x‖m−1.

Recall that η : X → ‖X‖m is an m-connected map, so that X〈m〉 is indeed an
m-connected type.
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Definition 2.5. The k’th homotopy n-group of a pointed type X is represented
by the (n+ k − 1)-truncation of the (k − 1)-connected cover of X at the base point,
i.e., it is defined via the type

Bkπ
(n)
k (X) :≡ ‖X〈k − 1〉‖n+k−1.

The underlying type of π(n)
k (X) is equivalent to ‖ΩkX‖n−1.

Thus we see that Bkπ(n)
k (X) fits in the fiber sequence

Bkπ
(n)
k (X) ‖X‖n+k−1 ‖X‖k−1,

Note also that in the case k = 0 we just recover the (n− 1)-truncation of X. The
observation that Bkπ(n)

k (X) is the kernel of ‖X‖n+k−1 → ‖X‖k−1 is a generalization
of the well-known fiber sequence

K(πk(X), k) ‖X‖k ‖X‖k−1

in which the fiber is the k’th Eilenberg-Mac Lane space of the k’th homotopy group
of X (Licata and Finster, 2014).

We can also set n ≡ ∞ in these definitions:

Definition 2.6. A k-symmetric ∞-group G is a pointed (k − 1)-connected type
BkG. Its underlying type is the k-fold loop space ΩkBkG. The k’th homotopy
∞-group of a pointed type X is represented by (k − 1)-connected cover of X at
the base point

Bkπ
(∞)
k (X) :≡ X〈k − 1〉,

so the underlying type is equivalent to ΩkX.

3. The long ∞-exact sequence of a fiber sequence

Definition 3.1. A short sequence (or complex) consists of pointed types B,
E, and F with base points x0 : B, z0 : E and y0 : F , respectively, equipped with
pointed maps

F E Bi p

and a pointed homotopy H : p ◦∗ i ∼∗ constx0
. This homotopy witnesses that the

square
F E

1 B

i

const∗ p

constx0

commutes. A short sequence is said to be a fiber sequence if the above square is
a pullback square.

Definition 3.2. A short sequence

F E Bi p

is said to be ∞-exact if the family of maps

α :
∏

(z:E)
fibi(z)→ (p(z) = x0)

given by α(z, (y, q)) = app(q)
−1 �H(y) is a family of equivalences.
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Proposition 3.3. A short sequence is ∞-exact if and only if it is a fiber sequence.

Proof. First we note that we have a commuting square

F 1×B E

∑
(z:E) fibi(z)

∑
(z:E) p(z) = x0,

gap

' '

total(α)

where the gap map at the top sends y : F to the triple (∗, i(y), H(y)). The two
vertical maps in this square are equivalences. Thus we see that the gap map is an
equivalence if and only if total(α) is an equivalence, which is the case if and only if
each αz : fibi(z)→ (p(z) = x0) is an equivalence. �

The following corollary is of course a well-known fact.4

Corollary 3.4. For any fiber sequence F ↪→ E � B we obtain a long ∞-exact
sequence

· · · ΩF ΩE ΩB F E B.

We can reinterpret this as the sequence

· · · π
(∞)
k (F ) π

(∞)
k (E) π

(∞)
k (B) · · · π

(∞)
0 (F ) π

(∞)
0 (E) π

(∞)
0 (B),

where the maps into a k-symmetric ∞-group are homomorphisms of k-symmetric
∞-groups (i.e., pointed maps of the classifying types). This motivates the following
definitions and subsequent observation.

Definition 3.5. A short sequence (or complex) of k-symmetric ∞-groups
consists of three k-symmetric ∞-groups K,G,H and homomorphisms

K G H,
ψ ϕ

with an identification of ϕ ◦ ψ with the trivial homomorphism from K to H as
homomorphisms. By definition, this means we have a short sequence

BkK BkG BkH,
Bkψ Bkϕ

of classifying types.

Definition 3.6. Given a homomorphism of k-symmetric ∞-groups ϕ : G → H,
we define its kernel, ker(ϕ), via the classifying type Bk ker(ϕ) :≡ ker(Bkϕ)〈k − 1〉,
that is, the (k − 1)-connected cover of the pointed kernel at the level of classifying
types, ker(Bkϕ).

At the level of underlying types, we then have ΩkBk ker(ϕ) ' Ωk ker(Bkϕ) '
ker(ΩkBkϕ), where the first equivalence is an instance of the equivalence Ωk(X〈k−
1〉 ' ΩkX and the second follows by iterated application of the equivalence
Ω(ker(f)) ' ker(Ω(f)) for any pointed map f . That is, the underlying type
of the kernel is the kernel of the map of underlying types.

4It was formalized already in Voevodsky’s first UniMath formalization, Part A, ca. 2010–
11 (Voevodsky, Ahrens, Grayson, et al., n.d.).
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Definition 3.7. A short sequence of k-symmetric ∞-groups K ψ−→ G
ϕ−→ H is

∞-exact if the induced homomorphism K → ker(ϕ), obtained as the unique lift in
the commutative square

1 Bk ker(ϕ)

BkK BkG

where the left map is (k − 2)-connected and the right map is (k − 2)-truncated, is
an equivalence.

The following proposition is the higher analogue of the fact that a group homo-
morphism is an isomorphism if and only if its underlying map is a bijection.

Proposition 3.8. A homomorphism of k-symmetric ∞-groups is an equivalence if
and only if the map of underlying types is an equivalence.

Proof. This follows by induction, based on the fact that a pointed map of connected
types f : X → Y is an equivalence if and only if Ωf : ΩX → ΩY is (Univalent
Foundations Program, 2013, Cor. 8.8.2). �

Corollary 3.9. A short sequence of k-symmetric ∞-groups is ∞-exact if and only
if the short sequence of underlying types is ∞-exact.

4. Exactness of complexes of k-symmetric n-groups

Now we have laid the groundwork to consider the case of n-groups of finite n.

Definition 4.1. A short sequence (or complex) of k-symmetric n-groups is a
short sequence of three k-symmetric ∞-groups that happen to be n-groups.

But beware that we have a different notion of exactness in this case, cf. Defini-
tion 4.3 below.

Proposition 4.2. Given a homomorphism of k-symmetric n-groups ϕ : G→ H,
the kernel ker(ϕ) is again an n-group.

Proof. This follows since ker(Bkϕ) is an (n+ k − 1)-type, and taking the (k − 1)-
connected cover preserves (n+ k − 1)-types. �

Definition 4.3. A short sequence of k-symmetric n-groups K ψ−→ G
ϕ−→ H is n-

exact if and only if the induced map of underlying (n − 1)-types K → ker(ϕ) is
(n− 2)-connected.

In contrast to the ∞-case, we also have a useful notion of image for finite n:

Definition 4.4. Given a homomorphism of k-symmetric n-groups ϕ : G → H,
we define the n-image imn(ϕ) via the classifying type Bkimn(ϕ) as it appears in
the (n+ k − 2)-image factorization of Bkϕ (Univalent Foundations Program, 2013,
Def. 7.6.3):

(1) BkG Bkimn(ϕ) BkH,

viz., Bkimn(ϕ) :≡
∑

(t:BkH) ‖fibBkϕ(t)‖n+k−2.
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When n is fixed and clear from the context, we shall leave it out from the notation,
and just write im(ϕ) for the (n-)image. We do not mention k in the notation, thanks
to the following.

Proposition 4.5. Given a homomorphism of k-symmetric n-groups ϕ : G → H
with k > 0, we can regard ϕ as a homomorphism of underlying (k − 1)-symmetric
n-groups. Then the universal property of the (n+ k− 3)-image factorization induces
an equivalence ΩBkimn(ϕ) ' Bk−1imn(ϕ).

Proof. If we apply the loop space functor to (1) we get a factorization of ΩBkϕ =
Bk−1ϕ as an (n+ k − 3)-connected map followed by an (n+ k − 3)-truncated map.
Thus we get the desired induced equivalence (Univalent Foundations Program, 2013,
Thm. 7.6.6). �

In particular, at the level of underlying (n− 1)-types, the n-image imn(ϕ) is the
usual (n − 2)-image. In the special case n = 1 of 1-groups, we recover the usual
image (i.e., (−1)-image) at the level of underlying sets.5

Proposition 4.6. A short sequence of k-symmetric n-groups K ψ−→ G
ϕ−→ H is

n-exact if and only if the unique homomorphism imn(ψ)→ ker(ϕ) is an equivalence.

Proof. The map of underlying types K → ker(ϕ) is (n− 2)-connected if and only if
the map BkK → Bk ker(ϕ) is (n+ k − 2)-connected, and this happens if and only
if the right map in the (n+ k − 2)-image factorization is an equivalence. �

5. The long n-exact sequence of fiber sequences

Our deliberations in the previous section motivate the following definition.

Definition 5.1. A short sequence F i−→ E
p−→ B of pointed types is n-exact if for

each z : E, the map
αz : fibi(z)→ (p(z) = x0)

as in Definition 3.2 is (n− 2)-connected.

Definition 5.2. A commuting square

C B

A X

is k-cartesian if its gap map C → A×X B is k-connected.

Lemma 5.3. Consider a short sequence F i−→ E
p−→ B. The following are equivalent:

(1 ) The short sequence is n-exact.
(2 ) The square

F E

1 B

i

p

is (n− 2)-cartesian.

5This is the reason we write a superscript n for the higher group-theoretical n-image: We have
to subtract 2 when we describe this as an (n− 2)-image in the sense of the truncation modality
orthogonal factorization system at the level of underlying (n− 1)-types: imn(ϕ) = imn−2(ϕ).
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Proof. Recall that the fiber of αz at q : p(z) = x0 is equivalent to the fiber of
total(α) at (z, q) : fibp(x0) (Univalent Foundations Program, 2013, Thm. 4.7.6).
Therefore it follows immediately that each αz is (n − 2)-connected if and only if
total(α) is (n− 2)-connected. �

We now come to the key observation:

Proposition 5.4. The n-truncation modality preserves k-cartesian squares for any
k < n.

Proof. Consider a k-cartesian square

C B

A X

for some k < n. Our goal is to show that the square

‖C‖n ‖B‖n

‖A‖n ‖X‖n
is again k-cartesian. To see this, consider the commuting square

C A×X B

‖C‖n ‖A‖n ×‖X‖n ‖B‖n

η

gap

λ (a,b,p). (η(a),η(b),apη(p))

gap

In this square, the top map is assumed to be k-connected. The left map is n-
connected, so it is also k-connected. Recall that if, in a commuting triangle

the top map is k-connected, then the left map is k-connected if and only if the
right map is (Rijke, Shulman, and Spitters, 2020, Lem. 1.33). Therefore, it suffices
to show that the right map in the above square is k-connected. This is indeed
the case, since it is the induced map on total spaces of the two n-connected maps
η : A → ‖A‖n and η : B → ‖B‖n, and the (n − 1)-connected map apη : (f(a) =
g(b))→ (η(f(a)) = η(g(b))), all of which are also k-connected. �

Our main theorem is now a simple consequence of the above results.

Theorem 5.5. Any fiber sequence F ↪→ E � B induces an n-exact short sequence
‖F‖n−1 → ‖E‖n−1 → ‖B‖n−1.

Proof. Consider a fiber sequence F ↪→ E � B. Since any pullback square is in
particular (n− 2)-cartesian, it follows from Proposition 5.4 that the square

‖F‖n−1 ‖E‖n−1

1 ‖B‖n−1
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is (n− 2)-cartesian. By Lemma 5.3 it now follows that the short sequence ‖F‖n ↪→
‖E‖n � ‖B‖n is n-exact. �

As a corollary we obtain the long n-exact sequence of homotopy n-groups, obtained
from a fiber sequence F ↪→ E � B.

Corollary 5.6. For any fiber sequence F ↪→ E � B we obtain a long n-exact
sequence

· · · π
(n)
k (E) π

(n)
k (B)

π
(n)
k−1(F ) π

(n)
k−1(E) · · ·

π
(n)
0 (F ) π

(n)
0 (E) π

(n)
0 (B)

of homotopy n-groups, where the morphisms are homomorphisms of k-symmetric
n-groups whenever the codomain is a k-symmetric n-group.

As a further application we note:

Corollary 5.7. Given a short n-exact sequence of k-symmetric n-groups K ψ−→
G

ϕ−→ H, the resulting looped sequence ΩK → ΩG → ΩH is a short (n− 1)-exact
sequence of (k+1)-symmetric (n−1)-groups, and the resulting decategorified sequence
Decat(K)→ Decat(G)→ Decat(H) is a short (n−1)-exact sequence of k-symmetric
(n− 1)-groups.

Here, Decat maps a k-symmetric n-group G, represented by the pointed (k − 1)-
connected (n + k − 1)-type BkG, to the k-symmetric (n − 1)-group Decat(G),
represented by ‖BkG‖n+k−2 (Buchholtz, van Doorn, and Rijke, 2018, Sec. 6).

6. Discussion and related work

The notion of 2-exactness of a complex of 2-groups is by now standard when
described in terms of crossed complexes or gr-stacks (Aldrovandi and Noohi, 2009;
Vitale, 2002). Our Corollary 5.7 is reminiscent of the results of (Kasangian, Metere,
and Vitale, 2011) in the setting of strict groupoids.

The benefits of our synthetic development are that we automatically get the
results in the case of stacks over a Grothendieck site as well by interpretation in
the corresponding (∞, 1)-topos, and that our approach covers all higher groups, not
just the case of 2-groups as presented by crossed modules.
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