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A B S T R A C T

As one of the most promising renewable energy resources, ocean wave energy has not been widely commer-
cialized compared to wind energy and solar energy due to its high Levelized Cost of Electricity (LCoE). It
has been long recognized that wave energy converter (WEC) control can increase the capture width ratio and
enhance the robustness of the WEC against extreme sea states. However, some rigid-body WECs have high
nonlinearities and soft-body WECs such as Dielectric Elastomer Generators (DEGs)/Dielectric Fluid Generators
(DFGs) can barely be precisely modeled. To tackle these challenges, this paper aims to propose an optimal
control scheme that has less dependence on the dynamical model by introducing deep reinforcement learning
into the foundation of a non-causal optimal control strategy. The gain parameters are adjusted adaptively in
real time to account for an increasing understanding of this scheme on the WEC behavior and the incoming
wave. Furthermore, by systematically contrasting outcomes obtained with various prediction time steps, this
investigation aims to pinpoint the most effective prediction strategy for optimizing energy capture efficiency.
The robustness of the proposed control against prediction errors and model uncertainties has been verified by
using the realistic wave data gathered from the coast of Cornwall, UK.
1. Introduction

As a promising renewable resource, wave energy provides high en-
ergy density and continuous power supply (Clément et al., 2002; Drew
et al., 2009) and has a great potential of supplying global resources
of 146 TWh/yr (Kempener and Neumann, 2014). However, compared
to wind and solar energy, such potential has not been fully unrealized
due to the high Levelized Cost of Energy (LCoE). Various types of wave
energy converters (WECs) have been investigated and developed during
the past decades, including point absorbers, overtopping WECs, oscillat-
ing water columns, and attenuators (Baños et al., 2011), and Dielectric
Elastomer Generators (DEGs)/Dielectric Fluid Generators (DFGs) that
are developed recently. It has been long recognized that control plays
an important role in maximizing energy output and enhancing effi-
ciency. More importantly, it has been proven that wave prediction
can further improve the control performance (Falnes and Kurniawan,
2020). Therefore, this paper investigates a non-causal control strategy,
in which the current control action is determined by not only the
current feedback but also the future information.

Some of the prediction approaches are based on statistical meth-
ods, like the Auto-Regressive (AR) prediction method (Zhang et al.,
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2019) and the extended Kalman Filters (EKF) (Fusco and Ringwood,
2010). As a novel model that has been used in multiple fields, Neu-
ral networks have also been introduced to forecast short-term wave
forces (Li et al., 2019, 2018). Other prediction methods rely on the
extra sensors that can provide measurements of sea wave elevations
at multiple upstream locations with certain distances away from the
WEC, such as the deterministic sea wave prediction (DSWP) (Abusedra
and Belmont, 2011). Recent studies have proposed a large number
of non-causal control methods that aim at maximizing wave power
production under actuator constraints. These studies show a promising
energy harvesting performance (Hals et al., 2010; Li and Belmont,
2014; Ringwood et al., 2014; Genest and Ringwood, 2016; Zhan and Li,
2019). Control methods like MPC based on hydrodynamic principles for
WEC control can offer improved performance than traditional control
strategy (Faedo et al., 2017). Another study proposed a fully convex
implementation, which trades off the energy absorption, the energy
consumed by the actuator, and safe operation (Li and Belmont, 2014).
A quadratic programming method has been proposed to provide energy
maximization solution (Zhong and Yeung, 2018). There are also some
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other effective methods proposed (Ringwood et al., 2014; Korde and
Ringwood, 2016; Fusco and Ringwood, 2012). However, these methods
rely on the accurate WEC model.

Machine learning techniques have shown amazing performance
in conducting complex tasks, especially facing ambiguous inputs like
nature language (Collobert and Weston, 2008), image classification
(Krizhevsky et al., 2012), and data-driven modeling. Machine learning
comes into the WEC control community mainly in two methods. The
first is to use machine learning methods to build a data-based, nonlinear
model of the system dynamic for system identification (Gaspar et al.,
2016). The second is to optimize the paraments (Anderlini et al., 2017)
of other control theories or to conduct data-driven online control (Tri
et al., 2016). Different from supervisor learning and non-supervisor
learning, reinforcement learning lets the agent learn from the interac-
tion with the environment (Kober et al., 2013). Based on data-driven
logic, reinforcement learning has shown satisfactory performance in
dealing with systems with uncertainty (Sutton and Barto, 2018), like
games (Mnih et al., 2013) and go (Silver et al., 2016), etc. This makes
the reinforcement learning method suitable to deal with inaccurate
predictions and new circumstances that the agent has not met before.
Therefore, reinforcement has been used in robotics systems (Kober
et al., 2013), which have similar mechanics to the WEC problem and
are faced with many uncertain circumstances. A study has shown it has
the potential to tackle the inaccuracy of the WEC control problem (Zou
et al., 2022). However, the research on the application of reinforcement
learning in the WEC field is still insufficient. Only a few studies of
WEC involve reinforcement learning in WEC control (Zou et al., 2022;
Anderlini et al., 2018; Bruzzone et al., 2020). The Q-learning algorithm
is one of the classical value-based RL algorithms (Watkins and Dayan,
1992). The research (Anderlini et al., 2016) by Anderlini et al. applies
Q-Learning in identifying the optimal damping for WECs. Due to the
complexity of a WEC system, Double Deep Q-Network (DDQN), a kind
of Deep Reinforcement Learning (DRL), is introduced to WEC control
later (Anderlini et al., 2020). The DDQN algorithm was put forward
to play artari (Mnih et al., 2013) at first but shows great competence
in improving the performance of the Q-learning algorithm. Usually,
a DDQN method is used to solve discrete problems, but a recent
study applied a time-varying PD control whose gains are adjusted by
DDQN (Zou et al., 2022).

This paper investigates a non-causal control strategy using DDQN
developed for point absorber WEC systems, whose control performance
is improved by benefitting from both the wave prediction and the
DDQN. This paper aims to fill the research gap of incorporating wave
prediction into model-free control methods like DDQN. Although the
future information of waves could be partly reflected by the prediction
ability of DDQN (Zou et al., 2022; Anderlini et al., 2020), this kind
of prediction only works to refer to the future reward. DDQN always
makes the best decision based on the present reward and the estimate of
future reward, but the control of PTO is conducted by the time-variant
PD controller. Wave prediction can still improve the performance of
the PD controller. Besides, a comparison of the improvement brought
by different wave prediction horizons is also necessary to show how
prediction influences control performance. The contributions of this
paper are as follows

• A non-causal control based on the DDQN is proposed to fill the
research gap of the prediction-based reinforcement learning in
wave energy conversion.

• Wave prediction is incorporated into the control scheme to in-
crease the energy output. Taking the benchmark problem, a point
absorber, as an example, it has been proven that wave prediction
makes a significant contribution to wave energy harnessing.

• A pair of real-time adjustable gain parameters have been op-
timized via reinforcement learning to tackle the challenges in
wave energy converters with significant nonlinearities and model
mismatch.
2 
Fig. 1. Schematic diagram of the point absorber.

• A realistic wave data gathered from the coast of Cornwall, Wales,
UK is used to validate the effectiveness of the proposed control
algorithm.

• The proposed control algorithm is generally applicable to other
WECs across varied archetypes (e.g., sizes, shapes), especially for
flexible WECs, such as origami WECs and Dielectric Elastomer
Generator and Dielectric Fluid Generator.

• The proposed method is robust against model uncertainties and
prediction errors.

The rest of the paper is as follows. Section 2 introduces the state–
space model of the point absorber. The reinforcement learning control
method is proposed in Section 3, where the basic structure of the
agent is introduced. Simulation results for the comparison are shown
in Section 4. Section 5 concludes this paper.

2. WEC modeling for environment training

This section first introduces the dynamical model of a single-point
absorber in Section 2.1. To build the simulation environment, the
hydrodynamic model is described in a state–space model form, which
introduces modeling uncertainties. The Section 2.2 shows how the
hydrodynamic model is transformed into a state–space model that is
used in training the environment. The Section 2.3 gives the optimal
solution of a non-causal WEC control problem for a precisely modeled
point absorber.

2.1. Dynamic model

Fig. 1 shows part of a possible hydraulic power take-off (PTO)
design where a hydraulic cylinder is vertically installed below the float
and is fixed to the bottom of the seabed. More details on this design
can be found in Weiss et al. (2012). 𝑧𝑤 and 𝑧𝑣 are the water level and
the height of the mid-point of the float respectively. The PTO torque
is proportional to the force 𝑓𝑢 acting on the piston inside the cylinder.
The extracted power is 𝑃 = −𝑓𝑢𝑣, where the velocity on the piston is
𝑣 = �̇�𝑣.

By using Newton’s second law, the dynamic equation (Yu and
Falnes, 1995) for the float of the point, the absorber is like function (1).

𝑚𝑠�̈�𝑣 = −𝑓𝑠 − 𝑓𝑟 + 𝑓𝑒 + 𝑓𝑢 (1)

where 𝑚𝑠 is the float mass. The restoring force 𝑓𝑠 is given by Eq. (2).

𝑓 = 𝑘 𝑧 (2)
𝑠 𝑠 𝑣
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With the hydrostatic stiffness 𝑘𝑠 = 𝜌𝑔𝑠, 𝜌 as water density, 𝑔 as standard
gravity, and s as the cross-sectional area of the float. 𝑓𝑟 is the radiation
force determined by Eq. (3).

𝑓𝑟 = 𝑚∞�̈�𝑣 + ∫

∞

−∞
ℎ𝑟(𝜏)�̇�𝑣(𝑡 − 𝜏) 𝑑𝜏 (3)

where 𝑚∞ is the added mass, ℎ𝑟 is the kernel of the radiation force that
can be computed via hydraulic software packages (e.g. WAMIT (Lee,
1995)). Following (Yu and Falnes, 1995), the convolutional term in (3)
can be approximated by a causal finite-dimensional state–space model.

̇ 𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�𝑣

𝑓𝑅 = 𝐶𝑟𝑥𝑟 ≈ ∫

𝑡

−∞
ℎ𝑟(𝜏)�̇�𝑣(𝑡 − 𝜏) 𝑑𝜏

(4)

where (𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 0) and 𝑥𝑟 ∈ R𝑛𝑟 are the state–space realization and the
state respectively. Following (Yu and Falnes, 1995), the wave excitation
force 𝑓𝑒 can be determined by (5).

𝑓𝑒 = ∫

∞

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏 (5)

where ℎ𝑒 is the kernel of the radiation force and the state–space
approximation is given by

̇ 𝑒 = 𝐴𝑒𝑥𝑒 + 𝐵𝑒𝑧𝑤

𝑒 = 𝐶𝑒𝑥𝑒 ≈ ∫

𝑡

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏

(6)

here (𝐴𝑒, 𝐵𝑒, 𝐶𝑒, 0) and 𝑥𝑒 ∈ R𝑛𝑒 are the state–space realization and
he state respectively.

.2. State–space model

With the realizations of (4) and (6), the state–space model of (1)
an be represented by

�̇� = 𝐴𝑐𝑥 + 𝐵𝑢𝑐𝑢 + 𝐵𝑤𝑐𝑤 + 𝜖
𝑦 = 𝐶𝑐𝑥

(7)

here 𝑤 = 𝑧𝑤 is the wave elevation whose prediction is incorpo-
ated into the controller design, 𝑦 = 𝑧𝑣, 𝑦 = �̇�𝑣, 𝑥 = [𝑧𝑣, �̇�𝑣, 𝑥𝑟, 𝑥𝑒],
= 𝑓𝑢. 𝜖 represents the modeling uncertainty caused by wave force

pproximations (4) and (6). And

𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
− 𝑘𝑠

𝑚 0 𝐶𝑒
𝑚 −𝐶𝑓

𝑚
0 𝐵𝑟 𝐴𝑟 0
0 0 0 𝐴𝑒

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝑤𝑐 =
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⎢

⎢

⎢

⎢

⎣

0
0
0
𝐵𝑒

⎤

⎥

⎥
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⎦

𝐵𝑢𝑐 =

⎡

⎢

⎢

⎢
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⎣

0
1
𝑚
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝐶𝑐 =
[

0 1 01×(𝑛𝑟+𝑛𝑒)
]

(8)

with 𝑚 = 𝑚𝑠 +𝑚∞. The continuous-time model (7) can be converted to
discrete-time model (9).

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝜔𝜔𝑘 + 𝜖𝑘
𝑦𝑘 = 𝐶𝑥𝑘

(9)

here the pair (𝐴,𝐵𝑢, 𝐵𝜔, 𝐶) is the discrete-time form of the pair
𝐴𝑐 , 𝐵𝑢𝑐 , 𝐵𝜔𝑐 , 𝐶𝑐 ).

.3. Linear Optimal control for a precisely modeled point absorber

In the Linear Optimal control of the point absorber (Zhan and Li,
019), the following constraints in Eqs. (10a) and (10b) should be
atisfied.

|𝑧𝑣| ≤ 𝛷𝑚𝑎𝑥 (10a)

𝑓𝑢| ≤ 𝑢𝑚𝑎𝑥 (10b)

he optimal control strategy of a WEC based on point absorber can be
ormulated as:

min 1 (
𝑁−1
∑

𝐿𝑘(𝑥𝑘, 𝑢𝑘)) (11a)

𝑁 𝑘=0

3 
𝑠.𝑡.𝑥𝑘+1 = 𝐴𝑥𝑥 + 𝐵𝑢𝑢𝑘 + 𝐵𝜔𝜔𝐾 (11b)

𝑘 = 𝐶𝑧𝑥𝑘 (11c)

here 𝑁 is the number of prediction steps and 𝐿𝑘 is the stage cost. And
e have,

𝑘 = 1
2
𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑧𝑘𝑢𝑘 +
1
2
𝑟𝑢𝑘

2 (12)

The following criteria hold.

1. 1
2𝑥𝑘

𝑇𝑄𝑥𝑘 is used to penalize the state. The weight 𝑄 influences
the stability of the control system and can be used as a tuning
parameter to handle the state constraint (10a).

2. −𝑧𝑘𝑢𝑘 represents the power that can be captured by the PTO
mechanism.

3. 1
2 𝑟𝑢𝑘

2 is used to penalize the input. The weight 𝑟 influences
the stability of the control system and can be used as a tuning
parameter to handle the input constraint (10b).

he linear optimal noncausal controller for this control problem can
urther be simplified by linear optimal noncausal control law (13),
ccording to Zhan and Li (2019).

𝑘 = 𝐾∗
𝑝 𝑥 +𝐾∗

𝑑𝜔 (13)

here 𝜔 is a vector of wave elevation prediction, and gain parameters
∗
𝑝 and 𝐾∗

𝑑 are calculated offline.
For a precisely modeled point absorber, the linear non-causal con-

rol (13) has been proven to be effective and efficient. However, for
ECs with significant model mismatch and nonlinearities in hydro-

ynamics, such as DEGs and DFGs as well as origami WECs, the gain
arameters should be adjusted in real-time to deal with the challenges
n model-less or model-free optimization problems. In this paper, a
on-causal control scheme based on a reinforcement learning agent is
roposed to tackle the challenge.

. Non-causal control with reinforcement learning

.1. Deep reinforcement learning control framework

Reinforcement learning could be generally divided into model-based
einforcement learning and model-free reinforcement learning. Unlike
raditional MPC, model-free reinforcement control does not require a
recise model for controller design. Instead, a reinforcement learning
ontrol system uses the interaction with the environment to learn the
olicy. Reinforcement learning has shown a strong ability to deal with
equential decision-making (Li, 2017), where the problem of the non-
ausal control for WEC falls in. The DDQN (Mnih et al., 2013) is
ow widely used in deep reinforcement learning. It is developed from
lassical Q-Learning which has been proven to be effective in simple
roblems. Based on Q-Learning DDQN introduced deep neural networks
DNN) to instead the Q-table used in traditional Q-Learning. This leads
he RL algorithm to gain the ability to solve more complex problems
ike chess and video games.

In a typical reinforcement learning (RL) system (Sutton and Barto,
998), there are an ‘‘agent’’ and an ‘‘environment’’. Due to the high cost
f the mechanical structure, simulation environments are always ap-
lied to train the agent. For a DDQN agent, there is a DNN to be trained.
n an RL problem, we use 𝑠𝑛 to present the current state. Meanwhile 𝑎𝑛
tands for the current action the agent does to the environment. The
ction is selected in an action space according to the policy. Besides,
𝑛 is the reward defined manually to critique the performance of the
urrent step. The calculation of reward always requires professional
nowledge. After one step of interaction, the system goes forward and
e get 𝑠𝑛+1, 𝑎𝑛+1 and 𝑟𝑛+1. In each step, the selection of action is

regarded as a Markov decision process. The decision is based on the
value function. There are two neural networks with wight parameters
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Fig. 2. Structure of the control system.

𝜃 and 𝜃−, which have totally the same structure 𝑄. Thus, the target 𝑦𝑇
is expressed as (14).

𝑦𝑇 = 𝑟𝑛 + 𝛾 max
𝑎𝑛+1

𝑄(𝑠𝑛+1, 𝑎𝑛+1; 𝜃−𝑛 ) (14)

where 𝛾 is the future reward discount that represents how much we
focus on the future reward. The agent is expected to learn the policy
to maximize the target y. The weight of Q-network(𝜃) will be updated
based on the weight of the target network (𝜃−) with Eq. (15).

∇𝜃𝑛𝐿(𝜃𝑛) = 𝐸[(𝑦𝑇 −𝑄(𝑠𝑛, 𝑎𝑛, 𝜃𝑛))∇𝜃𝑛𝑄(𝑠𝑛, 𝑎𝑛, 𝜃𝑛)] (15)

Furthermore, a minibatch training (sampled from the stored ex-
perience buffer) is also adopted to avoid divergence and smooth the
learning. The agent collects 𝑟𝑛 and new state 𝑠𝑛+1 after the last action
𝑎𝑛 has been taken. The experience is set 𝑒𝑛 = [𝑠𝑛, 𝑎𝑛, 𝑟𝑛, 𝑠𝑛+1]. The
experience of the agent is saved in a buffer to improve the learning
speed. The batch is sampled from the experience buffer to train the deep
network with (15). Then the next action 𝑎𝑛+1 is decided by maximizing
the target with (14). The target network 𝜃−𝑛 is updated after each batch
by the Q-network with the function (16).

𝜃−𝑛 = 𝜏𝜃𝑛 + (1 − 𝜏)𝜃−𝑛 (16)

where 𝜏 is the smoothing factor.

3.2. DDQN problem formulation

Considering the importance of wave prediction in WEC control, the
WEC control is formulated in the fashion of time-varying PD control
with prediction, which matches the form of the optimal solution pro-
posed by Zhan and Li (2019). Fig. 2 shows the basic structure of the
system. The TVPD controller can be implemented by (17).

𝐹𝑃𝑇𝑂 = 𝐾𝑝(𝑛)𝑠𝑛 +𝐾𝑑 (𝑛)𝑤𝑝𝑟𝑒 (17)

where 𝐾𝑝 and 𝐾𝑑 are adjusted in real-time by the action of RL, and the
𝑤𝑝𝑟𝑒 is the wave prediction. 𝑠𝑛 contains the displacement of float 𝑧𝑣,𝑛
and the velocity of the float �̇�𝑣,𝑛 at the step 𝑛. The state can be expressed
as Eq. (18).

𝑠 = [𝑧 , �̇� ]𝑇 (18)
𝑛 𝑣,𝑛 𝑣,𝑛

4 
Fig. 3. Structure of the DNN.

Fig. 4. Wave height in the first 200 s.

And the length of 𝑤𝑝𝑟𝑒 is the prediction horizon 𝑁 .

𝑤𝑝𝑟𝑒 = [𝑤1, 𝑤2,… , 𝑤𝑁 ]𝑇 (19)

with 𝑁 as the prediction horizon, which is a positive integer.
To balance the cost of computing and control performance, the

control period of the RL agent and the sampling period are set at the
same 𝑇𝑠 = 0.5𝑠. When the RL agent does not work between two sample
points, the PD controller can still work as a traditional PD control.
Therefore, the mission of the RL agent is to adjust 𝐾𝑥 and 𝐾𝑑 every
RL sample period. The action of the RL algorithm is from the given
action space 𝐴.

𝐴𝑐𝑡𝑖𝑜𝑛𝑛 =

{𝑎𝑛|[(𝛿, 0,… , 0), (−𝛿, 0,… , 0), (0, 𝛿,… , 0), (0,−𝛿,… , 0),…]}
(20)

where 𝛿 is a small amount. The length of each action choice is decided
by the length of the control horizon. The given action space is similar
to one-hot code to some degree. In each step, the non-causal control is
updated by the rule (21)

[𝐾𝑝(𝑛 + 1), 𝐾𝑑 (𝑛 + 1)] = [𝐾𝑝(𝑛), 𝐾𝑑 (𝑛)] + 𝑎𝑛 (21)

According to a previous study (Anderlini et al., 2018), there is no
need to consider more complex actions like (𝛿, 𝛿,…) and (−𝛿,−𝛿,…)
to concise the action space. In a WEC control system, we focus on the
energy output efficiency most. So it is reasonable to set a reward related
to the power 𝑃𝑛. Whilst we need to protect the mechanical structure
so we set a ‘‘punishment’’ 𝑟 when the 𝐹 output exceed the
𝑝𝑢𝑛𝑖𝑠ℎ 𝑃𝑇𝑂
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Fig. 5. Average reward during training.
Fig. 6. Energy output by different horizons.

limitation 𝐹max. Therefore, the reward 𝑟𝑛 is expressed like (22).

𝑟𝑛 =

{

𝑃𝑛, |

|

𝐹𝑃𝑇𝑂
|

|

≤ 𝐹𝑚𝑎𝑥

𝑟𝑝𝑢𝑛𝑖𝑠ℎ, |

|

𝐹𝑃𝑇𝑂
|

|

≥ 𝐹𝑚𝑎𝑥
(22)

In this case, 𝑟𝑝𝑢𝑛𝑖𝑠ℎ is always set to a very small plural number to let the
agent learn to avoid the behavior that will damage the system. Also, it
is worth mentioning that the period of RL sampling and the period of
simulation is different. Thus, the 𝑃𝑛 is actually calculated as Eq. (23).

𝑛 =
𝑃𝛿𝑡
𝛿𝑡𝑅𝐿

(23)

Through the Q-function, the DRL control method can take all the future
discount rewards which consist of past rewards and future rewards.

∑
This is similar to 𝑟𝑛 but uses an estimate of the future.

5 
Table 1
Training parameters.
Hyperparameters Values

Learning Rate 0.01
Batch Size 64
Replay Memory Size 104

Discount Factor 0.999
Target smoothing Factor 0.99
Number of Neurons Each Hidden Layer 24
Target Update period 0.5s

3.3. DQN Agent structure and training

The structure of the neural network is like Fig. 3. Each fully con-
nected layer contains 24 cells and the optimizer is SGD. The agent needs
to be trained previously. Parameters are set as Table 1. Besides, we train
three sets of agents facing different forecast horizons. For the agent in
each set, the initial value of the TVPD controller is set by the linear
optimal noncausal control method proposed in Zhan and Li (2019).

3.4. Wave prediction

The effectiveness of wave prediction techniques is crucial for the
proposed noncausal optimal WEC control strategy. Wave prediction
methods can generally be classified into two main categories.

The first category relies on historical sea wave data collected at the
same location as the WEC. These methods utilize statistical approaches
such as autoregressive models, cyclical models, and extended Kalman
filters, as summarized in Fusco and Ringwood (2010). Also, wave
prediction can be obtained by learning-based algorithms such as Long-
Short Term Memory LSTM (Zhang et al., 2021) and ARIMA (Wu et al.,
2021).

The second category of wave prediction techniques uses measure-
ments of sea wave elevations from multiple nearby locations at certain
distances from the WEC. By analyzing wave propagation and direction,
these methods can predict the sea wave profile at the WEC’s location

several seconds into the future. A notable method in this category is
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Fig. 7. 𝐹𝑃𝑇𝑂 , power, location and velocity.
Fig. 8. Energy output on computer-generated data.

eterministic Sea Wave Prediction (DSWP), which we describe briefly
or completeness. More detailed information can be found in Belmont
t al. (2014).

. Simulation results

This section presents the results of the simulation, conducted using
ATLAB for both the simulation environment and the agent. The wave

ata we used is gathered from the coast of Cornwall, Wales. The wave
eight in the first 200 s is shown in Fig. 4.

Three sets of simulations were established in this section, each with
rediction horizons set at 1, 3, and 5 steps. Each simulation episode
omprised 20,001 steps, equivalent to 200 s in a realistic scenario.
he agent’s training ceased when the total rewards reached a relatively
table value. The three simulation sets required 35, 73, and 21 episodes,
6 
Table 2
Energy output of WEC with different controllers.

Controller Energy output

DDQN with prediction horizon 5 100.9 kJ
DDQN with prediction horizon 3 102.0 kJ
DDQN with prediction horizon 1 54.7 kJ
Traditional PD controller 27.64 kJ

respectively. The training duration for the agent was approximately 6 h,
12 h, and 5 h. The hardware employed for training included an Nvidia
GTX1650 GPU and an Intel Core i7-9750H CPU. The average reward,
filtered with a moving average filter for enhanced clarity, is depicted
in Fig. 5. This visualization provides insights into the learning progress
of the agent across different prediction horizons and demonstrates the
efficiency of the training process.

In the context of a WEC system, the primary focus lies on the
converted energy. As a benchmark for comparison, we utilize the
conventional control method to highlight the performance differences.
The total energy output after 200 s simulation is shown in the Table 2:

The energy output from both the classical control methods and our
learning-based control method is presented in Fig. 6. Additionally, we
conduct a comparative analysis of outcomes achieved through differ-
ent prediction horizons, providing insights into the impact of varying
horizons on energy conversion.

As illustrated in Fig. 6, there is a remarkably similar performance
between Horizon 3 and Horizon 5. Notably, it is worth highlighting that
the training cost for the agent with Horizon 5 is lower, as depicted in
Fig. 5. This underscores the efficiency of our method, surpassing tradi-
tional control methods. In reality, WEC systems operate under various
constraints. Beyond energy output, additional criteria such as 𝐹𝑃𝑇𝑂,
velocity, and location are crucial considerations, as shown in Fig. 7. The
comprehensive evaluation of these factors reaffirms the effectiveness
of our approach, demonstrating its superiority over traditional control
methods and its potential for practical implementation in real-world
WEC systems.
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Fig. 9. 𝐹𝑃𝑇𝑂 , power, location and velocity.
Fig. 10. Simulation in 400 s.

Analyzing Fig. 7, it is evident that all the factors, including 𝐹𝑃𝑇𝑂,
ower, location, and velocity, are effectively controlled. Notably, an
nteresting trend emerges from this data with an increase in the pre-
iction step size, there is a corresponding increase in the 𝐹𝑃𝑇𝑂 of the
ystem. Simultaneously, the displacement and speed of the float exhibit
decrease as the prediction horizons expand. This observation implies

hat larger prediction step sizes contribute to greater energy output.
he interconnected relationship between these variables suggests that
djusting the prediction horizons can influence the system dynamics,
7 
Fig. 11. The gain 𝐾𝑝 vs time (𝐾𝑝1 is the gain for the displacement of the float, and
𝐾𝑝2 is the gain for the velocity of the float).

striking a balance between maximizing energy extraction and con-
trolling the mechanical forces within acceptable limits. This insight
is crucial for fine-tuning the agent’s parameters to achieve optimal
performance under varying conditions.

To assess the universality of the trained agent, acquiring additional
data becomes imperative. However, obtaining real sea wave data is
not always convenient. To address this challenge, computer-generated
data can facilitate more extensive testing. Furthermore, considering the
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Fig. 12. The gain 𝐾𝑑 vs time (𝐾𝑑𝑖 is the gain for 𝑖 th-step-ahead prediction).

variability in wave amplitudes under different sea conditions, training
the agents under more challenging conditions than the simulation
becomes crucial. This approach ensures that the force exerted by the
𝐹𝑃𝑇𝑂 remains within mechanical limitations. Under the evaluation
using generated wave data, the power output is illustrated in Fig. 8,
while Fig. 9 provides insights into the values of position, velocity,
power, and 𝐹𝑃𝑇𝑂. This comprehensive testing approach, incorporat-
ing simulated conditions and tougher training scenarios enhance the
agent’s adaptability to a broader range of situations, contributing to its
overall universality.

The wave is intentionally set to a more violent setting to assess the
agent’s performance under harsher environmental conditions. As de-
picted in the figure, the energy output increases proportionally with the
heightened energy content of the wave. Notably, the constraint on the
value of 𝐹𝑃𝑇𝑂 remains strict, capped at 20𝑁 . Additionally, extending
he prediction horizon leads to improved energy output, demonstrating
hat a longer prediction duration enhances the algorithm’s perfor-
ance. This effect is particularly evident when considering the stability

f the algorithm over time. As illustrated in Fig. 10, the total en-
rgy output significantly surpasses that of the conventional method
hen the time window is doubled. This observation underscores the
lgorithm’s ability to adapt to varying wave intensities and highlights
he positive correlation between prediction horizon length and energy
arvesting performance. The strict adherence to the 20𝑁 constraint
nsures the agent’s operation within defined safety limits, emphasizing
oth efficiency and safety in energy extraction.

During the operation of the system, both 𝐾𝑝 and 𝐾𝑑 undergoes
continuous changes. The dynamic evolution of 𝐾𝑝 and 𝐾𝑑 gain is
illustrated in Figs. 11 and 12, providing an overview of its general trend
over time.

In this particular scenario, the simulation results indicate that the
parameter 𝐾𝑑2 undergoes the most rapid changes among the specified
parameters. While 𝐾𝑝 keeps constant and other parameters have very
mall changes. This observation suggests that the second step in the
uture holds significant importance, potentially influencing the system
ynamics to a considerable extent. Moreover, the parameter 𝐾𝑑1 ex-
ibits substantial variations over time, implying that the immediate
uture carries a higher level of reliability and impact on the system.
his observation may shed light on the comparable performance of
he horizon 3 and horizon 5 cases in terms of energy output. The
ynamic nature of 𝐾𝑑2 and the pronounced changes in 𝐾𝑑1 over time

ight contribute to the convergence of performance between these

8 
able 3
nergy output.
(horizon = 5) K = 0 K = 0.05 K = 0.10

SNR = 0 dB 100.2 kJ 105.1 kJ 115.1 kJ
SNR = 10 dB 100.3 kJ 107.5 kJ 126.6 kJ
SNR = 20 dB 100.2 kJ 108.2 kJ 124.1 kJ

two horizon scenarios. This nuanced relationship is further illustrated
in Fig. 13, highlighting the correlation between 𝐾𝑑2 and the running
time. It is noteworthy that both Figs. 12 and 13 present data processed
through the move-mean technique, ensuring a smoothed representation
of the underlying trends and patterns in the simulation results. This
analytical approach enhances the clarity and interpretability of the
depicted data.

In practice, model uncertainty and prediction error are inevitable.
To simulate prediction error, we introduce white noise to the prediction
signal. To account for model uncertainty, we employ a model that
incorporates this uncertainty in Eq. (9). To test the performance of our
agent, we change the test environment without retraining the agent.
By adding noise with a signal-to-noise ratio (SNR) equal to 0 dB, 10 dB
and 20 dB to the horizon 5 case, we get Fig. 14.

From Fig. 14, we can find the noise added has a very slight in-
fluence. This might result from the build-in robustness of optimal
control and the controller does not highly rely on the prediction or the
influence of the five steps offset each other. Then by adding a random
uncertainty 𝜖𝑘 = 𝐾𝜀(𝑘) to the model, we get the result shown in Fig. 15.
Where 𝐾 is a coefficient and 𝜀(𝑘) is a random variable evenly distribute
between −1 and 1.

Fig. 15 shows that with model uncertainty, the system can still keep
stable. Table 3 shows the final energy output of different combinations
of uncertainty and prediction error.

We can find from the above table that the proposed method is
effective and robust against model uncertainties and prediction errors
under the condition that there are acceptable noise below 20 dB and
model uncertainty under 0.1 (m/s).

5. Conclusions

In light of the unique characteristics of Wave Energy Converters
(WECs), we have introduced a reinforcement learning methodology
to augment the non-causal controller based on Double Deep Q Net-
work (DDQN). After subjecting our approach to rigorous simulation
tests using the collected dataset, we have achieved energy conversion
results that outperform traditional control methods. Furthermore, we
conducted a comparative analysis of the control effects stemming from
different prediction time steps.

Our findings unequivocally demonstrate that longer-term predic-
tions, specifically, those involving three steps at 0.03 s and five steps at
0.05 s, significantly outperform the results obtained from shorter-term
predictions, such as one step at 0.01 s. This indicates that extending the
prediction horizon has a profound impact on improving the controller’s
efficacy. Additionally, it is noteworthy that even though a five-step
prediction has a negligible effect on the ultimate total energy output,
it does alleviate the training burden on the reinforcement learning
agent. This observation suggests that the increased predictive horizon
enhances the controller’s performance, consequently lightening the
workload for the reinforcement learning agent.

In conclusion, by integrating a reinforcement learning approach
and extending the predictive horizon, we have achieved remarkable
progress in WEC control strategies. These advancements hold the
promise of significantly enhancing energy conversion efficiency and
contributing to the sustainability of energy production.
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Fig. 13. 𝐾𝑑1 and 𝐾𝑑2 .
Fig. 14. Energy output with SNR equal 0 dB, 10 dB, 20 dB.
9 
Fig. 15. Energy output with 𝐾 = 0, 0.05, 0.1.
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