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ABSTRACT
We consider the issue of testing the null of equal average forecast accuracy in a model where the forecast
error loss differential series has a potentially nonconstant mean function over time. We show that when time
variation is present in the loss differential mean, the standard Diebold and Mariano test, which was proposed
for evaluating forecasts in a stable environment, has an asymptotic size of zero, and, whilst consistent,
can have reduced local power. This arises due to inconsistent estimation of the implicit long run variance
estimator, which diverges under a time varying mean. We suggest a modified statistic that replaces the
standard long run variance estimator based on full-sample demeaning of the loss differential series with
one based on nonparametric local demeaning. The new long run variance estimator is consistent under both
the null and alternative when the mean function is time varying or constant, and in both cases, the modified
test recovers the asymptotic size and power properties associated with the original test in the constant mean
case. The modified test therefore provides a robust method for testing the equal average forecast accuracy
null, allowing for instability in the loss differential mean. The benefits of our test are demonstrated via Monte
Carlo simulation and two empirical applications.
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1. Introduction

The evaluation of the accuracy of competing economic and
financial forecasts has assumed a pivotal role in the literature
on predictability, allowing determination of which forecasting
methods perform best using historic data on forecasts and actu-
als. Central to such evaluation are tests for equal forecast accu-
racy, with a rejection indicating the superior performance of one
set of forecasts over another according to a chosen measure of
accuracy based on forecast error loss. Modern approaches to
equal accuracy testing stem from the seminal work by Diebold
and Mariano (1995) [DM], whose proposed test, based on test-
ing for a nonzero mean in a forecast error loss differential series,
dt (t = 1, . . ., n) in generic notation, allows testing to be
conducted for a user-chosen loss function under weak statistical
assumptions on the dt .

The DM approach is designed for testing equal forecast accu-
racy where it is assumed that the relative performance between
the competing methods, measured as the mean of their loss
differentials, E(dt), does not vary over the time period under
consideration. However, it has since been recognized that the
relative performance of different forecasting methods might
vary over time; for example, Stock and Watson (2003) highlight
the prevalence of instabilities in forecast rankings over time.
Giacomini and White (2006) [GW], Giacomini and Rossi (2010)
and Odendahl, Rossi, and Sekhposyan (2023) consider this issue
in their work on forecast evaluation in potentially unstable
environments, allowing for the possibility of time varying E(dt)
under their alternative hypotheses. One strand of the literature
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has developed to test for instability in relative forecast perfor-
mance, beginning with Giacomini and Rossi (2010); see also
Martins and Perron (2016) and Perron and Yamamoto (2021),
inter alia.

What the aforementioned approaches have in common is an
assumption of the constancy of E(dt) under the null hypoth-
esis. What is missing in an environment of possible instabili-
ties, therefore, is to permit time variation in E(dt) under the
null, devising procedures that test the null of equal average
forecast accuracy across the forecast evaluation period, that is
n−1 ∑n

t=1 E(dt) = 0, without imposing E(dt) = 0 for all t as
in GW, Giacomini and Rossi (2010) and Odendahl, Rossi, and
Sekhposyan (2023). A rejection of such a null implies that one
forecast is better than another on average, but not necessarily
at every point in the evaluation period. The interests of testing
average performance superiority derive naturally from the com-
mon practice of comparing average losses in forecast evaluation.
Take the commonly used prediction mean square error (MSE) as
an example. Here, dt = e2

1t − e2
2t where e1t and e2t denote two

forecast error series, and the comparison of the MSEs can be
understood as considering the difference in the sample means
n−1 ∑n

t=1 e2
1t − n−1 ∑n

t=1 e2
2t . In a stable environment, where

E(e2
1t) and E(e2

2t) are constant over t, this can be thought of as
a sample proxy for evaluating the difference E(dt) = E(e2

1t) −
E(e2

2t). In an unstable environment with E(e2
1t) and E(e2

2t) time
varying, that is, where the forecast errors are heteroscedastic,
the same practice is then understood as a proxy for comparing
the difference between n−1 ∑n

t=1 E(e2
1t) and n−1 ∑n

t=1 E(e2
2t),
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that is evaluating the average mean n−1 ∑n
t=1 E(dt). A forecast

evaluation test devised for the average equality hypothesis is then
able to put such a comparison of MSEs into a formal testing
context, such that we know if an observed difference in the MSEs
is statistically “significant”.

The literature contains a number of papers that also consider
the average type forecast performance measure. GW explicitly
consider average-type alternative hypotheses for their condi-
tional and unconditional forecast evaluation tests, although their
null hypotheses are still concerned with uniform behavior of
the loss differential series at all forecasting periods. Clark and
McCracken (2015) consider testing average equal predictive
ability in the context of comparing nested models, but their
DGP imposes certain stationarity assumptions (i.e., existence of
covariance functions for the observables).

Motivated by the above discussion, in this article we address
the issue of testing the null of equal average forecast accuracy
in a model where the loss differential series has a potentially
nonconstant mean function E(dt) over time. Our approach is
based on a t-statistic associated with the sample mean d (the
average of dt over the evaluation period), which, in the unsta-
ble case, is an estimate of the full sample quantity E(d) =
n−1 ∑n

t=1 E(dt). Such an approach is close to the original DM
testing approach; although in their paper the assumption was
that E(dt) was constant, we show that the sample mean d remains
an appropriate sample statistic to focus on in the potentially time
varying mean environment.

The key issue here is estimating the variance of the sample
mean d. In a stable environment, standard long run variance
(LRV) estimators used in the DM statistic provide a consistent
estimate for the variance of the (normalized) sample mean.
However, when E(dt) is time varying, such LRV estimators
cannot account for the varying mean feature in the data and can
diverge to infinity. Since our testing problem features instability
under both the null and the alternative, the LRV estimator could
be divergent in both cases. We show that the divergent feature
of such a LRV estimator will lead to zero asymptotic size for
the original DM test under the null, along with the need for a
rate slower than the stable environment rate n−1/2 for the test to
achieve nontrivial power.

We therefore proceed to propose a modification to the orig-
inal DM statistic, replacing the standard LRV estimator with
a LRV estimator based on locally demeaned dt , employing a
kernel smoothing nonparametric estimator for the time vary-
ing mean E(dt). We demonstrate that the new LRV estimator,
using locally demeaned dt , is consistent for the true variance of
d̄ under both the null and alternative, regardless of whether E(dt)
is constant or time varying. We then show that our modified
DM test obtains correct asymptotic size and achieves nontrivial
power against local alternatives with a standard n−1/2 rate, again
under constant or time varying E(dt). As such, the modified
test can deliver valid inference in an unstable forecast evaluation
environment, in contrast to the standard DM test. Our approach
can therefore be interpreted as robustifying the DM test to pos-
sible time variation in the E(dt), where the null and alternative
are framed in terms of average performance.

We evaluate and compare the finite sample size and power
performance of the standard and modified DM tests under
the null and alternative hypotheses, considering both constant

and time varying specifications for E(dt). These Monte Carlo
simulations demonstrate the superiority of the modified DM test
when E(dt) is time varying. We further illustrate the potential
value of the new procedure in evaluating forecasts of UK house
price growth and US real output growth.

The remainder of the article is organized as follows. In Sec-
tion 2 we introduce our modeling framework and the hypothe-
ses being tested. Section 3 discusses the standard DM test and
determines its properties within our framework, while the mod-
ified DM test is introduced in Section 4 and its properties estab-
lished. Section 5 compares the finite sample size and power prop-
erties of the two tests. Our empirical applications are presented
in Section 6 and Section 7 concludes. Proofs of our asymptotic
results are provided in an Appendix. In the remainder of the
article we use the following notation: d→ denotes convergence
in distribution and

p→ convergence in probability.

2. The Model and Hypotheses

We consider a framework where a sequence of n loss differen-
tials, dt,q, associated with two sets of q-step-ahead forecasts, can
be represented in the form

{dt,q}n
t=1 ≡ {L(yt+q, f1t,q) − L(yt+q, f2t,q)}n

t=1 (1)

where yt+q denotes the target variable being predicted, fit,q the
forecasts and L(., .) a general measurable loss function, with t =
1, . . ., n denoting the forecast evaluation period. Without loss of
generality we suppress the dependence on q in all the subsequent
notation. We denote the mean of the loss differential series by
E(dt) = mt , t = 1, . . ., n, and we make the following specific
assumptions regarding mt and dt :

Assumption 1. mt = m(t/n), where m(.) is a bounded determin-
istic function on [0, 1] that is Lipschitz continuous other than at
a finite number of possible discontinuities.

Assumption 2. dt is α-mixing of size −r/(r − 2) with r > 2 and
E(|dt|r) < ∞.

Assumption 1 allows the loss differential mean function mt to
be time varying, permitting, for example, single or multiple
smooth transition level or (bounded) trend changes, while also
permitting a finite number of abrupt breaks in level/trend.
The polynomially decaying α-mixing coefficient specified in
Assumption 2 is standard for the central limit theorem to
apply. Although heteroscedasticity is not explicitly mentioned,
Assumption 2 permits very general heteroscedasticity in the
dt series. Unconditional heteroscedasticity is allowed to be
fully flexible; and conditional heteroscedasticity is permitted
to the extent that the mixing condition is satisfied. From
Carrasco and Chen (2002), many commonly used conditional
heteroscedasticity models such as the ARCH model of Engle
(1982), the GARCH model of Bollerslev (1986) and the
log normal stochastic volatility model of Andersen (1994),
when stationary, are all α-mixing with coefficients decaying
exponentially fast and thus permitted by Assumption 2. Also
under Assumption 2, the LRV limn→∞ n−1V(

∑n
t=1 dt) exists
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(see, e.g., Theorem 2 of Harvey, Leybourne, and Zu (2024)), and
we denote it in what follows by �.

Remark 1. Note that heteroscedasticity in dt is closely linked
to heteroscedasticity in the forecast errors. Heteroscedasticity in
forecast errors can easily induce time variation in the mean of
dt , and also time variation in the variance of dt . For example,
suppose eit = σituit , i = 1, 2, with σit deterministic, and
uit ∼ IIDN(0, 1) with u1t , u2t correlated with parameter ρ.
Then, if dt = e2

1t − e2
2t , it can easily be shown that E(dt) =

σ 2
1t − σ 2

2t and V(dt) = 2(σ 4
1t + σ 4

2t) − 4ρ2σ 2
1tσ

2
2t , hence, the loss

differential has a time-varying mean and variance. Moreover,
even in situations where heteroscedastic forecast errors do not
induce time variation in the mean of dt , time variation in the
variance of dt can arise, as occurs in the previous example when
σ1t = σ2t . Hence, in an unstable environment, where forecast
error variances are expected to change over time, it is important
that we allow for time variation in both the mean and variance
of dt , as covered by Assumptions 1 and 2, respectively.

Remark 2. Our framework treats the forecasts as primitives,
and makes assumptions directly on the loss differential series dt .
However, it is also compatible with a GW-type framework where
forecasts are obtained from estimated models using a fixed num-
ber of observations (i.e., a rolling window estimation scheme).
That is, where the forecasts fit , i = 1, 2 in (1) are replaced
with the forecast methods fi(Wt , . . . , Wt−wi+1; β̂i,t) where Wt is
a data vector partitioned as Wt = (yt , X′

t)
′, with Xt is a vector

of predictors, and where the model parameter estimates β̂i,t are
obtained over t − wi + 1, . . ., t with wi fixed. In this setting, the
assumption for dt in Assumption 2 would implicitly be applied
to the data vector Wt .

The focus of our analysis in this article concerns testing
based on the average forecast accuracy quantity n−1 ∑n

t=1 E(dt).
Specifically, we will test the null hypothesis of n−1 ∑n

t=1 E(dt) =
0 against the alternative n−1 ∑n

t=1 E(dt) �= 0. We will formalize
this testing framework by considering the corresponding inte-
gral measure of average forecast accuracy based on E(dt) = mt :∫ 1

0
m(x)dx.

A quantity that will also be important in our analysis is the
variation in the mean function mt over time, which we denote
by

Vm =
∫ 1

0
m(x)2dx − (

∫ 1

0
m(x)dx)2

with Vm = 0 and Vm > 0 corresponding to the cases of constant
mt and time varying mt , respectively.

For the purposes of specifying the null and (fixed and local)
alternative hypotheses in our testing problem, we suppose that
m(x) can be written as

m(x) = m0(x) + γnm1(x)

where m0(.) and m1(.) are, similar to m(.), bounded determin-
istic functions on [0, 1] that are continuous other than a finite
number of possible discontinuities. Here∫ 1

0
m(x)dx =

∫ 1

0
m0(x)dx + γn

∫ 1

0
m1(x)dx

and we assume that∫ 1

0
m0(x)dx = μ0 with μ0 = 0∫ 1

0
m1(x)dx = μ1 with μ1 �= 0.

Our null hypothesis of equal average forecast accuracy is
consequently given by

H0 : γn = 0, that is
∫ 1

0
m(x)dx =

∫ 1

0
m0(x)dx = 0.

The null clearly nests two possibilities: (i) when mt is constant,∫ 1
0 m0(x)dx = 0 implies that the forecasts have equal accuracy

at all points in time (i.e., the standard DM-type null); (ii) when
mt is time varying, the null requires the forecasts to have equal
accuracy on average, in which case clearly each forecast must
be dominant over the other (in terms of accuracy) at different
points during the forecast evaluation period.

As regards the alternative hypothesis, we first consider the
fixed alternative

H1 : γn = γ �= 0, that is∫ 1

0
m(x)dx = γ

∫ 1

0
m1(x)dx = γμ1, μ1 �= 0.

Of course, the alternative can hold either when one forecast
possesses relative superior accuracy throughout the whole eval-
uation period, or where each forecast has periods of dominance,
but one outperforms the other on average.

It should be noted that the equal average forecast accuracy
null, and corresponding alternatives, relate specifically to the
sample period t = 1, . . ., n under investigation. For example, it is
quite possible that the forecasts are equally accurate on average
over t = 1, . . ., n, but one outperforms the other on average if a
different sample period is considered, or vice-versa.

2.1. Comparison with Extant Literature

To place our model and hypotheses in the context of previous
work in the field of equal forecast accuracy testing, we first note
that the original DM approach is a special case of our approach,
with E(dt) constant. Their approach sets E(dt) = c, with c = 0
under the null and c �= 0 under the alternative. While the
unconditional test statistic of GW is the same as the DM statistic,
their alternative hypothesis is more flexible, allowing for time
varying E(dt). Their null is that E(dt) = 0 for all t (hence, E(dt)
is actually constant at zero under the null, as in DM), while
the alternative is that n−1 ∑n

t=1 E(dt) �= 0, with one forecast
outperforming the other on average. Compared to our setup,
it is clear that the alternative hypothesis of GW coincides with
ours, but their null hypothesis is more restrictive, requiring the
forecasts to have equal accuracy at all points in time, rather than
simply equal on average.

Giacomini and Rossi (2010) also consider a framework where
E(dt) = 0 for all t under the null (as in DM and GW), but have
a completely different focus to ours under the alternative, with
their alternative simply requiring that E(dt) �= 0 for at least
one point in time. Hence, while time variation in E(dt) under
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the alternative is permitted, the emphasis is on any departure
from the null, rather than specific forms such as a constant
difference in forecast accuracy, as in DM, or a difference in
forecast accuracy on average, as in GW and our setup. Obviously
then, their alternative does not involve any concept of average
behavior of time varying E(dt).

Of all the approaches outlined thus far, ours is the only one
that permits time variation in E(dt) under the null, and also
the only one to specify the null and alternative in terms of
the same accuracy measure, namely the average forecast accu-
racy n−1 ∑n

t=1 E(dt). In a recent working paper, Richter and
Smetanina (2020) also consider time variation under the null
and alternative, with the hypotheses specified using a single
accuracy measure. In the absence of serial correlation in dt ,
their average forecast accuracy measure is based on the average
of inverse coefficients of variation: n−1 ∑n

t=1 E(dt)/σt , where
σ 2

t = V(dt). The null and alternative hypotheses are given
by n−1 ∑n

t=1 E(dt)/σt = 0 and n−1 ∑n
t=1 E(dt)/σt �= 0,

respectively. By introducing σt in this way, the accuracy measure
is based on the behavior of both the time varying mean E(dt) and
unconditional heteroscedasticity in the loss differential series,
with relative performance assessed by an interaction of the two
quantities over time. Under homoscedasticity, that is σt = σ

for all t, their measure essentially coincides with ours, since
n−1 ∑n

t=1 E(dt)/σt = σ−1n−1 ∑n
t=1 E(dt), with this quantity

equal to zero if and only if n−1 ∑n
t=1 E(dt) = 0. However, the

measures are quite different under heteroscedasticity. Indeed, it
is quite possible that two forecasts could be equally accurate in
terms of average mean, that is n−1 ∑n

t=1 E(dt) = 0, but due
to changes in σt , n−1 ∑n

t=1 E(dt)/σt �= 0. In such a situation,
our null hypothesis holds, but it is the alternative hypothesis
that is true in the Richter and Smetanina (2020) framework.
As such, examining the behavior of n−1 ∑n

t=1 E(dt)/σt is not
informative for evaluating whether n−1 ∑n

t=1 E(dt) is zero or
not. Our proposal is to use the unweighted loss differential mean
in the accuracy measure, which is arguably a more natural or
direct approach to examining average forecast accuracy, and is
in keeping with the work of GW, who use precisely this measure
under their alternative hypothesis.

Another strand of related literature addresses the notion of
conditional equality tests; for example, GW consider a condi-
tional approach in addition to the unconditional test we discuss
above. We wish to emphasize that the test considered in this
article focuses on time variation in the unconditional mean of the
loss differential series, rather than the conditional mean. Condi-
tional mean variation can exist separately to unconditional mean
variation; for example, even in a stationary and stable frame-
work, the conditional mean of the loss differential can change.
By way of illustration, consider an AR(1) loss differential process
dt = φdt−1 +εt , where |φ| < 1 and εt is a white-noise sequence.
This is a case we would normally refer to as a stable environment,
due to the covariance stationarity property of the process, with
the unconditional mean of dt , E(dt), being constant at zero. In
contrast, the one-step-ahead conditional mean of the dt series,
E(dt|Ft−1), is φdt−1, which is time varying. The conditional
equality concept implies the loss differential is a martingale
difference sequence, that is E(dt|Ft−1) = 0, and therefore any
dependence in dt represents conditional inequality in terms of
forecast accuracy. This is a very strong equality concept between

two forecasts, as Zhu and Timmermann (2020) discuss, and
much stronger than the unconditional concept that we adopt
in this article. As illustrated in Zhu and Timmermann (2022),
conditional tests can be used to identify factors that explain the
loss differentials, and to help devise a dynamic rotation strategy
to obtain a more accurate combined forecast.

3. The DM (Unconditional GW) Test

The DM statistic, which is also GW’s unconditional statistic, is
given by

DM =
√

n d√
�̂

where d = n−1 ∑n
t=1 dt and �̂ is an estimate of �, the LRV of

dt . The LRV estimator �̂ implicitly assumes mt is constant and
is given by

�̂ = n−1
n∑

t=1

n∑
s=1

(dt − d)(ds − d)k
(

t − s
b

)
(2)

where k(.) is a kernel function, and b is a lag truncation param-
eter. For the purposes of our analysis we make the following
assumptions regarding k(.) and b:

Assumption 3. The kernel function k(.) is symmetric, satisfies
|k(.)| � 1 and k(0) = 1, and is continuous at zero and
almost everywhere else. The kernel function also satisfies∫ ∞
−∞ |k(x)|dx < ∞,

∫ ∞
−∞ |xk(x)|dx < ∞ and

∫ ∞
−∞ |φk(x)|dx <

∞ where φk(x) = (2π)−1 ∫ ∞
−∞ k(y)e−ixydy. Let λk =∫ ∞

0 k(x)dx.

Assumption 4. The bandwidth b satisfies b → ∞ and n−1/2b →
0 as n → ∞.

These assumptions are similar to those used in De Jong and
Davidson (2000). The condition n−1/2b → 0 is stronger than
the n−1b → 0 assumption in De Jong and Davidson (2000),
which we need here to deal with the effect of the time-varying
mean. This condition is standard in the LRV estimation litera-
ture, and, as discussed in Andrews (1991), optimal bandwidths
for all the commonly used kernels are permitted by this condi-
tion.

Our first result establishes the asymptotic behavior of the
LRV estimator �̂ in the denominator of DM.

Theorem 1. Under Assumptions 1–4 and under H0 or H1,

�̂ = � + (1 + 2bλk)Vm + op(1). (3)

Theorem 1 shows that when m(x) is time varying (Vm > 0),
�̂ is not a consistent estimator of �, but is diverging toward
+∞ at the rate of b; while when m(x) is constant (Vm = 0),
�̂ is consistent for �. The inconsistency of �̂ when m(x) is time
varying arises because, in (2), d is not the appropriate centering
for dt , since E(d) = n−1 ∑n

t=1 mt while E(dt) = mt �= E(d)

in general. A similar result to Theorem 1 was obtained in Hall
(2005) (see eq. (4.28)), for the “uncentered HAC estimator” with
strictly stationary, ergodic data.
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Next, we proceed to consider the asymptotic size and power
properties of the DM test. Recall that the (two-sided) α-level DM
test is defined as rejecting H0 if |DM| > z1−α/2, where z1−α/2 is
the 1 − α/2 quantile of the standard normal distribution.

Theorem 2. Under Assumptions 1–4:

(i) Under H0,
(a) when m(x) is constant, P(|DM| > z1−α/2) → α;
(b) when m(x) is time varying, P(|DM| > z1−α/2) → 0.

(ii) Under H1, P(|DM| > z1−α/2) → 1, when m(x) is either
constant or time varying.

It can be seen from Theorem 2(i) that, while the DM test is
asymptotically correctly sized under H0 when m(x) is constant,
whenever m(x) is time varying it will have asymptotic size of
zero. Under the alternative H1, Theorem 2(ii) shows that the DM
test is consistent, regardless of whether m(x) is constant or time
varying, hence, in this respect the DM test remains useful for
detecting departures from the equal average forecast accuracy
null.

In addition to the fixed alternative hypothesis H1, to enable
further evaluation of the large sample power properties of the
tests, we also consider a sequence of local alternatives of the
following form:

H1n : γn → 0 as n → ∞.

Here, the m(x) function is comprised of the null hypothesis
function m0(x) plus an asymptotically vanishing perturbation
γnm1(x). The next theorem finds the sequences of local alterna-
tives such that the DM test has nontrivial power, and derives its
local power functions. It turns out that, depending on whether or
not the function m(x) is time varying, the DM test has nontrivial
power for local alternative sequences converging to the null at
different rates in n.

Theorem 3. Under Assumptions 1–4:

(i) Under H1n when m(x) is constant with γn = n−1/2, DM d−→
N(�′, 1), where �′ = ∫ 1

0 m1(x)dx/
√

�, hence,

P(|DM| > z1−α/2) → 1 − (z1−α/2 − �′)
+(−z1−α/2 − �′)

where (.) is the cdf of the standard normal distribution;

(ii) Under H1n when m(x) is time varying, with γn = (n/b)−1/2,
DM

p−→ �, where � = ∫ 1
0 m1(x)dx/

√
2λkVm, hence

P(|DM| > z1−α/2) →
{

0 if� � z1−α/2
1 if� > z1−α/2

.

From Theorem 3(i) we see that when m(x) is constant, the
DM test possesses nontrivial power against local alternatives
converging to the null at the standard parametric rate γn =
n−1/2. Theorem 3(ii) shows that when m(x) is time varying,
the DM test only has nontrivial power against local alternatives
converging to the null at a slower nonparametric rate γn =
(n/b)−1/2. Implicit in the proof of Theorem 3 is that in this
case, the DM test will have zero asymptotic power against local

alternatives with rates faster than (n/b)−1/2 (smaller deviations
from the null), such as the parametric rate n−1/2. Therefore, the
time variation in m(x) compromises the ability of the DM test
to detect departures from the null relative to the constant m(x)

case. When γn = (n/b)−1/2, the local asymptotic distribution of
the DM statistic is also nonstandard: it degenerates to a constant,
such that the local power function of the DM test in this case is
an indicator function with the condition that � is greater than
the critical value z1−α/2.

4. A Modified DM Test

In this section we develop a new DM-type test, which, regard-
less of whether m(x) is constant or time varying, has correct
asymptotic size under H0 and attractive large sample properties
under fixed and local alternatives. The idea is simple: we replace
�̂ in the DM statistic with a new LRV estimator, which is
consistent for the LRV even when the loss differential series has
a time varying mean. The new LRV estimator is constructed
by replacing the d centering in dt − d in (2) with a nonpara-
metric estimate of mt , to achieve correct demeaning under time
variation given that E(dt) = mt . To this end, we consider the
following nonparametric kernel smoothing estimator for mt at
each point in time t:

m̂t =
n∑

s=1
wt,sds, t = 1, . . . , n

where wt,s = K
( s−t

nh
)
/
∑n

s=1 K
( s−t

nh
)

with K(.) a kernel func-
tion and h the bandwidth. Replacing d in (2) with m̂t then gives
our modified LRV estimator:

�̂′ = n−1
n∑

t=1

n∑
s=1

(dt − m̂t)(ds − m̂s)k
(

t − s
b

)
. (4)

We make the following assumptions on K(.) and h:

Assumption 5. The kernel function K(.) : R → R
+ is

bounded, Lipschitz continuous and satisfies
∫ ∞
−∞ |K(x)|dx <

∞,
∫ ∞
−∞ |K(x)x|dx < ∞ and x2K(x) → 0 as x → ∞.

Assumption 6. The bandwidth h satisfies h → 0, bh → 0 and
b/(nh) → 0, as n → ∞.

The assumptions on the kernel function K(.) in Assumption 5
are rather standard in the literature involving nonparametric
kernel regression estimators. Assumption 4 implies that b =
O(nτb) with 0 < τb < 1/2; given this constraint, Assumption 6
then implies that h = O(n−τh) with τb < τh < 1− τb. Although
in principle the rates τb and τh are chosen simultaneously, in
practice we recommend that τb is chosen first, and then a suit-
able value of τh is chosen subsequently. We discuss the choices
of h and b in more detail in Section 5.

The following theorem establishes the consistency of �̂′ in
(4).

Theorem 4. Under Assumptions 1–6 and under H0 or H1, when
m(x) is either constant or time varying, �̂′ p−→ �.
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Theorem 3 shows that �̂′ is a consistent estimator of � irrespec-
tive of whether or not m(x) is time varying, in contrast to the
result for �̂ shown in Theorem 1. Note that Theorem 3 holds
both in the case of m(x) being continuous and in the case where
m(x) has points of discontinuity (satisfying Assumption 1). In
the latter case, the nonparametric estimator m̂t cannot be uni-
formly consistent, but crucially the consistency of the new HAC
estimator �̂′ is not affected.

Remark 3. LRV estimators similar to ours which are consistent
under a time-varying mean function have already been consid-
ered in the literature, with Altissimo and Corradi (2003) and
Juhl and Xiao (2009) proposing very similar estimators to ours.
However, Altissimo and Corradi (2003) consider a piecewise-
constant alternative model, and the local mean estimator they
consider is a simple average over local windows (i.e., K(.) is a
flat truncated kernel). Juhl and Xiao (2009) consider a smooth
varying alternative model, whereas we permit a finite number
of discontinuities; these authors also make a fourth order sta-
tionary β-mixing assumption for their stochastic component,
thereby not allowing for unconditional heteroscedasticity.

Remark 4. In a recent paper, Chan (2022) analyses a general class
of difference-based LRV estimators. As discussed in Example 2.5
of Chan (2022), the form of our proposed estimator �̂′ can be
viewed as a special case of such difference-based estimators.
However, Chan’s results do not apply to our setting because
the probabilistic assumptions on the stochastic component are
different. In particular, Chan assumes strict stationarity, so no
unconditional heteroscedasticity is permitted, and a dependence
structure characterized by the physical dependence measure pro-
posed by Wu (2007). As discussed on p.1379 of Chan (2022),
the theoretical properties of difference-based estimators remain
unknown under the mixing type assumptions that we consider
in this article.

Remark 5. As highlighted by a referee, it is possible to conceive
of kernels k(.) for which λk = ∫ ∞

0 k(x)dx = 0. Use of such a
kernel would remove the divergence problem inherent in (3),
since then �̂ = � + Vm + op(1). In such a case, while �̂

no longer diverges, it remains inconsistent due to the bias term
Vm. Of course, Vm can be consistently estimated using our
nonparametric mean function estimator m̂t , that is

V̂m = 1
n

n∑
t=1

m̂2
t −

(
1
n

n∑
t=1

m̂t

)2

(5)

and �̂ − V̂m would be a consistent estimator of �. However,
issues arise when attempting to implement this approach in
practice. An obvious choice of kernel for which λk = 0 would be
a Bartlett kernel with its domain extended from [−1, 1] (which
gives λk = 1) to [−2, 2] (which gives λk = 0), that is

k(x) =
{

1 − |x| −2 � x � 2
0 otherwise .

The first difficulty with this approach is that the absolute integra-
bility element

∫ ∞
−∞ |φk(x)|dx < ∞ of Assumption 3 is violated,

hence, stronger assumptions would be required to ensure its
asymptotic validity. A similar problem arises when considering

modifications to the Parzen and Tukey-Hanning kernels. Even
abstracting from this issue, we found through simulation that
convergence of the corresponding estimator �̂ to its limit � +
Vm is very slow, with substantial upward biases observed in finite
samples (unless Vm = 0). It appears that the inclusion of sub-
stantial negative kernel weights attached to high order sample
autocovariances compromises the performance of the estimator,
unless the sample size is very large. Use of such an estimator in
DM then resulted in a procedure that was severely under-sized
and manifested low power in finite samples (compared to what
we subsequently observe in our modified test statistic that uses
�̂′). In principle, entirely new kernels satisfying both λk = 0
and Assumption 3 could be devised, ideally with better finite
sample properties, but we leave such developments for future
investigation.

In view of the result in Theorem 4, we define our modified
DM-type statistic as

DM′ =
√

n d√
�̂′

.

We then obtain the following results regarding the behavior of
DM′ under H0.

Theorem 5. Under Assumptions 1–6, when m(x) is either con-
stant or time varying:

(i) Under H0, DM′ d−→ N(0, 1).

(ii) Under H1, P(|DM′| > z1−α/2) → 1.

Theorem 5 shows that our new test, based on comparing DM′
with standard normal critical values, has correct asymptotic size
and is consistent against a fixed alternative, regardless of whether
or not the m(x) function is constant.

The next theorem studies the asymptotic power properties of
the new test under local alternatives of the form H1n.

Theorem 6. Under Assumptions 1–6 and under H1n with γn =
n−1/2, when m(x) is either constant or time varying, DM′ d−→
N(�′, 1), and hence

P(|DM′| > z1−α/2) → 1−(z1−α/2 −�′)+(−z1−α/2 −�′).

Theorem 6 shows that the DM′ test has nontrivial power
against the sequence of local alternatives with γn = n−1/2,
irrespective of whether m(x) is constant or time varying. The
DM test achieves power for this rate only when m(x) is constant,
having zero asymptotic power in the time varying case. More-
over, when m(x) is constant or time varying, the DM′ test has the
exact same local power function as that for DM under constant
m(x). Therefore, the loss of power that occurs with DM for time
varying m(x) is fully restored by DM′ to the level associated
with constant m(x). Implicit in Theorem 6 is the result that for
local alternatives with rates slower than n−1/2, the DM′ test has
asymptotic power of one.

Overall, the results of Theorems 2–3 and 5–6 suggest that
DM and DM′ would be expected to have similar finite sample
properties under constant m(x), while under time varying m(x),
DM′ should have size closer to the nominal level and superior
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finite sample power. The next section examines these finite
sample properties in detail.

5. Finite Sample Size and Power Properties

We now compare the finite sample size and power properties of
the DM and DM′ tests using Monte Carlo simulation. For dt , we
consider the DGP

dt = mt + νt t = 1, . . . , n. (6)

Here νt is a mean zero stochastic process. In the deterministic
mean function mt we make use of a logistic smooth transition
function of the form

St(c, g, δ1, δ2) = δ2 − δ1

1 + exp{−g( t−1
n−1 − c)} + δ1.

This function transitions from the value δ1 to δ2 over t, with
midpoint fraction c and transition speed g. In what follows we
set δ1 = −1, δ2 = 1 and g = 30. We further define two
special cases of St(c, 30, −1, 1). For c = 0.5, define S0

t as S0
t =

St(0.5, 30, −1, 1). Here

n−1
n∑

t=1
S0

t = 0.

For c �= 0.5 define S1
t (c) = St(c, 30, −1, 1). Now

n−1
n∑

t=1
S1

t (c) �= 0

and for c = 0.25, 0.75, n−1 ∑n
t=1 S1

t (c) = 0.5, −0.5, respectively.
We construct DM and DM′ using their respective LRV esti-

mators, �̂ and �̂′, employing the quadratic spectral (QS) kernel
for k(.) with bandwidth b = b0n1/3 (that satisfies the require-
ment b = O(nτb) with 0 < τb < 1/2). Choice of the QS kernel
is motivated by its optimality properties, in that it minimizes the
asymptotic MSE among positive semidefinite LRV estimators
(see Andrews (1991)) and is also optimal for testing purposes
in the context of heteroscedasticity and autocorrelation robust
inference problems (see Sun et al. (2008), and Lazarus, Lewis,
and Stock (2021)). With respect to the bandwidth choice, both
Sun et al. (2008) and Lazarus, Lewis, and Stock (2021) derive
the optimal rate for the QS kernel lag truncation parameter to
be O(n1/3). Although there are different strategies to calculating
b0 in Sun et al. (2008) and Lazarus, Lewis, and Stock (2021), their
approaches do not apply directly, and as suggested in Section 5
of Lazarus, Lewis, and Stock (2021), we use our own judgment
to select b0. For the local mean estimator m̂t in �̂′ we use the
Gaussian kernel for K(.). Given that b = b0n1/3, we require a
rate setting for the bandwidth h that satisfies h = O(n−τh) with
1/3 < τh < 2/3. Through extensive simulations, we found that
setting b0 = 1.5 and h = h0n−2/5 with h0 = 0.25 delivered a
good balance of finite sample size and power performance across
a range of null and alternative model specifications, and we
therefore adopt these throughout the remainder of the article. In
what follows, our finite sample simulations are based on 50,000
replications. We perform nominal 0.05-level two-tailed tests.
Because the tests’ sizes can be sensitive to the choice of kernels

and associated bandidths b and h in relatively small samples, it
is important in practice to use finite sample null critical values
for DM and DM′. We do this for our particular kernel choices
and settings for b and h, based on simulation of (6) with mt = 0
and vt generated as IID N(0, 1) variates—see the supplementary
appendix for further details.

5.1. Finite Sample Size

We first examine the finite sample sizes of DM and DM′ under
the null hypothesis when dt is generated according to (6) with
mt = aS0

t . Here, if a = 0, mt is constant at 0, while if a > 0,
mt is time varying, moving smoothly from −a to a, with Vm =
a2 ∫ 1

0 m(x)2dx = 0.867a2. We consider the range of values a ∈
{0, 0.1, 0.2, . . ., 0.5}.

Our first size simulations are for a homoscedastic case where
we generate νt according to the ARMA(1, 1) process

νt = φνt−1 + εt − θεt−1

with ν1 = ε1, and the εt are IID N(0, 1) variates. We consider
the ARMA(1, 1) parameter settings φ, θ ∈ {−0.5, 0, 0.5} and
the sample sizes n ∈ {75, 150, 300}. In order to provide an
illustration of the amount of mean variation occurring relative
to the stochastic component of the series, in Figure S1 of the
supplementary appendix we plot the generated process dt for
the first Monte Carlo replication, along with the corresponding
mean path mt , for the three cases a = 0.1, 0.3, and 0.5 when
T = 150 and φ = θ = 0. It is clear that as a increases,
the amount of mean variation (i.e., Vm) also increases, but the
movement in the mean never dominates the series, and even for
the most extreme case of a = 0.5, the influence of the mean shift
on the data is rather subtle. We therefore consider these settings
to be a plausible representation of what might be encountered in
practice.

The simulation results are shown in Table 1. In addition to
the test sizes, we also report the values of the mean variation
measure Vm that correspond to each value of a, and the values
of the LRV � that correspond to each setting of φ and θ . The
rows in the table are ordered by decreasing magnitude of �.
Focusing first on results for the central serially uncorrelated case
φ = θ = 0, we observe that, as a consequence of the method
for finite sample critical value generation, DM is correctly sized
when Vm = 0, but its size approaches zero as the amount of time
variation Vm increases away from zero. This under-sizing also
becomes more evident as the sample size n increases, in line with
the limiting result established in Theorem 2(i)(b). In contrast,
the size of DM′ remains close to the nominal level across all
Vm and sample sizes; some very modest under-sizing is apparent
for the larger values of Vm when n = 75, but this under-sizing
disappears rapidly as n increases.

Once we introduce serial correlation, for DM we observe a
broadly similar pattern of results to the uncorrelated case: for
given values of φ and θ , size is fairly close to the nominal level
when Vm = 0 (some modest size distortions are observed
with the direction and magnitude of these corresponding to
the magnitude of �), but when Vm > 0, size decreases as the
magnitude of Vm increases and as the magnitude of � decreases.
These reductions in test size are also more exaggerated as n
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increases. The pattern of size results are as would be expected
from the limit result (3), with the size distortions being most
apparent when the term driving the inconsistency of �̂, that is
(2bλk+1)Vm, is large relative to �. As regards DM′, when Vm =
0 we observe a similar pattern of small sample size distortion to
DM (again corresponding to the magnitude of �), although the
magnitudes of the distortions are somewhat more pronounced.
These features of size inflation and deflation are rapidly reduced
with increasing sample size. When Vm > 0, we observe that DM′
size again remains relatively unaffected by the magnitude of Vm.

Our second size simulations are for the heteroscedastic case
where νt = σtεt where the εt are IID N(0, 1) variates. For σt we
employ the smooth transition function σt = St(c, 30, 1, δ∗

2 ) with
δ∗

2 ∈ {1/6, 1/3, 3, 6} and c ∈ {0.25, 0.5, 0.75}. Here, for example
σt = St(0.5, 30, 1, 1/3) implies a downward transition in σt from
1 to 1/3 over t, with midpoint fraction 0.5 and transition speed
30. The results are shown in Table 2 for n = 150. The sizes of
DM again tend to approach zero with increasing Vm. The sizes
of DM′, on the other hand, appear to be relatively well controlled
across Vm, but do exhibit some modest over-sizing for the more
extreme change patterns in σt .

5.2. Finite Sample Power

To compare finite sample powers we focus on the uncorrelated,
homoscedastic case where νt = εt in (6) with εt being IID
N(0, 1). We first generate alternatives according to mt = aS0

t +
γ , so power is controlled by an additive offset γ to the null
function aS0

t (γ = 0 representing size), with the mean changing
smoothly from γ − a to γ + a (with transition mid-point 0.5).
Here,

∫ 1
0 m(x)dx = γ and, as in the size simulations, Vm =

0.867a2. In Figure 1, for each value in γ ∈ {0.1, 0.2, 0.3} we
plot power across a ∈ {0, 0.01, 0.02, . . ., 0.5}. Figure 1(a)–(c)
consider n = 75. Here we see that for each value of γ , the
powers of DM and DM′ are very similar when a = 0, but the
powers of DM are diminishing as a (and hence, Vm) increases
away from zero. Conversely, the powers of DM′ stay pretty much
constant across all Vm. Consequently, we observe quite marked
differences in power levels between DM and DM′ when Vm > 0,
increasingly so as the magnitude of Vm increases. The same
qualitative pattern of results is seen for n = 150 in Figure 1(d)–
(f) and n = 300 in Figure 1(g)–(i), albeit at higher levels as the
powers of both tests increase in n for a given value of γ .

In Figure 2 we consider the power behavior of DM and
DM′ from a perhaps more traditional perspective. Here, for
each value in a ∈ {0, 0.25, 0.5} we plot power across γ ∈
{0, 0.01, 0.02, . . ., 0.5}. When a = 0 we see that the size and pow-
ers of DM and DM′ are very similar throughout for each sample
size. Hence. despite the fact that in this case, for each value of γ ,
m̂t is estimating a nonexistent time variation in mt , the cost in
terms of power is practically zero. When a = 0.25, time variation
in mt is now present, and we observe the size and power of
DM falling slightly below that of DM′. These differences become
much more exaggerated when a = 0.5. We observe, therefore,
that while the powers of both DM and DM′ are monotonically
increasing in γ , DM′ can provide quite substantial power gains
over DM when the degree of time variation in mt is large. Ta
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Figure 1. Finite sample power of nominal 0.05-level tests, mt = aS0
t + γ , vt = εt . DM: ; DM′ :

Next, we generate alternatives according to mt = γ S1
t (c)

with c ∈ {0.25, 0.75}; here,
∫ 1

0 m(x)dx = 0.5γ and −0.5γ

for c = 0.25 and 0.75, respectively, while Vm = 0.617γ 2 for
both values of c considered. Figure 3 gives the powers across
γ ∈ {0, 0.02, 0.04, . . ., 1.0}. Note that γ = 0 implies the null
hypothesis holds, while simultaneously imposing Vm = 0, so
both DM and DM′ are correctly sized in this case due to the
lack of mean variation for this setting. The power results show
that it is again the case that DM′ is much more powerful than
DM, particularly when n = 75 where the power of DM is non-
monotonic and barely rises above the nominal level. For larger
n, the non-monotonicity in the power of DM disappears, but
its power is still well below that of DM′. Notice that the power
profiles of both tests are little affected by c, as might be expected
given that

∣∣∣∫ 1
0 m(x)dx

∣∣∣ = 0.5 in both cases and two-sided tests
are being conducted.

6. Empirical Applications

To illustrate the potential performance differences between the
DM and DM′ tests in practice, we consider two forecast accuracy
comparisons based on quarterly data. The first involves UK
house price growth and the second US GDP growth.

6.1. Forecasting UK House Price Growth

Here we evaluate the accuracy of forecasts of house price growth
from a distributed lag (DL) model involving growth of the rent-
price ratio, relative to a benchmark autoregressive (AR) model
using direct q-step ahead forecasts. Specifically, we wish to fore-
cast quarter-over-quarter house price growth at target date t+q,
pt+q = � ln(Pt+q) where Pt is the price of housing at time t.
Denoting the rent-price ratio as Rt and letting rt = � ln(Rt) we
fit fourth order DL and AR models
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Figure 2. Finite sample power of nominal 0.05-level tests, mt = aS0
t + γ , vt = εt . DM: ; DM′ :

ps = β̂0 + β̂1rs−q + β̂2rs−q−1 + β̂3rs−q−2 + β̂4rs−q−3 + error,

ps = φ̂0 + φ̂1ps−q + φ̂2ps−q−1 + φ̂3ps−q−2 + φ̂4ps−q−3 + error
via OLS over rolling windows of N observations s = t − N +
1, . . ., t. We then obtain direct forecasts of pt+q according to

f1t,q = β̂0 + β̂1rt−q + β̂2rt−q−1 + β̂3rt−q−2 + β̂4rt−q−3,

f2t,q = φ̂0 + φ̂1pt−q + φ̂2pt−q−1 + φ̂3pt−q−2 + φ̂4pt−q−3

and construct the two sets of forecast errors e1t,q = pt+q − f1t,q
and e2t,q = pt+q − f2t,q. The (log) rent-price ratio Rt has been
studied extensively as a predictor of house price growth (see
Ghysels et al. 2013, and the references therein). Here we use
the difference of the (log) rent-price ratio as the predictor to
avoid potential biased estimation problems when the rent-price
ratio exhibits substantial autocorrelation and endogeneity is
present.

We compare the accuracy of the two sets of forecasts using
both mean absolute error (MAE) and MSE loss functions; that

is, we construct the loss differentials dt = |e1t| − |e2t| and dt =
e2

1t − e2
2t , respectively (suppressing notational dependence on

q). Quarterly residential property price and rental price indices
are obtained from the OECD Data Explorer website. Using
rolling windows of N = 48 observations, we examine forecasts
q = 1, 2, . . ., 5 quarters ahead for the target dates 1991:1-2023:4,
giving n = 132. The DM and DM′ statistics are computed using
exactly the same kernel and bandwidth choices as used for our
finite sample simulations in Section 5. The results are given in
Table 3. The entries here are one-sided p-values for the statistics
based on simulating the finite sample null distributions in the
manner of Section 5, so that they are applicable for the exact
sample size and kernel and bandwidth settings employed. Also
reported is V̂m/�̂′, with V̂m as defined in (5), which provides a
standardized measure of the mean function variation.

Considering first the MAE loss results, for q = 1, while DM
finds no evidence whatsoever against the null of equal average
forecast accuracy, we see strong evidence of the superiority of
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Figure 3. Finite sample power of nominal 0.05-level tests, mt = γ S1
t (c), vt = εt . DM: ; DM′ :

the benchmark AR forecast when DM′ is considered. For q =
2, 3, 4 both DM and DM′ find evidence of superiority of the DL
forecast, although the strength of rejection is stronger in each
case for DM′ than for DM, especially for q = 3 where a rejection
is obtained at the 0.05-level as opposed to the 0.10-level. For
q = 5, evidence of superiority of the DL forecast is provided
by DM′ while DM does not reject the equal average forecast
accuracy null. Examining the value of the mean variation mea-
sure V̂m/�̂′, there is a clear pattern between the magnitude of
mean variation and the differences in inference associated with

the two tests. When q = 1 or q = 5, DM′ returns a rejection
of the null but DM does not, and in these cases we observe the
largest values of V̂m/�̂′. When q = 3, both tests reject the
null but DM′ rejects more strongly, and here V̂m/�̂′ assumes
an intermediate magnitude. When q = 2, 4, we find the smallest
values of V̂m/�̂′, and these are associated with DM and DM′
giving qualitatively the same inference. This pattern of results
is in line with our theoretical and simulation results, where it
is found that variation in the mean function of dt can reduce
the capability of DM to reject when the alternative of unequal
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Table 3. Application of tests to quarterly UK house price growth forecasts, 1991:1-
2023:4.

MAE MSE

q DM DM′ V̂m/�̂′ DM DM′ V̂m/�̂′

1 0.211 0.036∗∗ 2.684 0.463 0.440 1.347
2 0.085∗ 0.078∗ 0.358 0.023∗∗ 0.011∗∗ 0.494
3 0.074∗ 0.032∗∗ 0.666 0.046∗∗ 0.014∗∗ 0.741
4 0.099∗ 0.074∗ 0.490 0.055∗ 0.024∗∗ 0.655
5 0.116 0.052∗ 0.846 0.109 0.055∗ 0.758

NOTE: MAE and MSE denote mean absolute error and mean squared error, respec-
tively. Entries in italics are upper tail p-values, non-italicized entries are lower tail
p-values. ∗ , ∗∗ , and ∗∗∗ denote rejection of the null of equal average forecast
accuracy at the 0.10-, 0.05-, and 0.01-level, respectively.

average forecast accuracy is true, while DM′ remains robust to
such mean variation.

Under MSE loss, neither test rejects the null with q = 1 and
both tests suggest the DL forecast is superior for q = 2, 3, 4. Only
for q = 5 do we see the two tests provide differing inference;
here DM′ is alone in suggesting superiority of the DL forecast. It
is noteworthy that this coincides with the largest value of V̂m/�̂′
for which a rejection by either test is obtained, again suggesting
the mean variation in dt is compromising the power of DM
relative to DM′.

In Figures S2 and S3 of the supplementary appendix, plots of
dt and m̂t are provided under both MAE and MSE. In the case
of MAE, for q = 1 the mean function appears positive early in
the sample, then close to zero for the majority of the remaining
time period, before dropping to a negative value close to the
sample end. In contrast, for q = 2, 3, 4, 5, the mean function is
noticeably negative for about the first third of the sample, then
close to zero, before becoming negative again toward the end of
the period. In all cases, therefore, it appears that the two sets of
forecasts have approximately equal accuracy in the central part
of the time period, but differences in forecast ranking emerge in
the earlier and later portions of the data, which in most cases
translate to a significant difference in average forecast accuracy
over the period according to DM′. Broadly similar comments
apply in the case of MSE.

6.2. Forecasting US GDP Growth

We evaluate the accuracy of median consensus forecasts from
the Survey of Professional Forecasters (SPF) relative to a
benchmark autoregressive model. The SPF was introduced by
the American Statistical Association and the National Bureau
of Economic Research and is currently maintained by the
Federal Reserve Bank of Philadelphia; forecast data is published
on a quarterly basis and is available from their website. The
target variable for our forecast evaluation exercise is US real
GNP/GDP, with the forecasts being for quarter-over-quarter
growth rates, expressed in annualised percentage points. The
actual values we use are the Bureau of Economic Analysis first
revised values (one quarter after the initial release). Benchmark
forecasts with which we compare those from the SPF are also
reported by the Federal Reserve Bank of Philadelphia and the
one we select is again an AR model using direct q-step ahead
forecasts; these are calculated from estimated autoregressive
models using AIC model selection for a rolling window

Table 4. Application of tests to quarterly US real output growth forecasts, 1982:1-
2019:4.

MAE MSE

q DM DM′ V̂m/�̂′ DM DM′ V̂m/�̂′

1 0.020∗∗ 0.024∗∗ 0.233 0.028∗∗ 0.029∗∗ 0.253
2 0.085∗ 0.087∗ 0.241 0.033∗∗ 0.027∗∗ 0.306
3 0.202 0.206 0.247 0.106 0.109 0.244
4 0.079∗ 0.076∗ 0.276 0.061∗ 0.056∗ 0.302
5 0.040∗∗ 0.016∗∗ 0.579 0.065∗ 0.008∗∗∗ 1.177

NOTE: MAE and MSE denote mean absolute error and mean squared error, respec-
tively. Entries are lower tail p-values. ∗ , ∗∗ , and ∗∗∗ denote rejection of the null of
equal average forecast accuracy at the 0.10-, 0.05-, and 0.01-level, respectively.

of 60 observations. The data is available from https://www.
philadelphiafed.org/surveys-and-data/real-time-data-research/
error-statistics, and Stark (2010) provides detailed information
on the forecasts and benchmark methods. Now e1t denotes the
SPF forecast error and e2t denotes the corresponding error from
the AR benchmark forecast. We construct the loss differentials
as in the previous section for q = 1, 2, . . ., 5 quarters ahead
for the target dates 1982:1-2019:4, giving n = 152 (we end
our sample before start of the Covid epidemic; growth forecasts
being unreliable during this period). The DM and DM′ statistics
are also constructed using the same settings as in the previous
sub-section. The results are shown in Table 4.

Under MAE loss the inference from DM and DM′ is very sim-
ilar throughout: both suggest the SPF forecasts are more accurate
than the AR benchmark forecasts for all horizons except q =
3, where neither test rejects the null of equal average forecast
accuracy. The same pattern of results is found when using MSE
loss, with the exception of q = 5 where a considerably stronger
rejection of the null is obtained by DM′ than by DM. Inter-
estingly, examining the values of V̂m/�̂′, we find that there is
generally considerably less mean variation than in the house
price growth examples of the previous section. It is perhaps not
surprising, therefore, that the DM and DM′ tests return very
similar inference for these data. It is also noteworthy that the
largest value of V̂m/�̂′ is obtained in the case of MSE with q = 5,
which is the one occasion where DM rejects significantly less
strongly than DM′, again illustrating that relatively high levels
of mean variation can compromise the power of DM to reject
the null of equal average accuracy, in contrast to DM′.

Finally, in Figures S4 and S5 of the supplementary appendix,
we again plot dt and m̂t . The mean function paths in the MAE
case display more oscillating behavior than in the house price
growth example, but the majority of each mean path is clearly
below zero, in line with the lower tail rejections obtained by the
tests. An exception to this is q = 3 where the mean path appears
to oscillate about zero; unsurprisingly, neither test rejects in this
case. For MSE loss, the patterns of the mean paths are broadly
similar to those for MAE loss, but with the movements less
exaggerated.

7. Conclusion

We have considered testing the null of equal average forecast
accuracy in a model where the loss differential series has a poten-
tially nonconstant mean function over time. We have shown that
the standard DM test has an asymptotic size of zero under the

https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/error-statistics
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/error-statistics
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/error-statistics
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null of equal average forecast accuracy when time variation is
present in the loss differential mean. We have also shown that,
although remaining consistent, the local power of the DM test
can be impacted in the time varying mean case. The source of
the size and power problems in the DM statistic is inconsistency
of the usual LRV estimator. We proposed a modified test statistic
that replaces the standard LRV estimator (that uses full-sample
demeaning) with one based on local demeaning of the loss
differential series, employing a kernel smoothing nonparametric
estimator for the time varying mean. We have demonstrated that
the new LRV estimator is consistent for the true LRV under both
the null and alternative, regardless of whether the mean function
is constant or time varying. This results in the modified DM
test being asymptotically correctly sized, and we have shown
that it achieves nontrivial power against local alternatives with
a standard n−1/2 rate, again under both a constant or time
varying mean function. The new test therefore provides a robust
approach to testing the equal average forecast accuracy null,
allowing for instability in the loss differential mean. Monte Carlo
simulations attested to the benefits of the new approach in finite
samples. The modified test behaves similarly to the original DM
test when the mean function is constant, while offering valuable
power gains in the time varying case. Empirical illustrations
further highlight the potential for the new test to provide some
improved detectability of the alternative hypothesis in practical
forecast evaluation exercises. Overall we consider that extension
of the equal accuracy hypothesis to the more flexible specifica-
tion of an equal average accuracy hypothesis provides a valuable
generalization to forecast evaluation techniques. Within this
generalized setting, our modification to the DM test robustifies
it to variation in the mean function, providing a useful addition
to the set of evaluation tools available to practitioners.

Supplementary Materials

The supplementary appendix contains proofs of the theorems, detail on
the method for simulating finite sample critical values, and the additional
simulation and empirical application figures referred to in Sections 5 and 6.
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