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ABSTRACT

Unveiling the thermal history of the intergalactic medium (IGM) at 4 < z < 5 holds the potential to reveal early onset He 11
reionization or lingering thermal fluctuations from H1 reionization. We set out to reconstruct the IGM gas properties along
simulated Lyman-alpha (Lyw) forest data on pixel-by-pixel basis, employing deep neural networks. Our approach leverages
the Sherwood-Relics simulation suite, consisting of diverse thermal histories, to generate mock spectra. Our convolutional and
residual networks with likelihood metric predict the Ly optical depth-weighted density or temperature for each pixel in the
Ly forest skewer. We find that our network can successfully reproduce IGM conditions with high fidelity across range of
instrumental signal-to-noise ratio. These predictions are subsequently translated into the temperature—density plane, facilitating
the derivation of reliable constraints on thermal parameters. This allows us to estimate temperature at mean cosmic density,
Ty, with 1o confidence, 8Ty < 1000 K, using only one 20 A ~! cMpc sightline (Az =~ 0.04) with a typical reionization history.
Existing studies utilize redshift path-length comparable to Az =~ 4 for similar constraints. We can also provide more stringent
constraints on the slope (1o confidence interval, §y < 0.1) of the IGM temperature—density relation as compared to other
traditional approaches. We test the reconstruction on a single high signal-to-noise observed spectrum (20 4~! cMpc segment)
and recover thermal parameters consistent with current measurements. This machine learning approach has the potential to

provide accurate yet robust measurements of IGM thermal history at the redshifts in question.

Key words: methods: numerical — —.

1 INTRODUCTION

Accurately understanding the thermal history of the intergalactic
medium (IGM) stands as a fundamental goal in astronomy, as it
offers crucial insights into the timing and duration of the H1 and
He 11 reionization epochs. One of the most robust methods for probing
this thermal history is through the examination of Ly« absorption,
commonly known as the Lyo forest, observed in the spectra of
quasars (Becker, Bolton & Lidz 2015). This approach is grounded in
the concept of photoheating, where the IGM temperature increases
due to H1and He 11 ionizing photons (Miralda-Escudé & Rees 1994).
The Doppler motions of the heated IGM are then imprinted on to the
absorption lines of the Ly« forest.

Leveraging on this idea, the literature has explored various
statistics that demonstrate a range of sensitivity to the thermal state.
Studies exploit Lyo flux power spectrum suppression on small scales
(Zaldarriaga, Hui & Tegmark 2001; Croft et al. 2002; Zaroubi et al.
2006; Viel et al. 2013; Boera et al. 2019; Walther et al. 2019), the
Lyo line width distributions (Haehnelt & Steinmetz 1998; Ricotti,
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Gnedin & Shull 2000; Schaye et al. 2000; McDonald et al. 2001;
Bolton et al. 2012, 2014; Rudie, Steidel & Pettini 2012; Hiss et al.
2018; Telikova, Shternin & Balashev 2019), probability distribution
of Ly flux (Lidz et al. 2006; Bolton et al. 2008; Calura et al. 2012;
Leeetal. 2015), curvature of Ly flux (Beckeretal. 2011; Boera et al.
2014, 2016; Padmanabhan, Srianand & Choudhury 2015), statistics
of wavelet amplitudes (Meiksin 2000; Theuns, Schaye & Haehnelt
2000; Zaldarriaga 2002; Lidz et al. 2010; Garzilli et al. 2012; Wolfson
et al. 2021), utilizing the entire b—Ny;, distribution (Hiss et al. 2019;
Hu et al. 2023), and combining an ensemble of statistics (Gaikwad
et al. 2021). None the less, despite recent progress, the pursuit of
more precise methods persists, especially in the redshift range of
4 <z <5, which can provide insights into the early stages of He 1l
reionization or any residual heating effects from H 1 reionization.
The common theme of the previous studies has been to constraint
the thermal parameters, namely the normalization (7) and slope (y)
of the expected power-law relating temperature (7') and normalized
cosmic overdensity, A, of the IGM aftermath of reionization, T =
ToA”~! (Hui & Gnedin 1997; McQuinn & Upton Sanderbeck 2016).
While this approach has been valuable, it primarily offers a statistical
description of IGM gas conditions. The richness of information
present in the forest goes beyond what these thermal parameters can
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capture. Moreover, they are typically provided for the entire data set
at a given redshift. The methods are not sensitive enough to provide
constraints for individual sightlines or to capture the variations within
due to thermal fluctuations at z 2 5 (D’Aloisio, McQuinn & Trac
2015; Keating, Puchwein & Haehnelt 2018; Gaikwad et al. 2020).
We aim to harness deep learning methods that can somewhat avoid
the loss of information inherent to the standard summary statistics.

Recently, we have witnessed a notable surge in studies exploring
deep learning (for review, see Goodfellow, Bengio & Courville 2016)
in the context of quasar spectra. To highlight a few, generating
quasar (missing) spectra based on its properties (Eilers et al.
2022), generating Lya forest for large surveys using only N-body
simulation (Harrington et al. 2022), predicting Ly optical depth
using transmitted flux (Huang, Croft & Arora 2021), reconstructing
the IGM temperatures on large scales around quasars (Wang, Croft &
Shaw 2022), and using Ly« forest spectra to obtain constraints on
IGM thermal parameters using ideal mock spectra at z = 2.2 (Nayak
et al. 2024).

Our primary objective is to utilize deep learning techniques for the
precise reconstruction of IGM densities and temperatures, pixel by
pixel, within the Lyo forest. By the aid of this method, the thermal
parameters can also be inferred from the reconstructed conditions.
By virtue of the sheer number of data points at our disposal, we
can infer thermal parameters even for a single (20 ~A~!cMpc in
this paper) sightline. Consequently, the constraints we obtain can be
many times more powerful and accurate in comparison to traditional
approaches. Moreover, since this approach strives to reconstruct
the entire conditions along a given sightline, it naturally extends
its capability to estimate thermal fluctuations that persist after the
completion of HI reionization or due to patchy Hell reionization.
However, we leave the analysis of inhomogeneous reionization
models to future work, which would require an extensive suite of
simulations for the training. We assume an IGM with a uniform
thermal state for this paper.

There are few key considerations before we adapt deep learning
methods for our purpose. We think that it is crucial to incorporate
uncertainties, in particular for this reconstruction as actual conditions
of IGM are unknown a priori. Quantifying the uncertainties due
to lack of usable flux or due to parameter degeneracy becomes
important, in particular at higher redshifts where the Ly« forest is
more opaque. Furthermore, the optimal design of a neural network
demands careful attention. A systematic grid search encompassing
all relevant hyperparameters allows us to harness the full potential
of these techniques. Owing to their versatility and complexity,
deep learning methods are susceptible to overfitting issues. This
implies that network performance may significantly deteriorate when
applied to different but related data sets. Consequently, we take
necessary precautions to mitigate overfitting, such as rigorously
testing performance on a dedicated test data set using NYX code.

In this work, we address and resolve the aforementioned chal-
lenges. We build a neural network that maximizes the likelihood of
a given data set with uncertainty estimates as a natural outcome.
We also mitigate the effect of overfitting by carefully analysing
predictions on a test data set. Furthermore, we conduct a grid search to
optimize the network architecture and all associated hyperparameters
for training.

Our paper is structured as follows: In Section 2, we provide details
of the cosmological simulations employed in this study. Our focus
is simulation outputs at redshifts z = 4-5. Section 3 delves into the
fundamental aspects of the neural network and finding an optimal
network configuration. Section 4 presents our core findings. We
present the reconstructions along example Lyo skewers. We also
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Table 1. The summary of simulations used in this work taken from
Sherwood-Relics suite. The columns represent name, HI photoheating
rescaling factors, and the redshift of reionization (the redshift where the
global neutral fraction reaches values below 1073), zse. All simulations have
box size length of 20 2~' cMpc with 10243 gas and dark matter particles.
The last row shows the runs that are used only for testing purposes.

Model H 1 photoheating Zre
FIDUCIAL/COLD/HOT 1,05,2 6.0
ZR525/COLD/HOT 1,05,2 5.4
ZR675/COLD/HOT 1,05,2 6.7
ZR750/COLD/HOT 1,05,2 7.4
G10/G14/G16 Different y 6.0

NYX-EARLY/NYX-LATE - 9.7, 6.66

show recovery of thermal parameters through various models, using
different signal-to-noise (S/N). We also present a reconstruction
of a 20 2~! cMpc segment on observational spectrum at z = 4. In
Section 5, we offer our concluding remarks. We present a comparison
of Ly optically depth-weighted and real-space thermal parameter
distributions in the Appendix.

2 HYDRODYNAMICS SIMULATIONS

The neural network relies on appropriate data sets for training,
validation, and testing purposes. We use a subset of cosmological
simulations from the Sherwood-Relics' suite, based on the Sherwood
simulations (Bolton et al. 2017). These simulations were performed
using a modified version of P-GADGET3 code, an updated version
of the P-GADGET2 (Springel 2005). In this section, we will briefly
describe the key features of these simulations that form our training,
validation, and test data sets. For details, we refer the reader to
Puchwein et al. (2023). These simulations are particularly designed
for Lya forest absorption spectra with various reionization and
thermal histories. In this work, we restrict ourselves to runs with
a standard cold dark matter cosmology. We summarize the runs we
use in Table 1 (first five rows).

We use runs with a 20 2~! cMpc box length on each side evolved
with 10243 dark matter and gas particles. The simulations employ
a spatially uniform but time-varying ultraviolet background (UVB;
Puchwein et al. 2019), and vary the redshift of reionization, z,
and the thermal parameters, namely 7j and y. This is achieved by
rescaling and shifting the photoionization and photoheating rates.
There are 12 simulations on the z,.—7Ty grid (first row through the
fourth row in Table 1). Additionally, there are three runs for y =
1.0, 1.4, and 1.6 fixed at z = 4 (fifth row in Table 1). To estimate T
and y for a given simulation run, we calculate the median log 7' on
log A = —0.4 to 0.2 bins with a size of 0.1, and fit a line through
these binned values. Our method is very similar to the one described
in Gaikwad et al. (2017).

Finally, to verify the robustness and generalization of our network
predictions, we include two more hydrodynamical simulations using
the NYX code (Almgren et al. 2013) for testing purposes only. All
runs have a box size of 20 #~' cMpc and were evolved with 10243
gas and dark matter particles, using rescaled versions of the Haardt &
Madau (2012) UVB. The runs mimic very early and relatively late
reionization histories as summarized in the last row of Table 1. The
reionization and thermal histories of these runs do not closely match

Uhttps://www.nottingham.ac.uk/astronomy/sherwood-relics/

202 4990120 80 UO Jasn aAloeuU| Aq 0Z26G.2/662 L/Z/¥ES/RI91HE/SBIUW/WOD dNO"DlIWSPEDE//:SA)Y WOI) PAPEOJUMOQ


https://www.nottingham.ac.uk/astronomy/sherwood-relics/

any of our training runs from Sherwood-Relics. We refer the reader
to Onorbe, Hennawi & Luki¢ (2017) for more details.

We extract 20 h~! cMpc long 5000 skewers from each simulation
running parallel to the box axes while tracing various quantities at
z =[4, 4.4, 5]. We rescale the Ly optical depths to match the mean
flux (F) = [0.4255, 0.3216, 0.135], at each redshift that is taken
from Ly« forest measurements (Becker & Bolton 2013; Bosman
et al. 2018). We convolve the spectra with Gaussian line profile
with full width at half-maximum (FWHM) =6 kms~! to mimic the
resolution of Very Large Telescope - Ultraviolet and Visual Echelle
Spectrograph (VLT-UVES) instrument. The pixel scale for our mock
spectra is ~2.45 kms~' at z = 4. Note that we add Gaussian-
distributed (or observational) noise with a fixed S/N during the
training phase.

We form pairs of Lya flux and the corresponding logarithm of the
Ly« optical depth-weighted density and temperature (log A, log 7;)
skewers for our data set. It is infeasible to recover the real-space
quantities (log A and log T') from a velocity-space Lya flux skewer,
as they are simply washed out by small-scale peculiar velocities of the
absorbers due to structure formation. We use a Gaussian line profile
(instead of a Voigt profile) to obtain log A, and log T, skewers.
We found that in some rare sightlines, extremely high densities can
affect the weighted quantity along the significant length of the skewer
due to extended damping wing. The Ly« forest is evaluated in the
standard way using the Voigt line profile. We form one data set by
aggregating all skewers from the Sherwood suite (rows one through
five in Table 1). The NYX-EARLY and NYX-LATE runs are only utilized
at the testing stage.

3 NEURAL NETWORK

3.1 Metric for network

A network learns weights and biases during training using a gradient-
based optimization method. The main objective is that once the
network is trained, the errors between actual and predicted quantities
are minimized. This is solely judged on a metric and conventionally
it is either mean absolute error or mean squared error. However, as
we want a handle on the uncertainties on predictions, we chose the
negative logarithm of the Gaussian likelihood, —og £, as our metric:

1 1
—10g£ = — Z (Yi - Yi,pred)z/a-iz,pred. + lOg 2 : (1)
N oi.pred.

i

Here, the sum runs over all the pixels. The metric is normalized by
the total skewers in a training or validation split, N. The Y;, Y; pred.,
and ai%pred_ are actual mean, predicted mean, and predicted standard
deviation of the desired quantity, respectively.

The underlying assumption for our metric is that the predicted
quantity follows a Gaussian distribution at every pixel along the
sightline. Furthermore, we treat each pixel as independent and ignore
any covariances at the training phase. This is to make training feasible
and avoid predicting large covariance matrices that quickly become
impractical for training a neural network. We later tackle this problem
during the prediction step. We will train two independent networks
for log A, and log T, therefore two values for metric (i.e. Hog £)
without taking into consideration the correlations between quantities
during training.

3.2 Building deeper networks with building blocks

Before we tackle the problem of designing an optimal network, we
will delve into the basic building blocks for our networks. Three
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Figure 1. The schematic for the basic layers that forms the networks used in
this work. Top: The convolutional layer extracts N features using 3 pixel-wide
convolutional kernels. Middle: The residual layer implements two stacked
convolutional layers with a skipping connection. The input, X, is fed directly
to the last layer before activation. We stack several convolutional or residual
layers to form one block, which are placed in sequence to form either ConvNet
or ResNet. Bottom: The dense layer performs dot product between the input
and the weight matrix. All layers share the batch normalization and parametric
rectilinear unit as activation that is an elementwise operation. The dense layer
is the last layer in our network.

basic processing layers that are central to our networks are shown in
Fig. 1. We will refer to them as convolutional (top), residual (middle),
and dense (bottom) layers, respectively.

The main objective of the convolutional layer (for introduction,
see O’Shea & Nash 2015) is to extract a fixed number of features
through a set of convolution kernels. We fix the kernel to be 3 pixels
(we have also done trials with 5 and 7) typical for such networks.
Note that although the kernel size is set, the subsequent convolutional
layer followed with pooling aids the networks to learn complex
features on larger scales. The batch normalization layer standardizes
samples of the current batch (a subsample of the training data set)
during training and encourages faster learning (loffe & Szegedy
2015). For inhomogeneous data sets, the network can be exposed to
a biased batch, which can slow down the convergence of the metric
during training. This layer helps to mitigate this effect. The activation
layer introduces non-linearity into the network using the Parametric
Rectified Linear Unit (PReLU) function. This function retains input
when it is positive but scales it with a trainable factor when negative.
PReLU is a piecewise linear function that has the advantage of being
cost-effective to compute.

The underlying idea of the residual layer is to skip connections
between two consecutive convolutional layers by directly adding
input to output before activation. Note that the inputs cannot simply
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(NoaehXNgk) Normalized Lya Flux
N3
|N1 Convolutional /Residual Layers (k; features) |
(NbatenXNik /2 x ki) l
|N2 Convolutional /Residual Layers (k, features) |
(NbatehXNsk /4 x k2) l

N, Convolutional/Residual Layers (k, features) |

(NoatchXNsk /n X kn)

| Fla;ten |

1)

| Dense Layer (Ng x 2 nodes) |

— .

(NbatchXNskx2) (NoatehxNgkx2)

Figure 2. The general schematic of our ConvNet or ResNet. Each stage is
a stack of a certain number, N;, of convolutional or residual layers with a
fixed number of features, k;. Each is processed with maximum pooling of
two pixels. The exact number of stages, layers at each stage, and number of
features are determined using hyperparameter tuning. Here, Ny is the number
of pixels in a skewer and Npgech is number of skewers taken for each batch
referred to as batch size. The output format at each stage is shown on the left.
The stage for each network is dense layer.

be added when both can have a different number of features.
Therefore, we process it with a simple convolutional layer to extract
the same number of features before adding it to the output. This
strategy of skipping layers has two advantages. If adding more
layers is useful for the network, the gradients (calculated for error
back-propagation) would be non-vanishing in deeper layers. If the
additional layer has a negligible effect, the network can simply skip
over them, which saves time during training and does not affect
network performance.

The first layer of the dense layer implements a matrix multi-
plication between the weight matrix (learned during training) and
the input. The dense layer has the same two last layers as the
convolutional layer. The size of our dense layer is twice the number
of pixels in an Lyo skewer, as the network predicts both the mean
and standard deviation for each pixel. The basic difference between
the convolutional/residual and dense processing layers is the scale
of features impacting the immediate output. The former extracts
localized features, while the latter takes advantage of full connectivity
between inputs.

We show the general schematic of our two networks, convolutional
network (ConvNet) and residual network (ResNet), in Fig. 2. These
networks are essentially one-dimensional implementation of ResNet
(He et al. 2015) using TENSORFLOW/KERAS (Chollet et al. 2015). The
network performs processing in a total of N stages. Each stage is
a stack of N; convolutional or residual layers, where the number of
features, k;, is kept fixed. The maximum pooling of two pixels is
performed at the end of each stage in ConvNet and ResNet. This
scaling is shown on the left side of the schematic as downsampling
of each Ng, the number of pixels in a skewer. We increase the
total number of convolutional/residual layers and the features in
each stage as we go deeper into the network. This is to tackle the
increasingly complex features at later stages. This progressive act of
pooling/convolution and increasing features at each stage transforms
data from sample to feature space. Both networks appropriately
format (flatten layer) the outputs and feed them to a dense layer
as a final processing stage. This layer outputs the mean and sigma
of log A; or log T, for each pixel of a given skewer, i.e. p and o.
Note that the dense layer is similar to a conventional weight matrix
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multiplication but twice the number of weights. The output now
represents distribution rather than the actual predictions.

3.3 Training a network

Now, we focus our attention to details involving training a ConvNet
or ResNet. In Section 3.4, we will discuss how hyperparameters are
tuned to find an optimal network architecture at z = 4 through 5.

We do an 80-20-20 per cent split of the original data set to separate
the training, validation, and test skewers. We have also done trials
with 70-30 and 50-50 splits for train and validation. All cases
show very similar training histories but standard split shows best
convergence. It is ensured that the splits have proportionally the same
number of skewers from each simulation run. Before training, splits
are standardized. This is achieved by subtracting the mean value and
dividing it by the standard deviation of each quantity (i.e. Lyx flux,
log A, and log T;) of the training split. We use the same values
to transform to or back when needed. This is a standard practice
and helps to improve speed, stability, and convergence during
training.

At the training/validation steps, we periodically shift the skewers
to random locations taking into account the periodic boundary
conditions of the simulation. This is equivalent to changing the
starting position of a skewer along one axis. Later, we add Gaussian-
distributed noise with the fixed signal-to-noise pixel. The noise
realization is generated during the training and validation steps. We
do this procedure to overcome any overfitting problems, which arise
due to the limited number of skewers extracted along the box axes
or because of a fixed noise realization.

The training and validation are performed in batches, the number
of which is a hyperparameter. Once the network has seen all the
examples, it is known as an epoch. The skewers in the entire data set
are randomized at the start of each epoch. The metric is calculated
first for training and later for validation split over all batches, with
one value for each batch. The loss at each epoch is then given by
a simple sum of the loss from all batches. This way we obtain
training and validation losses for each epoch. We also add sum of
squares of learnable weights with factor of 107 to loss function
for regularization purposes. During training, we half the current
learning rate if the metric for validation split does not improve for
10 consecutive epochs. We run training for 150 epochs, which is
enough to reach convergence. Typically, the metric for validation
split asymptotes before reaching 100 epochs. All training/validation
sessions were run on four A100 Nvidia Graphics Processing Unit
(GPU) nodes with a typical completion time of under half an hour.

3.4 Finding optimal networks

The main hyperparameters we considered to search for our optimal
networks are the type of architecture (ConvNet/ResNet), as well as
the total number of stages, layers, and features at each stage. We
impose a few restrictions in this grid search to avoid the network
from becoming overly complex. We limit the total stages between
1 and 6. The number of layers at the first stage is either 1 or 2 for
ResNet and 2—4 for ConvNet. It is then kept the same or doubled in
subsequent stages, but never allowed to increase above 4 for ResNet
and 8 for ConvNet. The reason for different criteria is to ensure that
the largest possible network has the same complexity. The number of
features at the first block is chosen from [2, 4, 8, 16, 32]. It is either
kept the same or doubled for each subsequent stage.

In addition, there are also hyperparameters related to the training
that are needed to be optimized. These are Ny ch and the learning rate,
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Table 2. The hyperparameters related to our networks used in this work at
z = 4.0 through 5.0. The columns represent layers at each stage, features at
each stage (progressively increasing in power of two), learning rate (/;), and
batch size (Npaich). All networks are ResNet in architecture.

z Layers Features I Nbatch

log A,

2.0x 1073 1024
6.1 x 1073 1024

40  4,4,4,4.4
44 3,4,4,4.4

32,32, 64, 128, 256
16, 32, 32, 64, 128

5.0 2,4,4,4 16, 32, 64, 128 1.5x 1073 1024
log T,

4.0 4,4,4,4,4,4 8,16,32,32,32,64 8.3 x 1073 1024

4.4 3,3,3,4,4,4 16, 32, 32, 64, 128, 256 1.0 x 1072 2048

5.0 3,3,3,4,4,4 32,32,32,32,64, 128 1.5 x 1072 4096

s

I;. The weights and biases of the network are updated at the end of ev-
ery batch. A small batch typically results in noisy gradient estimation
(calculated during error propagation), and therefore translates into
fluctuations in parametric space. A large batch gives an averaged
gradient and the metric takes longer to reach optimal values. The
gradient of weights and biases are adjusted through /;. A higher rate
may introduce noise and stop the network from converging. On the
other hand, smaller rates might make the network take way too long
to reach convergence. We sampled /; in log space across 1074-0.5.
This is an initial learning rate; however, we half its current value
when the metric does not improve after 10 epochs. The batch size
range in powers of two is 1024-8192. The large batch size is chosen
to run the training on four Nvidia A100 GPUs in parallel. Usually,
there is a correlation between Ny, and /;; therefore, both parameters
need to be tuned together.

We use OPTUNA,> a PYTHON-based Application Programming
Interface (API) to search for optimal hyperparameters. We use
the default tree-structured Parzen estimator provided by OPTUNA to
sample the parameter space. We ran 100 training and validation trials
for log T, and log A, separately at each redshift. We are expecting
each quantity to have a network with different complexity. For each
trial, we assemble a network with hyperparameters suggested by
OPTUNA. We train the network (procedure outlined in Section 3.3)
and minimize our metric. We train for 100 epochs (50 epochs less than
actual training) and keep the minimum value attained for —log £ for
the validation split at the end of each trial. The metric and optimizer
(i.e. Adam) are same for hyperparameters grid search and training.
The code used for data preparation training and grid search is also
available online at repository.3

We summarized the optimal set of hyperparameters of this grid
search in Table 2. It is clear that a much smaller network extracting
fewer features is preferable for log A, as compared to log 7. ResNet
is the preferred network for all cases. Note that the ResNet has
twice the complexity as compared to ConvNet with same number of
stages, layers, and features. We have found that at higher redshift the
network performance degrades that can be primarily attributed to low
transmitted Ly flux. Although there can be some impact on network
architecture and (or) hyperparameters with the noise assumed for the
mock spectra, we chose S/N = 50 pixel~! as fiducial value.

Zhttps://optuna.readthedocs.io/en/stable/
3https://github.com/nicenustian/bh2igm
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3.5 Predictions

For our results, we only utilized predictions from test data sets from
each model (1000 sightlines per model). The network outputs mean
and standard deviations at each pixel of the Ly« skewer forlog A, and
log T;. We have shown the residual distributions for each simulation
in Fig 3. This plot highlights any bias and skewness of the predicted
distributions among models with different thermal parameters.

By sampling these distributions, we first obtain an initial estimate
of Ty and y. However, using uncorrelated single pixel Gaussian to
reproduce realizations gives us unconstrained estimate and unrealis-
tically small confidence intervals. Therefore, we need to estimate a
true error model that we could sample to measure 7j and y and build
their respective confidence intervals over many realizations.

We first obtain residuals of concatenated log A, and log T,
as (Yeon — Meon)/Ocon, Where Yoo, is the actual quantity, and
Meon and 0 oo are the predictions for the mean and standard deviation,
respectively. Later, we congregate 40 sets of randomly shifted
residuals to make the matrix smooth. This amounts to 40 000 skewers
in total. Finally, we obtain the residual correlation matrix, » . We
repeat this process for each model and at each redshift. In Fig. 4,
we have shown the correlation matrix for FIDUCIAL model at z = 4.
It is evident that there is a significant correlation between residual
pixels for log 7, (bottom-right panel) at small scale. The log T; and
log A, residuals are weakly cross-correlated. Finally, we generate
joint realizations of log A;—log T; skewers by simply sampling the
multivariate Gaussian, fLeon + N0, >0 con-

To determine which correlation matrix to use for a given sightline,
we use our initial estimates of uncorrelated Ty—y distributions. We
use the correlation matrix of the model with the least Euclidean
distance in To—y plane using our initial estimates. However, we
found no noticeable differences even when we obtain realizations
using only the FIDUCIAL correlation matrix. In practice, the confi-
dence intervals obtained from a large number of realizations using
this procedure and the ones directly from network predictions are
extremely similar. However, individual realizations of a given skewer
can differ significantly. We obtain 1000 realizations for each skewer.

To estimate Ty and y onlog A,-log T distribution (for an actual or
predicted realization), we make a small modification to our previous
method. We employ an additional step of removing values that
correspond to saturated pixels in the flux before fitting a line through
the median log 7, points in the desired log A, bins. We defined
saturated pixels as when the flux is less than the 1o noise level. For
each sightline, we use all 1000 log A .—log T; distribution realizations
(not same as skewers) and estimate 7y—y distribution. This provides
us with joint Ty—y distributions for any given 20 4#~! cMpc skewer.

Thelog A, also shows a slight bias towards high densities; how-
ever, for log 77 it is most noticeable with different thermal histories.
For instance, the distributions for HOT and COLD are biased low and
high, respectively. The same is true for models with different redshift
of reionization. G10 shows a significant tail, which can be attributed
to relatively flat and insensitive log 7; along the Lya flux skewer.
Secondly, we are limited by training examples, as most of them are
at y ~ 1.2—-1.5. Although the predicted distributions for individual
simulations can be biased, their covering fraction, ooy, still remains
above the expected 68 per cent.

3.6 Ly« flux through the network

In this section, we will examine the flow of the Lya flux through
different layers of a simplistic network to build intuition into the
reconstruction process. In order to make the outputs easier to
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Figure 4. The residual correlation matrix of concatenated log A, and log 7
for FIDUCIAL model at 7z = 4. To determine a well-behaved matrix, 40
randomly shifted skewers from the model were stacked together. This amounts
to 40000 skewers. The top-left panel represents log A,, while the bottom-
right panel represents residual of log 7. The rest show the cross matrix
between log A; and log 7.

visualize at each stage, we utilize an elementary architecture. The
network has two convolutional layers, extracting four and eight
features, respectively, forming a two-stage ConvNet. We train the
network using Npyeh = 32 and [, = 10~*. We utilize the same data
set as our primary results for training and validation.

Fig. 5 shows the propagation of a normalized Ly« forest skewer at
z = 4 through different stages. The purpose is to illustrate how the
subtle differences in Ly flux between HOT and COLD models with
different T are translated into log 7, predictions.

MNRAS 534, 1299-1316 (2024)

The first convolution layer extracts four features directly from
the normalized flux. The output is extracted by convolving the
normalized flux using 3 pixel-wide kernels, which emphasizes the
sharp features in the Ly flux of the COLD model. Notice that the
output pixels can be below zero, which is only possible with PReLU
activation. Allowing the neurons to fire even when the output is
negative is crucial to fully utilize the dynamic range of normalized
Lya flux pixels. At the second stage of convolution (third row), the
trend is even more pronounced. Notice that each output skewer at the
second stage is evaluated by combining all the feature skewers of the
previous stage (in this case, four) through one convolutional kernel.

The fourth panel shows the output at the dense layer. The
feature skewers are finally transformed into predictions, which are
distributions for each pixel. The network only outputs the parameters
of the distributions that are the mean, u (dashed curves), and standard
deviation, o. The predicted distributions are transformed back into
their original units by using the mean and standard deviations from
the training split. We obtain 1o confidence intervals shown as light
shaded regions.

The higher density regions show relatively less Ly transmission
that translates into higher uncertainty in log 7, or vice versa. The
actual log 7 (solid line) falls mostly within the predicted confidence
intervals (light grey region). It is expected that the actual quantity
should fall within the predicted light shaded contours at least 68
percent of the time for the entire data set. It is evident that the
network sometimes fails to predict the right confidence intervals,
specifically for saturated pixels. This gives rise to the modest tails in
the residual distributions.

4 RESULTS

In this section, we will discuss in detail the predictions, primarily
focused at z = 4 and with S/N = 50 pixel~! for noise (Sections 4.2—
4.4). Our main goal is to recover the IGM log A, and log 7; along
the sightlines for our models with varying thermal parameters. This
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actual log 7.

ultimately leads us to constrain the thermal parameters (i.e. Ty and
y). We also extend our analysis for spectra treated with different
S/N (Section 4.4). Later, we will extend the results up to redshift
z = 5.0 in Section 4.5. In the final section (Section 4.6), we will
show predictions for a segment taken from an observational spectrum
and establish that the method can provide reasonable but powerful
constraints on thermal parameters.

4.1 Predictions along the sightlines

Figs 6 and 7 show the predictions of example skewers from simula-
tions highlighting the impact of varying thermal parameters at z = 4
with S/N = 50 pixel~'. It is evident that the actual quantities (solid
curves) lie mostly within the predicted 1o along the skewers.

The 1o intervals are smaller in regions with significant Ly flux
transmission and largest in the saturated parts. The network is unable
to predict the right confidence intervals for saturated regions (for
example, at 5 2~!cMpc in the first panel). This shows that the
network is not overfitting the training data set. This essentially limits
the predicting power primarily to underdense IGM gas, which is
not saturated at z = 4. The prediction for log A; has very narrow
confidence intervals as compared to log 7. This is mainly because
log A, reconstruction is very localized and is impacted by very local
features extracted from Lya forest. The prediction of log 7, at a
given pixel depends on the Ly« pixels on several scales. The small
uncertainties on log A, predictions make it potentially a method to
constrain cosmological models that can impact the IGM densities
on smaller scales such as warm dark matter (IrSic et al. 2017, 2024,
Villasenor et al. 2023).

Varying T impacts the small-scale IGM densities due to pressure
smoothing (Hui & Gnedin 1997; Peeples et al. 2010; Nasir, Bolton &

Becker 2016). It is clear that the predictions also capture faithfully
log A, along the sightlines (see top panel of Fig. 6). The differences
in log A, skewers are partly due to the difference in the Lya Doppler
broadening between models varying 7y. The COLD has noticeably
more structure as compared to HOT. The impact is subtle but smaller
uncertainties help to reliably capture this in log A, predictions.
The models with different 7 also have slightly different slope
of Ty—y relation where COLD (HOT) is steeper (shallower) (see
Section 4.4). The predicted pixel distributions for log 7, along the
skewers remarkably trace the underlying temperatures with the right
confidence intervals (except for saturated regions). The predicted
To values for the example skewers are predicted within a few
hundred Kelvins of their actual values with 1o confidence intervals
of 87y < 1000 K for most cases.

The predicted log 7; for models with varying y (second panel,
bottom row) can also capture the trend of actual log 7; within
predicted confidence intervals. The Lya flux for G10 by and large
is insensitive to variations in log 7;. However, the actual log T,
still lies within narrow confidence intervals. The z, parameter
has a very fine imprint on the flux that simply translates into
larger uncertainties on log 7, predictions. However, log A; is well
constrained with similar uncertainties as compared to rest of the
models. The subtle differences among these models are essentially
due to Jeans smoothing in the gas.

Lastly, we have shown our test models NYX-LATE and NYX-EARLY
in the bottom panel of Fig. 7. There is one point worth reiterating that
these models were run with entirely different hydrodynamical code.
The predictions are obtained with exactly the same method with
frozen network weights. Qualitatively, the predictions are similar to
those from the Sherwood runs. However, one difference is predicted
that log 7; does not strongly correlate with log A,, which results
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Figure 6. The predicted log A; and log 77 along example skewers for the simulations varying T (top panel) and y (bottom panel) at z = 4 with S/N = 50
pixel~!. Actual quantities are shown as solid curves overlaid with predicted mean (dashed curves) along with 1o confidence intervals as shaded regions. The
actual Ty and y are shown in second row of every panel, while estimated in every third row along with 1o confidence interval.

in systematically underestimated y value. We will later discuss this
issue in Section 4.3.

4.2 log A, and log T, distributions

To examine the range of IGM conditions probed by our reconstruc-
tion method, we examine the actual (solid curves) and predicted
(dashed curves) probability density functions (PDFs) in Fig. 8. We
have overlaid the scatter in the distributions over 20 2~ cMpc
skewers as the 1o shaded region in Fig. 8. Overall, there is an
excellent agreement and no noticeable bias between the predicted
and actual distributions. Despite some expected scatter among the
20 h~! cMpc skewers, the distributions can capture the broad trends
in densities and temperatures probed by the Lyo forest at z = 4. It
is worth mentioning that the step-like feature at the high log A, and
high log T is statistical, simply due to lack of pixels.

The log A, distributions are very similar for all models and are in
agreement (see top row of Fig. 8). The sharp drop in the distribution
at mean cosmic density, log A, 2> 0, suggests that forest is mostly
sensitive to underdense gas at z = 4. The exact densities can slightly

MNRAS 534, 1299-1316 (2024)

differ based on the simulation thermal parameters and history. This
can be seen in models with different y (second last column) showing
subtle differences at the high-density tail end. The actual distributions
show a small excess at log A; ~ 0.2. This is primarily due to Ly«
flux saturation and consequently losing sensitivity at high densities,
which ultimately degrades the reconstruction accuracy. The median
of the predicted distributions ranges from log A, = —0.33 to —0.37,
very closely following the actual range from —0.32 to —0.38.

Broadly, the predicted log T, distributions agree very well with a
few exceptions. The G10 (third panel) is slightly narrow and exhibits
a subtle offset. The ZR525 is almost indiscernible from ZR750. The
NYX-LATE model shows a bimodal distribution at the high log 7’ end.
As the shaded regions show the variations you would expect from a
20 4! cMpc sightline, it is evident that we can reliably estimate the
IGM conditions with one sightline. We can expect a systematic bias
that depends on the thermal parameters of model. However, this bias
is typically small as compared to predicted confidence interval. It is
worth noting that the predicted log 7, distributions are generally
broader than the truth, but this is expected given the predicted
scatter.

202 4990120 80 UO Jasn aAloeuU| Aq 0Z26G.2/662 L/Z/¥ES/RI91HE/SBIUW/WOD dNO"DlIWSPEDE//:SA)Y WOI) PAPEOJUMOQ



1307

Deep learning the IGM

—_
o
T

Flux
o
o1

Mo
oo

logA.
©
(=)

——+—+ i ——+—
[ To=11414K*3%5¢ y = 1.3%3.9¢
[To=11148K*3% y=1.29+39¢
:T0:11302K1§g§§'< y=1.29733

=
o1

r'>
(=)
T

- 1

10.0 125

15.0 175 20.0

TT T

Flux
o
[@)]

T

TT T

| L . —

T ryxlate’
—nyx-early

L1110

11

0.0 N — B

| |
20k To=8641K y=1.43
. To=8671K y = 1.42

T T T T T } T T ‘b }
To=8446K 313K y=1.29431

To=7451K*333K y=1.28+39¢

100 125 15.0 175 20.0
Mpc/h

Figure 7. Same as Fig. 6 but now for runs varying redshift of reionization (top panel) and test models (bottom panel).

4.3 log T;-log A, plane

The characterization of IGM by thermal parameters (i.e. Ty and y)
although useful is an oversimplification. It is a fit to the complex
two-dimensional (2D) distribution of temperature and density. It is
highly non-trivial to recover the entire log A,—log 7; distribution
and typically only thermal parameters are provided as a statistical
insight. However, owing to our reconstruction method, we can show
the log A;—log T, plane and examine the detailed 2D distributions
for models with varying thermal parameters.

In Fig. 9, we have shown the predicted log A, —log T, distributions,
overlaid with 68th and 95th percentiles for predicted (broad) and
actual (narrow) as contours. The median log 7; on log A, bins (bin
size of 0.1) are shown as dashed curves. The estimated 7; and y
are also shown and appropriately coloured. By comparing the 2o
contours, it is evident that the predicted distributions are broader
than the actual distributions. A typical Tj is within few hundred
Kelvins of the actual value, indicating that we can reliably estimate
thermal parameters across various models.

The median log 7, shown as dashed curves broadly follows the
trend but shows some noticeable deviations at low (log A, < —0.4)
and high densities (log A; 2 0.4). Therefore, in order to have
minimal biases on the thermal parameter estimates, we fit a line

through bins ranging from log A, = —0.4 to 0.2 after removing the
saturated pixels. The distributions follow the trend we expect from
the temperature—density relation in simulations evolved with non-
equilibrium codes such as Sherwood-Relics (see Puchwein et al.
2015). In general, we can reconstruct the deviations from simple
power law at lower densities.

The test simulations (NYX-LATE and NYX-EARLY) shown in last
column exhibit a very narrow and rather steeper distribution. Recall
that these simulations were evolved assuming photoionization equi-
librium and therefore do not show any deviations from power law
at lower densities. Our predictions fail to capture these differences
at the lower density end as highlighted by the median log 7; curves
shown in red. Another reason for these deviations is that we do not
have any simulation run that is relatively steep, y =~ 1.4, but colder,
To =~ 8800 K. Therefore, predictions show a rather lower y similar
to our colder models such as COLD and ZR525-COLD. These results
can be improved with a more comprehensive model grid sampling
the To—y space.

4.4 Ty—y distributions

We now proceed to show our main results of 7p—y distributions
for models. Recall that we have 1000 log A,-log T; realizations for
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log A; bins.

each 20 4~! cMpc skewer and their estimates for Ty—y using our
test split. In total, we have 40000 Ty—y data points for each model.
We have shown the To—y distributions (using all data points) using
different S/N (first through third rows) in Fig. 10. We add zero-
centred Gaussian noise with a desired S/N during training/validation,
as we have discussed in Section 3.3. The contours cover 68th and 95th
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percentiles of data points. The medians of actual and predicted values
are shown as cross and plus symbols, respectively. The predicted Ty
and y along with 1o confidence intervals for each model are shown
in legends.

It is evident that the predicted distributions are in good agreement
with actual values (cross symbols) lying mostly within predicted
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Figure 10. The Ty—y distributions with different S/N (shown in legends) at z = 4. Each row represents sightlines that are post-processed with added Gaussian
noise with S/N = 100, 50, and 20 pixel ~!, respectively. The distributions are obtained by estimating To—y for each realization of 20 2 ~! cMpc sightlines (1000
realizations for each skewer). The contours encapsulate the central 68th and 95th percentiles of the points. The estimated 7y and y along with their 1o confidence
intervals are shown in the legends. The plus and cross symbols mark the median of actual and predicted values for entire model.

68th percentile. The T} predictions are very constraining with typical
uncertainties § 7p =~ 250-2500 K. The y estimate also shows promise
with 1o uncertainties at o >~ 0.04-0.15.

As expected, the constraining power degrades with decreased
S/N. We can constrain our typical model with varying T, with
20 confidence interval at S/N = 100 (except ZR525-HOT), while
at S/N = 20, it drops to lo. The constraints for models varying
y are less stringent. For example, for S/N = 100 case, the G10 is
constrained with 2o, while G14 and G16 with only 1o confidence.
For NYX models, there is a systematic bias, with y underpredicted
by ~0.1. We have already discussed this issue in Section 4.3.

The uncertainties on thermal parameters also depend on the model.
By comparing models for S/N = 50 shown in second row, FIDUCIAL
has uncertainties at 67y ~ 1000 K, while COLD has significantly
lower 8Ty ~ 400 K. Same is true for ZR525-COLD and ZR525-
HOT. Notice that the uncertainties are very similar for models with
different y (similar Ty) as shown in third column. The subtle
differences in y for different z,. models can be seen in fourth column.
Relatively late reionization ZR525 tends to have small values for y
as compared to early model ZR750, mostly due to IGM adiabatic
cooling. The estimated median y hints about this evolution, although
the uncertainties remain quite large.

So far, we have discussed the recovery of Ty—y in the context of
individual skewers. We can significantly improve these constraints if
we consider combining several 20 4~! cMpc segments. For this, we
combine their log A,—log T realizations first and later we estimate

the To—y by fitting a line to the binned log A.-log T as before. To
obtain the Ty—y distributions, we simply draw 10 000 times over any
5 or 10 skewers with repetition and estimate 7y—y. The resulting
distributions for both cases are shown in Fig. 11. The redshift path-
length for 5 (10) skewers is Az >~ 0.2(0.4) with fixed S/N = 50
pixel~!.

As expected, the constraints get tighter with additional skewers,
by comparing the Ty—y distributions shown in Fig. 10 (middle row)
(S/N = 50 case) and Fig. 11. For example, for models varying Ty
(first panel), the uncertainties are now reduced up to 50 per cent for
Az =~ 0.2 case. They are further reduced by ~25 per cent for Az =~
0.4, which we expect with the increase in path-length according to
central limit theorem. Furthermore, the increase in path-length does
not result in any noticeable bias among models except for G10.

Overall, the Ty—y constraints provided by our method are more
powerful as compared to the Lyo forest flux power spectrum. Using
our approach, a single high-resolution 20 2! cMpc segment of
the Lya forest can provide constraints on IGM temperature with
uncertainties §7) >~ 1000 K with a typically thermal history. This
method potentially provides below 67y ~ 500 K constraints with a
redshift path of Az ~ 0.4, which is 10 times lower than existing
studies. In addition, the thermal parameter recovery for models
varying y is also very encouraging, although a slight bias should
be accounted for, in case of extreme y. A single skewer reconstruct
can give below §y ~ 0.1, which is usually achieved for considerable
sized data sets using flux power spectrum studies in the literature.
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Figure 11. Same as Fig. 10 but now distributions are obtained by reiterating 100000 times over 5 (top) or 10 (bottom) log A;—log T, realizations with
replacement from different skewers and estimating a joint 7p—y. This corresponds to total redshift path-lengths of Az 2~ 0.2 (top) and Az =~ 0.4 (bottom). The

S/N is kept fixed at 50 pixel ~!.

4.5 Redshift evolution

Until now, we have shown results at a fixed redshift z = 4.0. To pose
constraints on the thermal history of IGM, we need to extend this
method to higher redshifts. As the Ly« forest flux is the only input to
our neural networks, it is likely that the performance could degrade
due to significant drop in mean transmitted flux by z = 5.0. In this
section, we will present our results at z = 4.4 and 5.0.

We show the Ty—y distributions at z = 4.4 (top row) and z = 5.0
(bottom row) in Fig. 12. It is evident that the drop in mean flux
impacts the constraints on 7 and y. Overall, there is a trend of
rise in uncertainties with higher redshift. All distributions tend to
become broader, which is most noticeable for models with varying
y,i.e.G10, G14, and G16. By comparing the 95th percentile between
redshifts, most of the distributions become broader in the 7} direction.
The increase in 67y can be up to ~50 per cent. Notice that due to
the significantly broader distributions, models with different thermal
parameters tend to overlap reducing the constraining power of the
predictions using only single 20 A~! cMpc skewer.

4.6 Observational sightline

So far, we have tested our method with mock spectra with different
S/N and at different redshifts. In order to put method to practice and
determine that any instrumental effects would not compromise our
results, we take a 20 2~! cMpc segment from quasar J021043, which
is part of SQUAD DR1* survey. The details of the reduction can be
found in Murphy et al. (2019). The spectrum is observed using VLT-
UVES instrument that has resolution of FWHM ~ 6 kms™! with
average S/N = 20 pixel™! over the skewer. The emission redshift
of quasar is z = 4.65. The spectrum is continua-normalized and has
bias regions removed for quasar proximity effect.

To determine the appropriate noise realizations for the mock
spectra of this observational spectra, we determine a noise model

“https://github.com/MTMurphy77/UVES_SQUAD_DR
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by using the noise vector from sightline. As the noise is correlated
with the transmitted flux level, we calculate median S/N in flux bins
with bin size of 0.01. Later, we add zero-centred Gaussian noise
with the determined S/N based on the Lyo flux of mock spectra
during training/validation. To remove the dependence on periodicity
of skewers, we modified our training/validation by masking 16 pixels
at left edge after shifting the skewer as before.

The predictions for log A, (middle) and log 7; (bottom) for the
Lya forest segment (top) overlaid with its noise vector are shown
in Fig. 13. The mean (dashed curves) along with 1o confidence
intervals as shaded regions are shown. The segment has a mean flux
of (F) = 0.55 and S/N =~ 20 pixel~!. The estimates for the thermal
parameters are Ty = 8270 K*|057 ¥ and y = 1.57)75. The recovered
value for Ty is very similar to our COLD model. We want to reiterate
the fact that only single 20 2! cMpc skewer realizations are used
for estimating any 7y—y distribution. One skewer corresponds to
a redshift path-length of Az >~ 0.04 at z = 4. For reference, the
existing measurements at 4 < z <5 utilized redshift path-length
of Az >~ 4 or 6, typically using 15 or more high-resolution quasar
spectra (Boera et al. 2019; Walther et al. 2019). The measurements
we have obtained from this example are also consistent with earlier
measurements using summary statistics of the Ly« forest (Becker
etal. 2011; Boera et al. 2019; Walther et al. 2019b). However, we do
not intend to present this result as a measurement but rather a way to
validate the method. In future studies, we plan to apply this method
to a more comprehensive quasar data set at z = 4—5 to measure the
IGM thermal history in unprecedented detail.

5 CONCLUSIONS

We have established that reconstruction of IGM gas conditions
using neural networks offers significant advantage over traditional
summary statistics. The method helps us to transform the Ly«
transmitted flux directly to (optical depth-weighted) gas densities
and temperatures. This pixel-by-pixel reconstruction enables the
mapping of the entire log 7:—log A, plane. This is not possible
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Figure 12. Same as Fig. 10 but at z = 4.4 (top), and z = 5.0 (bottom) with S/N = 50 pixel ~'.
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Figure 13. The predictions for IGM gas conditions of quasar J021043. This is

20.0

10.0
Mpc/h

17.5

20 h~! cMpc segment centred at z = 4, overlaid with noise vector. The predictions

for log A; and log T, are shown in middle and bottom panels, respectively. The predicted mean (dashed curves) along with 1o confidence intervals are shown.
The estimated Tp and y, with 1o confidence interval, are also shown in the last row.

with traditional methods that only recover thermal parameters using
statistics such as the Lyo flux power spectrum. We have shown
that only one 20 ~A~! cMpc segment of the Ly forest from a single
quasar can deliver constraints comparable to moderately sized data
sets usually employed for such studies. We have seen that our method
can provide fairly robust constraints on thermal parameters even in
the presence of significant instrumental noise. We can also perform
a reasonable reconstruction with test data set from NYX simulations
by our trained neural network with frozen weights. In addition, the

method can be extended up to redshift z = 5.0, providing valuable
insight into the thermal evolution of IGM. However, we expect the
performance to get worse with mostly saturated spectra; therefore,
it might require a significant change in the current architecture. The
technique can also be pushed towards lower redshifts z < 4, until
most of the flux is at the continuum level.

Neural networks utilize quite complex feature-space transforma-
tion to convert Lya flux to the IGM conditions. This can potentially
make inference somewhat more model-dependent than traditional
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methods. For instance, traditional methods cannot capture the small
deviation from a power law in the temperature—density plane using
the statistical thermal parameters 7y and y. As our method can
reconstruct the entire plane, it requires the mock spectra to be a
realistic representation of observations. This includes incorporating
all the physical processes that can impact the IGM conditions such
as non-equilibrium photoionization. An important aspect of training
large neural networks is to come up with clever solutions to overfitting
problems. We found that training can be sensitive to noise realization,
skewers with correlated density structures, and more importantly
the network architecture. We have taken appropriate measures to
overcome these problems by adopting strategies for overfitting by
adding noise during training stage, constructing realistic mock data
sets, and performing a grid search over the hyperparameters of the
network.

In the future, we plan to provide thermal parameter constraints
using observational spectra at 4 < z < 5. We have shown a glimpse
of IGM gas conditions’ reconstruction from a real spectrum in
Section 4.6. This unique approach enables insight into the IGM using
individual 20 ~~! cMpc segments contrary to current methods that
require averaging together a much larger volume of the Universe. An-
other possible implication of our method is to perform reconstruction
for models with thermal fluctuations at z = 5.0. This method would
require grid of inhomogeneous reionization simulations on much
larger scales. Potentially, we can see evidence of excess scatter in
the distribution of recovered thermal parameters along individual
sightlines.
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APPENDIX A: COMPARISON WITH
REAL-SPACE DISTRIBUTIONS

In this paper, we have chosen to work with optical depth-weighted
quantities and have determined thermal parameters using predicted
log A,—log T, distribution realizations. In actuality, the weighted
quantities are just a proxy for real-space distribution, i.e. log T—
log A. So, a comparison of density, temperature, and Ty—y dis-
tributions using real-space and optical depth-weighed quantities is
presented in this section. We have summarized the results in Figs A1l
and A2.

In Fig. A1, we have compared real-space (red dotted), Ly« optical
depth-weighted (black dashed), and predicted (blue solid) quantities
for density (top row) and temperature (bottom row) distributions. The
shaded regions represent the 1o scatter over 20 2~! cMpc skewers,
which is appropriately coloured.

As expected, the IGM density distributions (comparing between
curves across panels in first row) are very similar. Furthermore,
the real-space, optical depth-weighted, and predicted quantities for

Deep learning the IGM 1313

given model (comparing curves in single panel) also closely match,
although the distributions of optical depth-weighted density (blue
curves) have a slight tail at the high-density end, log A; >~ 0.2.
The reason is that the act of optical depth-weighting shifts slightly
underdense gas into mild overdensities. A comparison of the shaded
regions suggests that all quantities exhibit a very similar scatter over
20 h~!' cMpc skewers.

The real-space (red) and optical depth-weighted (black) temper-
ature (bottom row in Fig. Al) also indicate a very similar trend,
where the latter has tail at the higher temperature end. In addition,
there is significantly more scatter at around median temperatures
in the optical depth-weighted case for the reasons discussed before.
Overall, the predicted distributions are broader than the rest and show
significantly more scatter as well. Note that at the low-temperature
end the distribution cannot capture the sharp rise for models with
relatively lower y (panels 1 and 2), which gives a noticeable tail.
The reason is that models with relatively shallower slope have a
small range of temperatures that corresponds to a large range of
densities.

Fig. A2 shows a comparison of Ty—y distributions using log A—
log T (real-space), log A,—log T, (optically weighted), and real-
izations of log A;—log 7; plane. The 68th and 95th percentiles of
these distributions are shown as dashed, dotted, and solid contours,
respectively.

It is obvious that the predicted To—y distributions are broader
than the rest. This reassures us that we do not have to incorporate
additional uncertainties from our choice of optical depth-weighted
quantities into our predictions. Upon close inspection, we can see
a subtle bias between actual optical depth-weighted and real-space
distributions. The former has slightly lower value of 7 (~500 K)
for majority of models. Notice that this also causes the predicted
distributions to slightly underpredict 7j for majority of models, which
can be seen by comparing the plus symbol with the dashed contours.
Despite these subtle biases, the real-space distribution broadly lies
within 1o of the predicted optical depth-weighted distributions.
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Figure A1. Same as for Fig. 8, but now for selected models shown in legends. Each panel shows real-space (dashed), Ly« optical depth-weighted (dotted), and
predicted (solid) quantities.
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Figure A2. Same as for Fig. 10 but now a comparison between real-space (dashed), Ly« optical depth-weighted (dotted), and predicted (solid) quantities with
S/N = 50. The contours enclose 1o and 20 scatter over 20 A~ ! cMpc skewers.
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APPENDIX B: MEAN FLUX TESTS S/N = 50 pixel ! case. These rescaled data sets are used to provide
the predictions from network with frozen weights and shown in

To quantity the impact of uncertainties on the mean flux on our Fig. B1. Overall, there is no noticeable change; however, there is

To-y predictionsj we rescale Lyof flux to match (F) = 0.468 05 and some subtle change in y that is underpredicted most noticeably (2-3
0.38295, which is 10 percent higher and lower than our value for per cent) for higher mean flux case.
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Figure B1. Same as for Fig. 10, but now for Ly flux matched to mean flux 10 per cent higher (top) and lower (bottom) than fiducial value at z = 4.0 with
S/N = 50 pixel !
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APPENDIX C: BOX SIZE TEST

We have taken six more runs from Sherwood-Relics to see the
impact of box size on the network predictions with fixed mass
resolution. These runs have box length of 40 2! cMpc and have
20483 gas and dark matter particles. We have taken 20 2~! cMpc
long skewers from these boxes for this exercise. These skewers
are only used at the prediction stage. Our network relies on the
periodicity of skewers during training, which is not the case for
these skewers taken from 40 4~! cMpc box. Therefore, we slightly
modified our training by masking (16 pixels) at start of Ly« skewer
during training with our 20 2! cMpc boxes to break dependence of
network on periodicity at boundaries. The masking was done after
each skewer was periodically shifted by a random value. We use this
slightly modified network to obtain predictions for 40 h~' cMpc runs
(model shown in legend) as shown in Ty—y distributions in Fig. C1.
Although the mean values remain largely unchanged, the predicted
distributions are in quite broad. This is partly because network cannot
rely on periodic boundary and partly due to box size impacting the
Ty—y distribution prediction.
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Figure C1. Same as for Fig. 10, but now for 40 A~! cMpc boxes from
Sherwood-Relics at z = 4 with S/N = 50 pixel L.
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