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A B S T R A C T

Over the past decade, the rapid growth of solar energy penetration has posed significant challenges for grid
balancing and scheduling, heightening the need for accurate and efficient short-term solar forecasting. While
deep learning models have shown promise in improving forecasting accuracy, previous studies have often
focused on data from specific sites, limiting their generalisability across different climatic and geographical
conditions. This study addresses this limitation by employing a multimodal self-attention deep model,
trained under the dry and clear climate conditions of Folsom, California, and integrating various transfer
learning techniques. We examine the transferability of this model to a new dataset from Nottingham, UK,
characterised by humid and rainy conditions. Specifically, we compare different transfer methods based on
model architecture and validate performance with limited target site data (equivalent to two weeks of data).
The model’s expertise can be effectively transferred, reducing the required data for successful model training
by 80% (from four months to two weeks). Simulations under realistic scenarios demonstrate that the model,
trained with just two weeks of data from the deployment site, achieved performance surpassing the baseline.
This work demonstrates the feasibility of transferring deep learning models for solar forecasting across diverse
climatic conditions, significantly reducing the data and time needed for model adaptation and deployment.
This has the potential to enhance the reliability and efficiency of solar energy integration into power grids
globally.
1. Introduction

Very-short-term (VST) solar energy forecasting based on ground-
based fisheye images has been extensively studied and proven effective
in predicting the rapid intermittency of solar irradiance [1–3]. This
forecasting approach typically offers a time resolution of less than
10 min and a spatial resolution covering an area with a radius of 1
kilometre from the ground observation point. By accurately forecasting
solar intermittency, control systems in solar power generation facilities,
such as solar power plants or Building-Integrated Photovoltaic (BIPV)
systems, can preemptively respond to upcoming Ramp Events (RE),
thereby achieving higher power generation efficiency and improved
power quality [4,5]. Additionally, precise short-term solar irradiance
predictions can provide valuable control assistance to urban architec-
tural shading systems, such as Photovoltaic Shading Devices (PVSD) [6,
7], and daylight harvesting systems requiring high-frequency control
mechanisms [8]. This control aids in optimising energy utilisation and
enhancing the overall sustainability of urban structures.

Deep learning models, particularly those employing computer vi-
sion techniques, have demonstrated immense potential in VST so-
lar forecasting [9]. While feature engineering-based image analysis
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methods, such as pixel statistics [10], optical flow, graphical cross-
correlation [11], cloud cover indices, and cloud height methods, can
also yield impressive forecasting capabilities [12], they often require
complex, researcher-defined feature engineering and domain-specific
expertise. Moreover, these methods are typically developed for spe-
cific sites, limiting their generalisability [13]. In contrast, machine-
learned features have been shown to outperform researcher-defined
features across various domains [14,15]. Similarly, deep learning mod-
els for very-short-term solar forecasting by using ground-based sky im-
ages (VST-DL-GSI-SolarForecast) have exhibited superior performance,
faster computational speed, and higher generalisation potential [16].
These models employ a diverse range of techniques. For instance, some
use Convolutional Neural Networks (CNNs) that focus solely on sky im-
ages for feature extraction [17,18], while others leverage 3D CNNs [19,
20] or Vision Transformers (ViT) [21,22]. Methods like Long Short-
Term Memory (LSTM) networks concentrate on the temporal continuity
of sky images [23,24], and ConvLSTM methods integrate both spatial
and temporal features [20]. Multimodal approaches focus on fusion
strategies for multiple types of data [25]. Additionally, some models
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are specifically designed for the VST-DL-GSI-SolarForecast domain,
incorporating data preprocessing strategies like feature segmentation
and recombination [16,26], as well as algorithms that combine deep
models with physical constraints [27–29].

However, the black-box nature of these deep learning models raises
concerns about their reliability and stability, especially in terms of gen-
eralisability [9]. Furthermore, solar energy datasets inherently differ
from traditional computer vision datasets due to their susceptibility
to climate and geographical conditions [30]. This unique spatial char-
acteristic amplifies the challenges of generalisability in deep learning
models. The situation is further complicated by the fact that most
existing models are trained on datasets collected primarily from mete-
orological stations, which often high degree of spatial dependence [16,
31,32]. i.e., the developed model might not be suitable for other loca-
tions solar forecasting due to different climatic conditions. Moreover,
the high cost of data collection poses another significant barrier [33–
35]. Deep learning models require diverse samples to achieve better
generalisability. However, the bi-periodicity inherent to solar irradi-
ance necessitates that a truly generalised dataset should cover at least
one full year [1,36]. This requirement imposes substantial time, per-
sonnel, and financial constraints, making it impractical to train models
from scratch for every new location.

Given the limited spatial coverage of VST-DL-GSI-SolarForecast
models and the burgeoning potential for their widespread application
as solar energy technologies advance, the need for localised deploy-
ment becomes increasingly urgent. Yet, the spatial variations introduce
significant disparities in datasets, further complicating the already
challenging task of model training. Therefore, innovative solutions
are needed to address these multi-faceted challenges in solar energy
forecasting.

In scenarios with limited or incomplete datasets, transfer learning
emerges as a promising solution [37,38]. It has been shown to im-
prove model performance across various tasks by leveraging knowledge
from related but not identical datasets [39,40]. Transfer learning has
also been identified as having the potential to address the challenges
of limited data and data collection constraints in the domain of so-
lar irradiance forecasting [38,41,42]. Objective performance has been
observed in intra-hour [43], intra-day and day-ahead forecasts [38,
42] that employ transfer learning strategies. However, for very-short-
term solar irradiance forecasting, especially those incorporating sky
images, the feasibility of transfer learning strategies for different modal-
ities, such as image-based information, remains an area that warrants
comprehensive research and investigation [44].

To enhance the reliability of solar forecasting models developed
for specific sites and extend their applicability to broader regions or
locations, this paper integrates innovative transfer learning techniques.
We first developed our model based on the dataset from urban or
suburban LA Folsom (USA) and then adapted it for use with a newly
collected urban Nottingham dataset (UK). This adaptation successfully
navigates the inherent geographical, climatic, and equipment-related
disparities between the two datasets. The key contributions of this
paper are as follows:(1) The introduction of advanced feature and label
adaptation techniques, designed to facilitate effective transfer learning
across diverse geographical and climatic conditions, thereby enhancing
the model’s generalisability. (2) The development of a robust validation
framework that employs both quantitative and qualitative metrics to
assess the efficacy of transfer learning in the specific case of very-
short-term solar forecasting. (3) Validation of the model’s feasibility
for rapid localised deployment in real-world scenarios, demonstrating
its practical applicability and efficiency. In the following sections,
Section 2 describes the specific methodology used for transfer learning,
including the model architecture, transfer methodology and evalua-
tion criteria. Section 3 describes the experimental setup, including the
dataset and experimental setup. Section 4 details the prediction results
and performs sensitivity analyses. Section 5 discusses limitations, future

work, challenges and opportunities. Section 6 concludes the paper.

2 
2. Methodology

This section introduces the development of generic deep learning
model used for local solar forecasting and also for transfer learners in
Section 2.1, the definition of transfer learning used in this work, the
methodology, and the strategy in Section 2.2, and the methodology
for forecasting performance and evaluating the effectiveness of transfer
learning in Section 2.3. The data collected and used for the project
will be introduced in Section 3. Fig. 1 provides an overview of the
methodology including the development of the generic deep learning
model, transfer learning and forecasting performance employed in this
study for very short-term solar energy forecasting using a fusion of
image and numerical data. This frame work includes two phases. The
first phase, often referred to as the pre-training phase, serves as the
foundation for the entire process. In simpler terms, this is where we
initially train our deep learning model using the Folsom dataset from
the United States as the ’source domain’ [37]. The goal is to create
a model that can accurately predict solar energy output based on the
given image and numerical inputs. Once the model performs well in this
initial setting, we extract its ‘weight parameters,’ which are essentially
the learned features that make the model effective. The second phase
is known as the transfer learning or fine-tuning phase. Here, we take
the weight parameters learned from the first phase and apply them to
the Nottingham dataset in the UK, serving as the ’target domain.’ The
idea is to leverage the knowledge gained from the initial training to
give our model a head start in this new setting. This allows the model
to adapt more quickly and perform better in the new domain than it
would if we started training from scratch.

2.1. Deep learning model in very-short term forecasting formulation

In this study, given the involvement of diverse solar forecasting
tasks, we represent the very-short-term solar forecasting model as
follows. For a specific forecast, a domain-task representation can be
employed. A domain  consists of two parts: the feature space  and a
marginal distribution 𝐗, where 𝐗 signifies a set of instances. This can
be mathematically represented as:

 = { , 𝑃 (𝐗)} (1)

where 𝐗 = {𝐱|𝐱𝑖 ∈  , 𝑖 = 1,… , 𝑛} (2)

A task,  , consists of a label space  and a decision function 𝐹 as:

 = { , 𝐹 (𝐱;𝐖)} (3)

here 𝐹 (𝐱𝑗 ,𝐖) = {𝑝(𝐲𝑘|𝐱𝑗 ;𝐖)|𝐲𝑘 ∈  , 𝑘 = 1,… , ||} (4)

are the internal weights of the deep model 𝐹 , indicating how the
odel maps the input space to the latent space. 𝑊 ∗ represents a well-

rained model. During the mapping process, 𝑝(𝐲𝑘|𝐱𝑗 ;𝐖) denotes the
onditional probability of input 𝐱𝑗 to output 𝐲𝑘 under weight 𝐖. In
his research, we adopted the ViT-E model from Zhang et al. [25]
s the standard model for transfer learning. In this model, the inputs
t a particular time instance include sky image data and numerical
bservation data, represented as:

𝑡 = {𝐱𝑖𝑚𝑔 𝑡; 𝐱𝐼 𝑡; 𝐱𝐸𝑛𝑣𝑡; 𝐱𝐼𝑐 𝑡; 𝐱𝑊 𝑖𝑛𝑑 𝑡; 𝐱𝑆𝐴𝑡} (5)

here 𝐱𝑖𝑚𝑔 , 𝐱𝐼 , 𝐱𝐸𝑛𝑣, 𝐱𝐼𝑐 , 𝐱𝑊 𝑖𝑛𝑑 , and 𝐱𝑆𝐴 represent image input, ir-
adiance input, environmental input, clear sky irradiance input, wind
arameter input, and solar angle input, respectively.

Considering the model performance diminishes as forecast time
ncreases, we selected a 2-minute lead time as the forecasting horizon.
hus, the model’s forecasted result, or the only element in the output
pace, is �̂�𝑡+2min ∈ 𝐲𝑘. That is, the model’s forecasting process is
epresented as:
�̂�𝑡+2min = 𝐹ViT-E(𝐱𝑡,𝐖) (6)
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Fig. 1. The proposed transfer learning strategy. The beige framework is the model generic framework, which is presented in Section 2.1. The blue part is the transfer learning
strategy, which is presented in Section 2.2.
It is worth noting that in this work, the forecasting target is the same
as in [25], i.e., the Clear Sky Index (CSI), which is the current Global
Horizontal Irradiance (GHI) relative to the clear sky GHI. The clear sky
GHI is generated using the McClear [45] clear sky model.

More details of the model can be found in the work of Zhang
et al. [25].

2.2. Transfer learning in solar irradiance forecasting

Transfer learning aims to enhance the performance of a target
decision function, denoted as 𝐹𝑇 , in a target domain by leveraging the
knowledge encapsulated in a source domain. Formally, given a specific
source domain and task (𝑆 , 𝑆 ), and a target domain and task (𝑇 , 𝑇 ),
the objective is to improve 𝐹𝑇 by utilising the learned features and
representations from 𝑆 and 𝑆 .

Inspired by the inductive transfer learning approach [46], this
implies that labels are available in both the source and target domains.
In our proposed deep learning-based very-short-term solar forecasting
model, the transfer learning is categorised as homogeneous, signifying
that the feature spaces and label spaces in both domains are consistent,
i.e., 𝑆 = 𝑇 and 𝑆 = 𝑇 . It is crucial to note that this assumption
holds true only when the prediction target is the Clear Sky Index (CSI).
The CSI normalisation process is assumed to effectively mitigate the
impact of irradiance cycles and geographical factors on solar irradiance.
Conversely, if the prediction target is solar irradiance itself, the outputs
may differ due to meteorological and geographical variations, even
under identical input conditions, i.e., 𝑆 ≠ 𝑇 .

As illustrated in Fig. 1, the transfer learning process is executed
through two main steps: weight transfer and fine-tuning. Initially, the
model undergoes comprehensive pre-training on the source domain,
specifically the Folsom dataset [33], utilising the ViT-E architecture.
Upon completion of this phase, the optimised weights, denoted as 𝑊 ∗

𝑆 ,
are saved for subsequent use. These weights are then loaded into the
target model, which is trained on the target domain, namely the Not-
tingham dataset, thereby facilitating knowledge transfer. Importantly,
the transferred weights encompass only the projection embedding and
the backbone layers, while the prediction head is initialised randomly
for each new training session. The model then undergoes a full training
cycle on the Nottingham dataset, using the pre-trained weights as an
initialisation point. This subsequent training is commonly referred to
as fine-tuning.

2.3. Evaluation metrics for solar irradiance forecasting

This section delineates the evaluation metrics employed in this
study, encompassing both the assessment of model feature similarity
and the quantitative and qualitative evaluation of model performance.
3 
Assessment of model feature similarity. In this study, the similarity be-
tween different models’ weights is gauged by comparing their respec-
tive feature vectors. Specifically, for models trained under identical
architectures but with varying training datasets, the similarity is quan-
tified based on the angle between the two feature vectors in a high-
dimensional space. A smaller angle indicates higher similarity. This
angle is computed using the cosine similarity metric, as formalised
below:

cos𝛩 = 𝐚 ∗ 𝐛
|𝐚| ∗ |𝐛|

A higher cosine similarity value, approaching 1, signifies that the
feature vectors are more similar, and thus the angle between them is
smaller. Conversely, a lower cosine similarity value, approaching −1,
indicates a larger angle and less similarity between the feature vectors.

Quantitative performance evaluation. The quantitative performance of
the forecasting model is assessed using the Forecast Skill (FS) metric, a
conventional method in the solar energy domain. This metric evaluates
a model’s performance relative to a baseline model, commonly the
Smart Persistence Model (SPM). The SPM is a naive model that as-
sumes no changes in meteorological indices during the forecast period.
Specifically, it assumes that the Clear Sky Index (𝑘𝑡), defined as the
ratio of the current irradiance to the irradiance predicted by a clear sky
model under current conditions, remains constant. The corresponding
equation is:

�̂�SPM(𝑡 + 𝛥𝑇 ) = 𝑘𝑡(𝑡) × 𝑦clear (𝑡 + 𝛥𝑇 )

𝑘𝑡 =
𝐼

𝐼clear
The McClear model serves as the clear sky model in this study.

The FS metric is computed based on the above equation and offers a
site- and dataset-agnostic parameter for model comparison. A positive
FS value indicates superior performance compared to the SPM, with
values closer to 1 suggesting that the model’s predictions are nearing
the ground truth.

Forecast Skill = (1 −
𝑅𝑀𝑆𝐸Model
𝑅𝑀𝑆𝐸Baseline

) × 100%

Qualitative performance evaluation. Recent studies have highlighted cer-
tain limitations of using FS as the sole predictive metric. Aiming for
higher FS values can lead to conservative model behaviour, thereby
neglecting transient solar phenomena such as solar ramp events (REs).
REs are characterised by rapid changes in solar irradiance, often caused
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by fast-moving clouds or other obstructions, leading to a sudden drop
in solar irradiance by a significant percentage.

In this context, an RE is defined as a transient change in solar
irradiance that reaches at least 10% of the current clear sky irradiance
within a one-minute interval. REs can be further categorised based
on their directionality into increasing or decreasing irradiance events.
Consequently, each prediction has both a quantitative and a categorical
component: it either corresponds to an upward RE, remains constant,
or corresponds to a downward RE.

To capture the model’s efficacy in predicting REs, this study employs
the F1-score in a multi-class classification setting. The F1-score for each
category is computed by first calculating the precision and recall. Due
to the significantly lower frequency of RE events compared to constant
events, an unweighted average of the F1-scores across all categories is
used to provide a balanced performance measure. For each class 𝑖, the
𝐹1𝑖 score is calculated as:

𝐹1𝑖 = 2 ×
Precision𝑖 × Recall𝑖
Precision𝑖 + Recall𝑖

here,

recision𝑖 =
TP𝑖

TP𝑖 + FP𝑖

ecall𝑖 =
TP𝑖

TP𝑖 + FN𝑖

here, TP𝑖 is the number of true positives for class 𝑖. FP𝑖 is the number
of false positives for class 𝑖. FN𝑖 is the number of false negatives for
lass 𝑖.

The Balanced 𝐹1 score is then calculated as the average of the 𝐹1
cores for each class:

alanced 𝐹1 =
1
𝑁

𝑁
∑

𝑖=1
𝐹1𝑖

here 𝑁 is the number of classes, which is 3 in this ternary classifica-
ion example.

. Experimental setup

This section outlines the experimental design for implementing
ransfer learning in very-short-term solar irradiance forecasting. We
ommence by conducting a comprehensive comparison between the
ource and target domain datasets, encompassing both meteorological
umerical data and image data. Subsequently, we design a series of
xperiments to test and validate the efficacy of employing transfer
earning under varying meteorological conditions, the impact of pre-
raining in the source domain on transfer learning, different transfer
earning strategies, and the performance of transfer learning with lim-
ted target domain data. Two sites under different location and climatic
onditions were selected for the proposed test: one is at Folsom dataset
n the United States with more sunny and clear day over the whole
ear, the other one is a dataset in Nottingham, UK with more cloudy
ays annually.

The modelling was executed on a PC equipped with a 3.8 GHz AMD
yzen 9 3900X CPU and a GeForce RTX 2080 SUPER GPU, utilising

he Tensorflow [22] 2.5 platform with built-in Keras [47]. To mitigate
rrors inherent to the modelling process, such as the randomisation of
bservation order in mini-batch calculations and the use of a random
umber generator during training, the results presented are averaged
ver five repeated trials for each image model.

.1. Dataset and data comparison

In this work, we utilised two datasets. One is a dataset collected
xplicitly for solar forecasting, released by the University of California,
an Diego (UCSD) [33] This dataset covers data from 2014 to 2016 with

1-minute interval, including sky images, solar irradiance data, and

4 
Table 1
Summary of differences in meteorological data information between datasets.

Folsom Nottingham

Longitude and
latitude

38.642◦N
121.148◦W

52.952◦N
1.184◦W

Köppen climate
classification

Csa Cfb

GHI measuring
instruments

LI-200SZ
Pyranometers

Calculated

DNI measuring
instruments

Calculated RaZON+ PH1
Pyrheliometer

DHI measuring
instruments

LI-200SZ
Pyranometers

RaZON+ PR1
Pyranometer

Classification to
ISO 9060:1990

∼ ± 5% Typical error
compare to First class

Second class

Data set size 656k 96k

Duration of data
set collection

3 Years 6 Months

Train/val/test
set size

21K/25K/23K 58K/19K/19K

meteorological data. The other dataset is a local Nottingham dataset,
collected based on the solar observation equipment at the University
of Nottingham. The data collection started in November 2021 and
includes sky images, solar irradiance data, meteorological data, solar
spectral data, and PV output data.

This subsection delves into the disparities and similarities between
the source domain, represented by the Folsom dataset, and the tar-
get domain, represented by the Nottingham dataset. Although both
datasets encompass the same categories of data, they exhibit significant
variances in specifics, attributable to differences in observation equip-
ment, installation standards, and geographical locations. The compar-
ative analysis focuses on the geographical impact on meteorological
features, the congruencies and divergences in data collection instru-
ments, and an evaluation of image data features in relation to the
accuracy and distribution of meteorological data.

3.1.1. Comparison in meteorological data
This part of the subsection specifically examines the meteorological

data contained in both datasets. The aim is to identify how geographical
factors influence meteorological variables and to assess the quality
and distribution of the data collected. This will provide a foundation
for understanding the challenges and opportunities associated with
applying transfer learning techniques for solar irradiance forecasting
in different geographical settings.

The geographical locations of the observation stations inherently
influence the sample distribution of the datasets. Table 1 presents the
geographical conditions at the Folsom and Nottingham data collection
sites. For instance, the Folsom dataset from 2015 and the Nottingham
dataset from 2022 exhibit significant monthly data collection dispar-
ities, as depicted in Fig. 2(a). This discrepancy is primarily due to
the latitude-induced variations in daylight duration; the UK dataset
experiences elongated summers and truncated winters. The effective
viewing angle limitation of the fisheye lens (Solar Zenith Angle, SZA,
less than or equal to 75 degrees) further amplifies this difference. In
Nottingham, for example, the solar zenith angle seldom surpasses 75
degrees in December, leaving only 87 samples post-quality control for
the entire month.

Climate classifications also contribute to these differences. Folsom
falls under the Csa category (C = temperate climate, s = dry sum-
mer, a = hot summer) in the Köppen climate classification, whereas
Nottingham is categorised as Cfb (C = temperate climate, f = no dry
season, b = warm summer). These climatic distinctions manifest in
the datasets, as illustrated in Fig. 2(b) and (c). In Fig. 2(b), Folsom

generally exhibits higher monthly irradiance levels than Nottingham.
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Table 2
Summary of differences in image data between the data sets.

Folsom Nottingham

Camera model Vivotek FE8171V MOBOTIX Q25
Sensor size 1∕2′′ CMOS 1∕1.8′′ CMOS
Original resolution 2480 × 1536 3072 × 2048
Aperture size f/2.8 f/2.0
Light sensitivity 1.17 Lux 0.1 Lux
Output resolution 1536 × 1536 1028 × 1028
Orientation 15 degrees west of north Due West
Sun marker Yes No

Even during summer, when daylight duration and solar angles are
marginally lower in Folsom, the arid and hot climate conditions yield
higher average irradiance values despite fewer extremes. Fig. 2(c)
reveals that the GHI density distribution in Folsom is relatively uniform,
whereas Nottingham displays a higher density of low irradiance values,
attributable to its wetter and cloudier climate. The two-dimensional
visual heat maps in Fig. 3 corroborate these trends. Nottingham’s data
lacks year-round continuity, particularly for Direct Normal Irradiance
(DNI), indicating frequent cloud cover interruptions. Conversely, Fol-
som’s dry summer conditions facilitate consistent and uninterrupted
sunlight, as evidenced by minimal obstructions in the summer of
2016.

Beyond data distribution, the instrumentation for solar irradiance
and meteorological data collection varies between the two sites. The
Folsom site employs two LI-200SZ Pyranometers [48] for GHI and
Diffuse Horizontal Irradiance (DHI) data collection, subsequently cal-
culating DNI based on these measurements and solar angles [33].
In contrast, the Nottingham site utilises the Razon+ automatic solar
tracker [49] to gather DHI and GHI data, with GHI values derived from
the sum of solar angles. Notably, the pyranometers at these sites differ
significantly in accuracy. The LI-200SZ, a photodiode pyranometer, has
a GHI measurement error of 4.4% under clear sky conditions [50],
aligning with the typical 5% error according to ISO 9060:2018 First
Class standards [33]. In contrast, the thermopile pyranometers and
pyrheliometers PR1 and PH1 have clear sky GHI errors of 0.3% and
0.03%, respectively [49]. According to ISO 9060:2018 [51], they qual-
ify as Second Class instruments with typical errors under 1%. The
authors note that although calibration can improve the LI-200SZ’s accu-
racy, its error remains an order of magnitude higher than thermopile
pyranometers due to its inherent limitations in the low-error field of
view (60 degrees).

3.1.2. Comparison in image data
This section delves into the disparities and commonalities between

image samples from the two datasets. As delineated in Table 2, the
cameras employed in the Folsom and Nottingham datasets differ in
specifications. The camera used for the Nottingham dataset boasts
superior attributes, including higher original pixel resolution, a larger
aperture, and enhanced light sensitivity. Significant differences in the
actual quality of image output warrant discussion, as exemplified in
Fig. 4. In the Nottingham dataset, intense sunlight often leads to
overexposure in the solar region, thereby obfuscating details in this
area. Conversely, the Folsom dataset mitigates this issue by blackening
the fully overexposed (RGB values at 255) solar region. This treatment
allows for the discernment of whether the sun is directly visible. For
example, as depicted in the Cloudy Sky image on the right side of Fig. 4,
the Folsom dataset retains information about the sun’s position and
its visibility through thin clouds. Such information is entirely absent
in the Nottingham dataset. Attempts to ascertain the solar azimuth in
the Nottingham dataset using similar methods were impractical due to
camera quality limitations and extensive overexposure.

Another point of interest is the noticeable image noise in the Folsom
dataset, particularly evident in the bottom-left image of Fig. 4. This
5 
Fig. 2. Comparison of sample size and distribution between the Folsom dataset and
the Nottingham dataset, for 2015 and 2022, respectively.

noise is speculated to arise from the degradation of the camera’s trans-
parent protective shell. The image distinctly reveals noise induced by
sunlight refraction on the protective shell and lens flare reflections orig-
inating from the shell’s imperfect transparency. This issue is especially
pronounced on sunny days.

In summary, the divergences between the Folsom and Notting-
ham datasets can be primarily attributed to geographical locations
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Fig. 3. Two-dimensional visual heat maps of Folsom and Nottingham dataset (UTC Time Zone). Figure generated by Pvlib python library [52].
and the observational equipment employed. Geographical factors con-
tribute to the variations in meteorological features, while differences
in equipment lead to disparities in data accuracy and distribution.
Comprehending these nuances is crucial for the effective application
of transfer learning techniques and for making accurate performance
comparisons between models trained on different datasets.
6 
3.2. Experiment setup

3.2.1. Experiment 1: Assessing the efficacy of transfer learning
Experiment 1 primarily validates the efficacy of transfer learning.

Here, efficacy refers to the preservation of model weight features from
the source task during the transfer learning process, rather than being
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Fig. 4. Schematic of the sky images for the two data sets under different weather
conditions.

entirely overwritten during training. We exploit the inherent random-
ness in model training to design this experiment. During the repeated
training of the source-target model, the inevitable randomness in model
training results in subtle variations in the trained model weights. We
use the vector distribution of a specific structure, namely the output
vector of the backbone network, as an explicit representation of the
model feature space. We employ cosine similarity, as described in the
evaluation metrics section, to compute the vector distribution across
different models.

The specific experimental design is as follows. First, the model
undergoes five independent repeated experiments in the source do-
main, yielding five sets of pre-trained weights for transfer from the
source task, along with extracted feature vectors from the source task.
Subsequently, five independent transfer experiments are conducted,
resulting in five target domain task models and their corresponding
feature vectors. By comparing the distribution of feature vectors be-
tween the source and target tasks, we assess whether the transfer
training has inherited the model features from the source domain.
A comprehensive analysis of the efficacy of transfer learning is then
performed by comparing the performance of the five models from the
source tasks with their corresponding models in the target tasks.

3.2.2. Experiment 2: Evaluating different fine-tuning strategies in transfer
learning

Experiment 2 primarily investigates the impact of various fine-
tuning strategies on transfer learning, as shown in Fig. 5. Multiple
methods are available for fine-tuning the model in the target do-
main [37]. In this study, we employ a feature space adaptive method.
This method initialises the target task by reusing the source task
weights and subsequently adapts these weights in the target domain
using a lower learning rate. Additionally, before the fine-tuning pro-
cess begins, different modules can be frozen. Here, ‘freezing’ refers to
fixing the source task weights to prevent further training, a strategy
considered to preserve the inference mechanisms from the source task
without additional adaptation to the target domain. Moreover, given
that the ViT-E model’s inference module comprises two parts—the pro-
jection embedding and the backbone interface layer (i.e., Transformer
Encoder)—we separately test the freezing of different components to
facilitate a detailed comparison.

3.2.3. Experiment 3: Limited target domain dataset
One potential advantage of transfer learning is that when the size

of the source domain dataset is larger than that of the target domain
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Table 3
Details of the setup of each experiment in this work.

Source model
used

Target
dataset size

Layers subject to
freezing

Experiment 1 5 Trained
models

55k –

Experiment 2 Best model
from Exp. 1

55k No layers frozen
Projection layer frozen
Inference layer frozen
All layers frozen

Experiment 3(a) Best model
from Exp. 1

25k to 2.5k No layers frozen
Projection layer frozen
Inference layer frozen
All layers frozen

Experiment 3(b)
Best model
from Exp. 1

6.4k (Mar
4–18)

No layers frozen
All layers frozen

Best model
from Exp. 1

9.6k (Jun
7–21)

No layers frozen
All layers frozen

Best model
from Exp. 1

6.8k (Sep
9–23)

No layers frozen
All layers frozen

dataset, the transferred knowledge can still achieve better generalisa-
tion in the target domain with a limited dataset. To verify this, we
further reduced the size of the dataset. Specifically, we consider that
in a complete one-year dataset, the trend of improving the model by
enriching the dataset size begins to slow down starting from a dataset
size of 25K samples [20]. In other words, the model’s generalisation
reaches a bottleneck at 25K samples, making it improve continues
more difficult. However, due to limitations in data collection and data
quality, the Nottingham dataset actually only contains six months of
data, so we still used the entire dataset for fitting experiments. Overall,
we started with the entire Nottingham dataset (a total of 55K samples),
randomly downsampled the dataset size to 25K, and further randomly
downsampled to 12.5K, 7.5K, 5K, and 2.5K. We compared transfer
learning with learning from scratch, testing the fitting performance of
transfer learning in datasets with insufficient sample sizes.

In addition considering the limitations of random downsampling.
This approach has a limitation in that random sampling preserves
the diversity of the dataset to the maximum extent, thereby enabling
the model to achieve better performance. Therefore, we used another
downsampling method, namely, random continuous sampling. We ran-
domly extracted three consecutive 14-day subsets from the original
dataset as the dataset, simulating whether the model can achieve
training with extremely limited dataset sizes through transfer learning
in real situations. Specifically, we used data segments starting from
March 4, June 7, and September 9, 2022, as training sets, without
applying clear sky filters to the data. Ultimately, the three datasets
contained 6.4K, 9.6K, and 6.8K data points, respectively, as shown in
Fig. 6.

A summary of the experimental setups employed in this paper is
presented in Table 3. Experiment 1 validates the effectiveness of trans-
fer learning and identifies the best-performing model among five source
models for subsequent transfer. Experiment 2 explores different transfer
strategies based on the best-performing model identified in Experiment
1. Experiment 3(a) tests the efficacy of transfer learning under limited
data conditions achieved through random sampling. Experiment 3(b)
investigates the performance of transfer learning in real-world scenar-
ios with limited datasets, specifically using three different continuous
14-day samples.

4. Results

4.1. Effectiveness of transfer learning

Results for the criteria used to evaluate the effectiveness of transfer
learning of the ViT-E model under source domain, Folsom Dataset and
target domain, Nottingham dataset are summarised in Figs. 7 and 8.
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Fig. 5. Architectural overview of transfer learning from source to target domain, comparing direct transfer of frozen, fine-tuned, and randomly initialised weights against training
only on the target dataset.
The results of the model effectiveness verification are shown in
Fig. 7. The cosine similarity is calculated based on the angle between
feature vectors, so the closer the result is to 1, the higher the similarity.
Fig. 7(a) shows the cosine similarity between 5 source domain models,
#1 to #5. It can be observed that despite the inevitable randomness in
the training process, the impact of the model’s randomness on the final
trained model is minimal. All models exhibit consistency in the latent
semantic space.

Fig. 7(b) shows the similarity between the target domain models
and the source domain models after further training on the target
domain dataset using the five source domain models. As can be seen
from the figure, on the one hand, the target domain models after
transfer learning are mostly more similar to their corresponding source
domain models. On the other hand, the diversity trend between source
domain models is preserved after transfer learning. For example, the
high similarity between 𝐲𝑆#2 and 𝐲𝑆#4 is consistent with the similarity
between the post-transfer learning 𝐲𝑇#2 and 𝐲𝑇#4.

Fig. 8 illustrates the influence of performance gaps, resulting from
the randomness of 5 distinct source domain models, on the target
domain models during transfer learning. Fig. 8(a) presents a compari-
son between the performance of source and target domain models. As
evident in the figure, the impact of randomness on model performance
is comparable across different domains, with an approximate error of
2%. Furthermore, the source and target domain models exhibit no
consistency in performance. For instance, the top-performing model
#3 in the source domain lags after transfer learning, whereas the
underperforming model #4 in the source domain excels in the target
domain. Fig. 8(b) highlights the influence of source domain model
performance on transfer learning duration.

Notably, compared to target domain model performance, the trans-
fer training duration exhibits a stronger correlation with source domain
model performance. The top and bottom-performing models #3 and #2
in the source domain demonstrate a significant difference in retraining
time. Despite model #3 in the source domain having a performance gap
of 2.3% compared to model #2, its transfer learning time is reduced by
one-third.

4.2. The impact of different fine-tuning strategies and dataset sizes in
transfer learning

Results for the criteria used to evaluate the performance transfer
learning of the ViT-E model under source domain, Folsom Dataset
and target domain, Nottingham dataset are summarised in Fig. 8. The
results are based on five repetitions of the experiment with the source
task model #3 in the previous section as the pre-training weights.
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Fig. 9(a) present the performance of models in terms of FS across
various dataset sizes and transfer learning strategies. In Experiment
2, we evaluated multiple transfer learning strategies on a complete
dataset consisting of 55,000 data points. The results reveal that the
group that adapted the inference layer to the target domain achieved
a performance comparable to training a new model from scratch. Con-
versely, groups that froze the inference layer experienced a decline in
performance to varying extents. Remarkably, the group that completely
froze all layers – essentially inheriting the source model’s inference
mechanism while only training the prediction head – saw a significant
performance drop. Despite this setback, its FS still outperformed models
based on CNNs, which based on single-location trained model [25].

In Experiment 3(a), the data shows a clear trend: as the dataset
size decreases, the FS of the models correspondingly declines. Most
notably, the strategy of training new models from scratch without
leveraging transfer learning becomes increasingly unstable and fails
to maintain model accuracy when the dataset is limited. For instance,
when the sample size is reduced to 7.5k, models trained from scratch
display a significantly lower FS compared to those utilising transfer
learning, with some even showing a drastic decline. As the sample size
shrinks further to 5k, the FS of models trained from scratch begins to
deteriorate noticeably. Although some models still manage to perform
reasonably well due to the inherent randomness in the training process,
the overall stability of the training becomes compromised.

On the other hand, even when the sample size is as small as 2.5k,
all four transfer learning methods manage to maintain relatively high
performance levels, despite the general decline in model performance.
Intriguingly, the method that freezes all layers while training on the
2.5k sample set even surpasses the performance of a CNN-LG model
trained on the full dataset. When comparing different transfer learning
methods, Feature Space Adaptation techniques – such as not freezing
any layers or only freezing the projection layer while keeping the core
inference layer unfrozen – yield performance levels similar to training
from scratch when ample data is available. In contrast, methods that
lock the core inference layer perform relatively poorly when data is
abundant. However, an exception is observed with the 2.5k dataset,
where the two methods that fully inherit the source domain model’s
core inference layer achieve the best performance. We speculate that
this may be because the smaller dataset is insufficient for the model
to learn the underlying patterns in the target domain during adapta-
tion. Consequently, models that completely freeze all layers, thereby
avoiding any learning adaptation in the target domain, achieve superior
performance.

Fig. 9(b) present the 𝐹1 scores of the model in the context of RE
forecasting. Unlike the FS, which is directly optimised through loss



L. Zhang et al. Applied Energy 377 (2025) 124353 
Fig. 6. Three consecutive two-week datasets of the downsampled dataset in the
mock-up experiment.

function constraints, the 𝐹1 score is derived from further computations
on the regression forecasts. Consequently, its behaviour is less regular
than that of FS, particularly in relation to dataset size. However, the
figure still reveals a discernible trend: akin to FS, the 𝐹 scores of the
1
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model also experience varying degrees of decline as the dataset size
decreases. The strategy of freezing all layers exhibits a performance
pattern similar to that observed for FS; it underperforms when trained
on the complete dataset but shows improved results when the data is
limited.

Fig. 10 delineates the computational time required for training the
models under various conditions. Generally, using smaller datasets can
expedite the training process, albeit at the expense of model perfor-
mance. Conversely, transfer learning strategies that freeze the core
inference layer can substantially reduce training time, especially when
larger datasets are employed. For instance, with a dataset comprising
55,000 samples, freezing just the inference layer can cut training time
by approximately 10%. Freezing both the inference and projection lay-
ers can yield even greater time savings, reducing the training duration
by around 40%. When the dataset size shrinks below 12,500 samples,
all transfer learning approaches lead to shorter training times. Specif-
ically, at a dataset size of 2500 samples, employing transfer learning
methods reduces the training time to less than an hour, compared to
the three hours needed for training a model from scratch—resulting in
a time-saving of over 60

Another noteworthy observation is that the use of feature adap-
tation methods to continue training the inference module actually
requires more computational time on the original dataset than training
a new model from scratch. This suggests a trade-off between train-
ing time and model performance when employing different transfer
learning strategies.

4.3. Performance under simulated real-world conditions

Fig. 11 illustrates the training outcomes under conditions designed
to emulate real-world scenarios. For a meaningful comparison of model
performance, we used the 7.5K-sized dataset from Experiment 3 as a
benchmark, given its similar data volume to the three test datasets.
The results reveal that models trained from scratch on these simu-
lated datasets exhibit inconsistent performance. Specifically, the model
trained on the two-week dataset from March yields an FS of approx-
imately 4%, which is only comparable to the performance of the
Standard Persistence Model (SPM).

In contrast, models trained via transfer learning on the two-week
dataset from June demonstrate performance metrics closely aligned
with those achieved using the full-year downsampled dataset. Notably,
the June dataset contains approximately 30% more data points than
the datasets from March and September, totalling 9.6K data points.
This discrepancy is largely attributed to the longer duration of sunlight
during June.

Furthermore, the solar zenith angle (SZA) is hypothesised to in-
fluence the diversity of the captured sky images. For instance, the
minimum SZA in the March dataset is considerably high at 54 degrees,
compared to 29 degrees for June and 47.7 degrees for September.
Lower SZA values indicate that the sun is positioned closer to the centre
of the image, thereby affecting the diversity of solar positions in the
sky images. Consequently, the March dataset exhibits limited diversity
in terms of sun positions, which could be a contributing factor to the
model’s suboptimal performance when trained on this dataset.

5. Discussion

This study delves into the intricacies of transfer learning within
the VST-DL-GSI-SolarForecast framework, shedding light on its implica-
tions for model performance, training duration, and data prerequisites.
Our findings underscore the efficacy of transfer learning in enhancing
the ViT-E model’s performance, especially when confronted with lim-
ited training data. The data visualisations in Figs. 7, 8, and 9 elucidate
the advantages of transfer learning, particularly when dealing with
constrained datasets.
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Fig. 7. Results on the validity of transfer learning based on cosine similarity. Note that the actual value of 𝐲𝑆#2 and 𝐲𝑆#4 similarity in figure (a) is 0.9999998987, limited by the
display digits, which shows 1.00000.
Fig. 8. Comparison of source domain model performance in terms of target domain model performance and training efficiency.
Fig. 12, which juxtaposes training duration against model accuracy,
accentuates the time-saving potential of transfer learning. The graph
reveals that transfer learning can consistently outperform traditional
learning techniques, even with a mere 4.5% of the total dataset and
just a tenth of the training time.

While transfer learning offers a promising avenue for optimising
both model performance and training duration, the consistency of
performance between source and target domain models remains an area
ripe for exploration, as depicted in Fig. 8.

Emerging research should pivot towards intricate transfer learning
mechanisms, such as shared representations or alignment techniques.
These could potentially guide the target domain model during its train-
ing phase, thereby bridging the performance gap between source and
target domain models. The potential of zero-shot or few-shot learning in
the VST-DL-GSI-SolarForecast domain also beckons further exploration,
promising innovative methodologies for broader application.

Transfer learning’s dual advantages of time and cost efficiency
are evident in the significant reduction in training duration and data
collection periods. However, our investigation also highlights certain
transfer learning limitations, especially concerning generalisation when
fine-tuning with real-world data. The observed performance disparities
across datasets, particularly the June dataset, are likely attributed to
the limited diversity of images. This limitation underscores the need for
future research to focus on enhancing feature space adaptation during
transfer learning, possibly by leveraging prior knowledge constraints
on the target domain.
10 
However, existing studies have several limitations. First, this study
only discusses the transferability of model knowledge based on the
currently available two datasets. Given that deep learning models
heavily rely on data and considering the long time dimensions required
for meteorological data collection, the feasibility and applicability of
transfer learning in VST-DL-GSI-SolarForecast are still unclear. This
is especially true for validation experiments under varying climatic
conditions. Second, similar to other solar energy prediction modelling
methods, this study was conducted under ideal conditions, using past
data to predict historical future conditions. This approach overlooks
potential issues that may arise during practical field deployment, such
as sand erosion and equipment stability. For example, the sky im-
ages in the Folsom dataset used in this study already show signs of
sand erosion on the acrylic casing protecting the lens. However, since
there is currently no comparison between image quality and prediction
performance, this phenomenon cannot be analysed and compared.

6. Conclusion

The essence of harnessing and generalising empirical knowledge
from existing solar energy forecasting datasets is vital for the progres-
sion of Deep learning based Solar Forecast research. Prioritising model
transferability can catalyse research advancements, streamline commu-
nication, and foster time and cost efficiencies in practical deployments.
Our study highlights the ViT-E model’s superiority for transfer learning,
particularly in transfer the model from a more steady solar availability
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Fig. 9. Qualitative and quantitative results based on different subdataset sizes and
transfer learning methods for ViT models. Represented by the red dashed line in
the figure is the best model performance in the original paper [25] based on CNN
architecture trained from scratch. For detailed information, please refer to the tables
in Appendix.

Fig. 10. Training Time for different dataset sizes and transfer learning approaches.
11 
region to a region with more dynamic solar irradiance variations like
Nottingham, UK.

Our transfer experiments employed a rudimentary weight trans-
fer technique. However, our findings affirm the potential of weight
transfer-based methods in assimilating prior knowledge from pre-
trained models across diverse climatic conditions. This assimilation
proves instrumental in VST-DL-GSI-SolarForecast tasks across vary-
ing climates. Moreover, by amalgamating different transfer strategies,
models can be effectively trained with minimal datasets. This effi-
ciency translates to significant savings in model training time and data
collection efforts.

This research also amalgamates insights from diverse fields to offer
a comprehensive analysis of transfer learning within the VST-DL-GSI-
SolarForecast domain. While our simulation experiments showcased the
potential of using continuous two-week data for transfer learning, the
performance did not match the potential exhibited by datasets with
robust generalisability. Future endeavours should pivot towards more
advanced transfer learning strategies to ensure efficient transfers, even
in datasets with limited temporal diversity.
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The following tables provide detailed tabulated data corresponding
to the results presented in Fig. 9 (see Tables A.1 and A.2).
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Fig. 11. The model’s results trained by collecting data for two consecutive weeks are compared with a full year of data downsampled to 7.5K data. Represented by the red dashed
line in the figure is the best model performance in the original paper [25] based on CNN architecture trained from scratch.
Fig. 12. Training time versus forecast skill for all models and all datasets. Represented by the red dashed line in the figure is the best model performance in the original paper [25]
based on CNN architecture trained from scratch.
Table A.1
FS for different transfer learning strategies and dataset sizes, Based on SPM with RMSE 117.89 W∕m2.

Dataset size Forecast skill (%)

New training Unfrozen layer Freeze inference layer Freeze projection layer Freeze all layer

2.5k 10.24 ± 2.44 12.85 ± 0.33 13.12 ± 0.52 12.96 ± 0.25 13.26 ± 0.34
5k 11.64 ± 2.34 13.47 ± 0.25 12.97 ± 0.52 13.62 ± 0.23 12.94 ± 0.49
7.5k 12.69 ± 1.09 13.54 ± 0.24 13.38 ± 0.30 13.53 ± 0.42 13.22 ± 0.37
12.5k 14.07 ± 0.45 13.48 ± 0.61 13.87 ± 0.13 13.77 ± 0.65 13.88 ± 0.19
25k 14.42 ± 0.31 14.41 ± 0.10 14.16 ± 0.60 14.38 ± 0.33 14.21 ± 0.46
55k 16.15 ± 0.50 16.20 ± 0.52 15.66 ± 0.35 16.04 ± 0.52 14.51 ± 0.40
12 
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Table A.2
𝐹1 score for different transfer learning strategies and dataset sizes.

Dataset size 𝐹1 Score (%)

New training Unfrozen layer Freeze inference layer Freeze projection layer Freeze all layer

2.5k 35.85 ± 0.84 35.14 ± 1.01 33.60 ± 0.28 34.11 ± 1.90 36.36 ± 0.45
5k 35.05 ± 0.80 34.58 ± 1.57 34.65 ± 1.21 34.78 ± 0.91 35.22 ± 1.39
7.5k 35.94 ± 2.00 34.94 ± 1.17 34.45 ± 1.12 33.81 ± 2.16 35.02 ± 0.73
12.5k 36.18 ± 2.04 35.21 ± 0.94 34.22 ± 2.15 34.78 ± 1.52 35.75 ± 1.35
25k 35.04 ± 1.30 35.59 ± 2.00 34.78 ± 0.47 35.94 ± 1.61 35.82 ± 0.97
55k 38.87 ± 1.43 39.10 ± 2.00 38.57 ± 1.55 37.24 ± 2.19 36.54 ± 0.95
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