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A B S T R A C T 

Unveiling the thermal history of the intergalactic medium (IGM) at 4 ≤ z ≤ 5 holds the potential to reveal early onset He II 
reionization or lingering thermal fluctuations from H I reionization. We set out to reconstruct the IGM gas properties along 

simulated L yman-alpha (L y α) forest data on pix el-by-pix el basis, employing deep neural networks. Our approach leverages 
the Sherwood-Relics simulation suite, consisting of diverse thermal histories, to generate mock spectra. Our convolutional and 

residual networks with likelihood metric predict the Ly α optical depth-weighted density or temperature for each pixel in the 
L y α forest skewer . We find that our network can successfully reproduce IGM conditions with high fidelity across range of 
instrumental signal-to-noise ratio. These predictions are subsequently translated into the temperature–density plane, facilitating 

the deri v ation of reliable constraints on thermal parameters. This allo ws us to estimate temperature at mean cosmic density, 
T 0 , with 1 σ confidence, δT 0 � 1000 K, using only one 20 h 

−1 cMpc sightline ( �z � 0 . 04) with a typical reionization history. 
Existing studies utilize redshift path-length comparable to �z � 4 for similar constraints. We can also provide more stringent 
constraints on the slope (1 σ confidence interval, δγ � 0 . 1) of the IGM temperature–density relation as compared to other 
traditional approaches. We test the reconstruction on a single high signal-to-noise observed spectrum (20 h 

−1 cMpc segment) 
and reco v er thermal parameters consistent with current measurements. This machine learning approach has the potential to 

provide accurate yet robust measurements of IGM thermal history at the redshifts in question. 

Key words: methods: numerical – – . 
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 I N T RO D U C T I O N  

ccurately understanding the thermal history of the intergalactic 
edium (IGM) stands as a fundamental goal in astronomy, as it

ffers crucial insights into the timing and duration of the H I and
e II reionization epochs. One of the most robust methods for probing 

his thermal history is through the examination of Ly α absorption, 
ommonly known as the Ly α forest, observed in the spectra of
uasars (Becker, Bolton & Lidz 2015 ). This approach is grounded in
he concept of photoheating, where the IGM temperature increases 
ue to H I and He II ionizing photons (Miralda-Escud ́e & Rees 1994 ).
he Doppler motions of the heated IGM are then imprinted on to the
bsorption lines of the Ly α forest. 

Leveraging on this idea, the literature has explored various 
tatistics that demonstrate a range of sensitivity to the thermal state. 
tudies exploit Ly α flux power spectrum suppression on small scales 
Zaldarriaga, Hui & Tegmark 2001 ; Croft et al. 2002 ; Zaroubi et al.
006 ; Viel et al. 2013 ; Boera et al. 2019 ; Walther et al. 2019 ), the
y α line width distributions (Haehnelt & Steinmetz 1998 ; Ricotti, 
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nedin & Shull 2000 ; Schaye et al. 2000 ; McDonald et al. 2001 ;
olton et al. 2012 , 2014 ; Rudie, Steidel & Pettini 2012 ; Hiss et al.
018 ; Telikova, Shternin & Balashev 2019 ), probability distribution 
f Ly α flux (Lidz et al. 2006 ; Bolton et al. 2008 ; Calura et al. 2012 ;
ee et al. 2015 ), curvature of Ly α flux (Becker et al. 2011 ; Boera et al.
014 , 2016 ; Padmanabhan, Srianand & Choudhury 2015 ), statistics
f wavelet amplitudes (Meiksin 2000 ; Theuns, Schaye & Haehnelt 
000 ; Zaldarriaga 2002 ; Lidz et al. 2010 ; Garzilli et al. 2012 ; Wolfson
t al. 2021 ), utilizing the entire b−N H I distribution (Hiss et al. 2019 ;
u et al. 2023 ), and combining an ensemble of statistics (Gaikwad

t al. 2021 ). None the less, despite recent progress, the pursuit of
ore precise methods persists, especially in the redshift range of 
 ≤ z ≤ 5, which can provide insights into the early stages of He II
eionization or any residual heating effects from H I reionization. 

The common theme of the previous studies has been to constraint
he thermal parameters, namely the normalization ( T 0 ) and slope ( γ )
f the expected power-law relating temperature ( T ) and normalized
osmic o v erdensity, � , of the IGM aftermath of reionization, T =
 0 � 

γ−1 (Hui & Gnedin 1997 ; McQuinn & Upton Sanderbeck 2016 ).
hile this approach has been valuable, it primarily offers a statistical

escription of IGM gas conditions. The richness of information 
resent in the forest goes beyond what these thermal parameters can
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h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Table 1. The summary of simulations used in this work taken from 

Sherwood-Relics suite. The columns represent name, H I photoheating 
rescaling factors, and the redshift of reionization (the redshift where the 
global neutral fraction reaches values below 10 −3 ), z re . All simulations have 
box size length of 20 h −1 cMpc with 1024 3 gas and dark matter particles. 
The last row shows the runs that are used only for testing purposes. 

Model H I photoheating z re 

FIDUCIAL / COLD / HOT 1, 0.5, 2 6.0 
ZR525 / COLD / HOT 1, 0.5, 2 5.4 
ZR675 / COLD / HOT 1, 0.5, 2 6.7 
ZR750 / COLD / HOT 1, 0.5, 2 7.4 
G10 / G14 / G16 Different γ 6.0 

NYX-EARLY / NYX-LATE – 9.7, 6.66 
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1 https:// www.nottingham.ac.uk/ astronomy/ sherwood-relics/ 
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apture. Moreo v er, the y are typically provided for the entire data set
t a given redshift. The methods are not sensitive enough to provide
onstraints for individual sightlines or to capture the variations within
ue to thermal fluctuations at z � 5 (D’Aloisio, McQuinn & Trac
015 ; Keating, Puchwein & Haehnelt 2018 ; Gaikwad et al. 2020 ).
e aim to harness deep learning methods that can somewhat a v oid

he loss of information inherent to the standard summary statistics. 
Recently, we have witnessed a notable surge in studies exploring

eep learning (for re vie w, see Goodfello w, Bengio & Courville 2016 )
n the context of quasar spectra. To highlight a few, generating
uasar (missing) spectra based on its properties (Eilers et al.
022 ), generating Ly α forest for large surv e ys using only N -body
imulation (Harrington et al. 2022 ), predicting Ly α optical depth
sing transmitted flux (Huang, Croft & Arora 2021 ), reconstructing
he IGM temperatures on large scales around quasars (Wang, Croft &
haw 2022 ), and using Ly α forest spectra to obtain constraints on
GM thermal parameters using ideal mock spectra at z = 2 . 2 (Nayak
t al. 2024 ). 

Our primary objective is to utilize deep learning techniques for the
recise reconstruction of IGM densities and temperatures, pixel by
ixel, within the Ly α forest. By the aid of this method, the thermal
arameters can also be inferred from the reconstructed conditions.
y virtue of the sheer number of data points at our disposal, we
an infer thermal parameters even for a single (20 h 

−1 cMpc in
his paper) sightline. Consequently, the constraints we obtain can be
any times more powerful and accurate in comparison to traditional

pproaches. Moreo v er, since this approach strives to reconstruct
he entire conditions along a given sightline, it naturally extends
ts capability to estimate thermal fluctuations that persist after the
ompletion of H I reionization or due to patchy He II reionization.
o we v er, we leav e the analysis of inhomogeneous reionization
odels to future work, which would require an e xtensiv e suite of

imulations for the training. We assume an IGM with a uniform
hermal state for this paper. 

There are few key considerations before we adapt deep learning
ethods for our purpose. We think that it is crucial to incorporate

ncertainties, in particular for this reconstruction as actual conditions
f IGM are unknown a priori. Quantifying the uncertainties due
o lack of usable flux or due to parameter de generac y becomes
mportant, in particular at higher redshifts where the Ly α forest is

ore opaque. Furthermore, the optimal design of a neural network
emands careful attention. A systematic grid search encompassing
ll rele v ant hyperparameters allo ws us to harness the full potential
f these techniques. Owing to their versatility and complexity,
eep learning methods are susceptible to o v erfitting issues. This
mplies that network performance may significantly deteriorate when
pplied to different but related data sets. Consequently, we take
ecessary precautions to mitigate o v erfitting, such as rigorously
esting performance on a dedicated test data set using NYX code. 

In this work, we address and resolve the aforementioned chal-
enges. We build a neural network that maximizes the likelihood of
 given data set with uncertainty estimates as a natural outcome.
e also mitigate the effect of o v erfitting by carefully analysing

redictions on a test data set. Furthermore, we conduct a grid search to
ptimize the network architecture and all associated hyperparameters
or training. 

Our paper is structured as follows: In Section 2 , we provide details
f the cosmological simulations employed in this study. Our focus
s simulation outputs at redshifts z = 4 −5. Section 3 delves into the
undamental aspects of the neural network and finding an optimal
etwork configuration. Section 4 presents our core findings. We
resent the reconstructions along example Ly α skewers. We also
NRAS 534, 1299–1316 (2024) 
how reco v ery of thermal parameters through various models, using
ifferent signal-to-noise (S/N). We also present a reconstruction
f a 20 h 

−1 cMpc segment on observational spectrum at z = 4. In
ection 5 , we offer our concluding remarks. We present a comparison
f Ly α optically depth-weighted and real-space thermal parameter
istributions in the Appendix. 

 H Y D RO DY NA M I C S  SI MULATI ONS  

he neural network relies on appropriate data sets for training,
alidation, and testing purposes. We use a subset of cosmological
imulations from the Sherwood-Relics 1 suite, based on the Sherwood
imulations (Bolton et al. 2017 ). These simulations were performed
sing a modified version of P-GADGET3 code, an updated version
f the P-GADGET2 (Springel 2005 ). In this section, we will briefly
escribe the key features of these simulations that form our training,
alidation, and test data sets. For details, we refer the reader to
uchwein et al. ( 2023 ). These simulations are particularly designed
or Ly α forest absorption spectra with various reionization and
hermal histories. In this work, we restrict ourselves to runs with
 standard cold dark matter cosmology. We summarize the runs we
se in Table 1 (first five rows). 
We use runs with a 20 h 

−1 cMpc box length on each side evolved
ith 1024 3 dark matter and gas particles. The simulations employ
 spatially uniform but time-varying ultraviolet background (UVB;
uchwein et al. 2019 ), and vary the redshift of reionization, z re ,
nd the thermal parameters, namely T 0 and γ . This is achieved by
escaling and shifting the photoionization and photoheating rates.
here are 12 simulations on the z re –T 0 grid (first row through the

ourth row in Table 1 ). Additionally, there are three runs for γ =
 . 0 , 1 . 4, and 1 . 6 fixed at z = 4 (fifth row in Table 1 ). To estimate T 0
nd γ for a given simulation run, we calculate the median log T on
og � = −0 . 4 to 0.2 bins with a size of 0.1, and fit a line through
hese binned values. Our method is very similar to the one described
n Gaikwad et al. ( 2017 ). 

Finally, to verify the robustness and generalization of our network
redictions, we include two more hydrodynamical simulations using
he NYX code (Almgren et al. 2013 ) for testing purposes only. All
uns have a box size of 20 h 

−1 cMpc and were evolved with 1024 3 

as and dark matter particles, using rescaled versions of the Haardt &
adau ( 2012 ) UVB. The runs mimic very early and relatively late

eionization histories as summarized in the last row of Table 1 . The
eionization and thermal histories of these runs do not closely match

https://www.nottingham.ac.uk/astronomy/sherwood-relics/
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Figure 1. The schematic for the basic layers that forms the networks used in 
this work. Top : The convolutional layer extracts N features using 3 pixel-wide 
convolutional kernels. Middle : The residual layer implements two stacked 
convolutional layers with a skipping connection. The input, X, is fed directly 
to the last layer before acti v ation. We stack se veral convolutional or residual 
layers to form one block, which are placed in sequence to form either ConvNet 
or ResNet. Bottom : The dense layer performs dot product between the input 
and the weight matrix. All layers share the batch normalization and parametric 
rectilinear unit as acti v ation that is an elementwise operation. The dense layer 
is the last layer in our network. 
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ny of our training runs from Sherwood-Relics. We refer the reader 
o O ̃ norbe, Hennawi & Luki ́c ( 2017 ) for more details. 

We extract 20 h 

−1 cMpc long 5000 skewers from each simulation 
unning parallel to the box axes while tracing various quantities at 
 = [4 , 4 . 4 , 5]. We rescale the Ly α optical depths to match the mean
ux 〈 F 〉 = [0 . 4255 , 0 . 3216 , 0 . 135], at each redshift that is taken
rom Ly α forest measurements (Becker & Bolton 2013 ; Bosman 
t al. 2018 ). We convolve the spectra with Gaussian line profile
ith full width at half-maximum (FWHM) =6 km s −1 to mimic the 

esolution of Very Large Telescope - Ultraviolet and Visual Echelle 
pectrograph (VL T -UVES) instrument. The pixel scale for our mock 
pectra is ∼2 . 45 km s −1 at z = 4. Note that we add Gaussian-
istributed (or observational) noise with a fixed S/N during the 
raining phase. 

We form pairs of Ly α flux and the corresponding logarithm of the
y α optical depth-weighted density and temperature ( log � τ , log T τ )
kewers for our data set. It is infeasible to reco v er the real-space
uantities ( log � and log T ) from a velocity-space Ly α flux skewer,
s they are simply washed out by small-scale peculiar velocities of the 
bsorbers due to structure formation. We use a Gaussian line profile 
instead of a Voigt profile) to obtain log � τ and log T τ skewers. 

e found that in some rare sightlines, extremely high densities can 
ffect the weighted quantity along the significant length of the skewer 
ue to extended damping wing. The Ly α forest is e v aluated in the
tandard way using the Voigt line profile. We form one data set by
ggregating all skewers from the Sherwood suite (rows one through 
ve in Table 1 ). The NYX-EARLY and NYX-LATE runs are only utilized
t the testing stage. 

 N E U R A L  N E T WO R K  

.1 Metric for network 

 network learns weights and biases during training using a gradient- 
ased optimization method. The main objective is that once the 
etwork is trained, the errors between actual and predicted quantities 
re minimized. This is solely judged on a metric and conventionally 
t is either mean absolute error or mean squared error. Ho we ver, as
e want a handle on the uncertainties on predictions, we chose the
e gativ e logarithm of the Gaussian likelihood, −log L , as our metric:

−log L = 

1 

N 

∑ 

i 

[ 

( Y i − Y i, pred . ) 
2 /σ 2 

i, pred . + log 

( 

1 

σ 2 
i, pred . 

) ] 

. (1) 

ere, the sum runs o v er all the pixels. The metric is normalized by
he total skewers in a training or validation split, N . The Y i , Y i, pred . ,
nd σ 2 

i, pred . are actual mean, predicted mean, and predicted standard 
eviation of the desired quantity, respectively. 
The underlying assumption for our metric is that the predicted 

uantity follows a Gaussian distribution at every pixel along the 
ightline. Furthermore, we treat each pixel as independent and ignore 
n y co variances at the training phase. This is to make training feasible
nd a v oid predicting large covariance matrices that quickly become 
mpractical for training a neural network. We later tackle this problem 

uring the prediction step. We will train two independent networks 
or log � τ and log T τ , therefore two values for metric (i.e. −log L )
ithout taking into consideration the correlations between quantities 
uring training. 

.2 Building deeper networks with building blocks 

efore we tackle the problem of designing an optimal network, we 
ill delve into the basic building blocks for our networks. Three 
asic processing layers that are central to our networks are shown in
ig. 1 . We will refer to them as convolutional (top), residual (middle),
nd dense (bottom) layers, respectively. 

The main objective of the convolutional layer (for introduction, 
ee O’Shea & Nash 2015 ) is to extract a fixed number of features
hrough a set of convolution kernels. We fix the kernel to be 3 pixels
we have also done trials with 5 and 7) typical for such networks.
ote that although the kernel size is set, the subsequent convolutional

ayer followed with pooling aids the networks to learn complex 
eatures on larger scales. The batch normalization layer standardizes 
amples of the current batch (a subsample of the training data set)
uring training and encourages faster learning (Ioffe & Szegedy 
015 ). For inhomogeneous data sets, the network can be exposed to
 biased batch, which can slow down the convergence of the metric
uring training. This layer helps to mitigate this effect. The activation
ayer introduces non-linearity into the network using the Parametric 
ectified Linear Unit (PReLU) function. This function retains input 
hen it is positive but scales it with a trainable factor when ne gativ e.
ReLU is a piecewise linear function that has the advantage of being
ost-ef fecti ve to compute. 

The underlying idea of the residual layer is to skip connections
etween two consecutive convolutional layers by directly adding 
nput to output before acti v ation. Note that the inputs cannot simply
MNRAS 534, 1299–1316 (2024) 



1302 F. Nasir et al. 

M

Figure 2. The general schematic of our ConvNet or ResNet. Each stage is 
a stack of a certain number, N i , of convolutional or residual layers with a 
fixed number of features, k i . Each is processed with maximum pooling of 
two pixels. The exact number of stages, layers at each stage, and number of 
features are determined using hyperparameter tuning. Here, N sk is the number 
of pixels in a skewer and N batch is number of skewers taken for each batch 
referred to as batch size. The output format at each stage is shown on the left. 
The stage for each network is dense layer. 
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e added when both can have a different number of features.
herefore, we process it with a simple convolutional layer to extract

he same number of features before adding it to the output. This
trategy of skipping layers has two advantages. If adding more
ayers is useful for the network, the gradients (calculated for error
ack-propagation) would be non-vanishing in deeper layers. If the
dditional layer has a negligible effect, the network can simply skip
 v er them, which sav es time during training and does not affect
etwork performance. 
The first layer of the dense layer implements a matrix multi-

lication between the weight matrix (learned during training) and
he input. The dense layer has the same two last layers as the
onvolutional layer. The size of our dense layer is twice the number
f pixels in an Ly α skewer, as the network predicts both the mean
nd standard deviation for each pixel. The basic difference between
he convolutional/residual and dense processing layers is the scale
f features impacting the immediate output. The former extracts
ocalized features, while the latter takes advantage of full connectivity
etween inputs. 

We show the general schematic of our two networks, convolutional
etwork (ConvNet) and residual network (ResNet), in Fig. 2 . These
etworks are essentially one-dimensional implementation of ResNet
He et al. 2015 ) using TENSORFLOW/KERAS (Chollet et al. 2015 ). The
etwork performs processing in a total of N stages. Each stage is
 stack of N i convolutional or residual layers, where the number of
eatures, k i , is kept fixed. The maximum pooling of two pixels is
erformed at the end of each stage in ConvNet and ResNet. This
caling is shown on the left side of the schematic as downsampling
f each N sk , the number of pixels in a skewer. We increase the
otal number of convolutional/residual layers and the features in
ach stage as we go deeper into the network. This is to tackle the
ncreasingly complex features at later stages. This progressive act of
ooling/convolution and increasing features at each stage transforms
ata from sample to feature space. Both networks appropriately
ormat (flatten layer) the outputs and feed them to a dense layer
s a final processing stage. This layer outputs the mean and sigma
f log � τ or log T τ for each pixel of a given skewer, i.e. μ and σ .
ote that the dense layer is similar to a conventional weight matrix
NRAS 534, 1299–1316 (2024) 
ultiplication but twice the number of weights. The output now
epresents distribution rather than the actual predictions. 

.3 Training a network 

ow, we focus our attention to details involving training a ConvNet
r ResNet. In Section 3.4 , we will discuss how hyperparameters are
uned to find an optimal network architecture at z = 4 through 5. 

We do an 80–20–20 per cent split of the original data set to separate
he training, validation, and test skewers. We have also done trials
ith 70–30 and 50–50 splits for train and validation. All cases

how very similar training histories but standard split shows best
onvergence. It is ensured that the splits have proportionally the same
umber of skewers from each simulation run. Before training, splits
re standardized. This is achieved by subtracting the mean value and
ividing it by the standard deviation of each quantity (i.e. Ly α flux,
og � τ , and log T τ ) of the training split. We use the same values
o transform to or back when needed. This is a standard practice
nd helps to impro v e speed, stability, and convergence during
raining. 

At the training/validation steps, we periodically shift the skewers
o random locations taking into account the periodic boundary
onditions of the simulation. This is equi v alent to changing the
tarting position of a skewer along one axis. Later, we add Gaussian-
istributed noise with the fixed signal-to-noise pixel. The noise
ealization is generated during the training and validation steps. We
o this procedure to o v ercome an y o v erfitting problems, which arise
ue to the limited number of skewers extracted along the box axes
r because of a fixed noise realization. 
The training and validation are performed in batches, the number

f which is a hyperparameter. Once the network has seen all the
xamples, it is known as an epoch. The skewers in the entire data set
re randomized at the start of each epoch. The metric is calculated
rst for training and later for validation split o v er all batches, with
ne value for each batch. The loss at each epoch is then given by
 simple sum of the loss from all batches. This way we obtain
raining and validation losses for each epoch. We also add sum of
quares of learnable weights with factor of 10 −4 to loss function
or regularization purposes. During training, we half the current
earning rate if the metric for validation split does not impro v e for
0 consecutive epochs. We run training for 150 epochs, which is
nough to reach convergence. Typically, the metric for validation
plit asymptotes before reaching 100 epochs. All training/validation
essions were run on four A100 Nvidia Graphics Processing Unit
GPU) nodes with a typical completion time of under half an hour. 

.4 Finding optimal networks 

he main hyperparameters we considered to search for our optimal
etworks are the type of architecture (ConvNet/ResNet), as well as
he total number of stages, layers, and features at each stage. We
mpose a few restrictions in this grid search to a v oid the network
rom becoming o v erly comple x. We limit the total stages between
 and 6. The number of layers at the first stage is either 1 or 2 for
esNet and 2–4 for ConvNet. It is then kept the same or doubled in

ubsequent stages, but never allowed to increase abo v e 4 for ResNet
nd 8 for ConvNet. The reason for different criteria is to ensure that
he largest possible network has the same complexity. The number of
eatures at the first block is chosen from [2 , 4 , 8 , 16 , 32]. It is either
ept the same or doubled for each subsequent stage. 

In addition, there are also hyperparameters related to the training
hat are needed to be optimized. These are N batch and the learning rate,
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Table 2. The hyperparameters related to our networks used in this work at 
z = 4 . 0 through 5.0. The columns represent layers at each stage, features at 
each stage (progressively increasing in power of two), learning rate ( l r ), and 
batch size ( N batch ). All networks are ResNet in architecture. 

z Layers Features l r N batch 

log � τ

4.0 4, 4, 4, 4, 4 32, 32, 64, 128, 256 2 . 0 × 10 −3 1024 
4.4 3, 4, 4, 4, 4 16, 32, 32, 64, 128 6 . 1 × 10 −3 1024 
5.0 2, 4, 4, 4 16, 32, 64, 128 1 . 5 × 10 −3 1024 

log T τ

4.0 4 , 4 , 4 , 4 , 4 , 4 8 , 16 , 32 , 32 , 32 , 64 8 . 3 × 10 −3 1024 
4.4 3 , 3 , 3 , 4 , 4 , 4 16, 32, 32, 64, 128, 256 1 . 0 × 10 −2 2048 
5.0 3 , 3 , 3 , 4 , 4 , 4 32 , 32 , 32 , 32 , 64 , 128 1 . 5 × 10 −2 4096 
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 r . The weights and biases of the network are updated at the end of ev-
ry batch. A small batch typically results in noisy gradient estimation 
calculated during error propagation), and therefore translates into 
uctuations in parametric space. A large batch gives an averaged 
radient and the metric takes longer to reach optimal values. The 
radient of weights and biases are adjusted through l r . A higher rate
ay introduce noise and stop the network from converging. On the 

ther hand, smaller rates might make the netw ork tak e w ay too long
o reach convergence. We sampled l r in log space across 10 −4 −0 . 5.
his is an initial learning rate; ho we ver, we half its current value
hen the metric does not impro v e after 10 epochs. The batch size

ange in powers of two is 1024–8192. The large batch size is chosen
o run the training on four Nvidia A100 GPUs in parallel. Usually,
here is a correlation between N batch and l r ; therefore, both parameters
eed to be tuned together. 

We use OPTUNA, 2 a PYTHON -based Application Programming 
nterface (API) to search for optimal hyperparameters. We use 
he default tree-structured Parzen estimator provided by OPTUNA to 
ample the parameter space. We ran 100 training and validation trials
or log T τ and log � τ separately at each redshift. We are expecting 
ach quantity to have a network with different comple xity. F or each
rial, we assemble a network with hyperparameters suggested by 
PTUNA . We train the network (procedure outlined in Section 3.3 )
nd minimize our metric. We train for 100 epochs (50 epochs less than 
ctual training) and keep the minimum value attained for −log L for
he validation split at the end of each trial. The metric and optimizer
i.e. Adam) are same for hyperparameters grid search and training. 
he code used for data preparation training and grid search is also
vailable online at repository. 3 

We summarized the optimal set of hyperparameters of this grid 
earch in Table 2 . It is clear that a much smaller network extracting
ewer features is preferable for log � τ as compared to log T τ . ResNet
s the preferred network for all cases. Note that the ResNet has
wice the complexity as compared to ConvNet with same number of
tages, layers, and features. We have found that at higher redshift the
etwork performance degrades that can be primarily attributed to low 

ransmitted Ly α flux. Although there can be some impact on network 
rchitecture and (or) hyperparameters with the noise assumed for the 
ock spectra, we chose S / N = 50 pixel −1 as fiducial value. 
 https:// optuna.readthedocs.io/ en/ stable/ 
 https:// github.com/ nicenustian/ bh2igm 
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d  
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.5 Predictions 

or our results, we only utilized predictions from test data sets from
ach model (1000 sightlines per model). The network outputs mean 
nd standard deviations at each pixel of the Ly α skewer for log � τ and
og T τ . We have shown the residual distributions for each simulation
n Fig 3 . This plot highlights any bias and skewness of the predicted
istributions among models with different thermal parameters. 
By sampling these distributions, we first obtain an initial estimate 

f T 0 and γ . Ho we ver, using uncorrelated single pixel Gaussian to
eproduce realizations gives us unconstrained estimate and unrealis- 
ically small confidence intervals. Therefore, we need to estimate a 
rue error model that we could sample to measure T 0 and γ and build
heir respective confidence intervals o v er man y realizations. 

We first obtain residuals of concatenated log � τ and log T τ , 
s ( Y con − μcon ) / σ con , where Y con is the actual quantity, and

con and σ con are the predictions for the mean and standard deviation, 
espectiv ely. Later, we congre gate 40 sets of randomly shifted
esiduals to make the matrix smooth. This amounts to 40 000 skewers
n total. Finally, we obtain the residual correlation matrix, 

∑ 

. We
epeat this process for each model and at each redshift. In Fig. 4 ,
e have shown the correlation matrix for FIDUCIAL model at z = 4.

t is evident that there is a significant correlation between residual
ixels for log T τ (bottom-right panel) at small scale. The log T τ and
og � τ residuals are weakly cross-correlated. Finally, we generate 
oint realizations of log � τ –log T τ skewers by simply sampling the 

ulti v ariate Gaussian, μcon + N (0 , 
∑ 

) σ con . 
To determine which correlation matrix to use for a given sightline,

e use our initial estimates of uncorrelated T 0 –γ distributions. We 
se the correlation matrix of the model with the least Euclidean
istance in T 0 –γ plane using our initial estimates. Ho we ver, we
ound no noticeable dif ferences e ven when we obtain realizations
sing only the FIDUCIAL correlation matrix. In practice, the confi- 
ence intervals obtained from a large number of realizations using 
his procedure and the ones directly from network predictions are 
xtremely similar. Ho we ver, indi vidual realizations of a given skewer
an differ significantly. We obtain 1000 realizations for each skewer. 

To estimate T 0 and γ on log � τ –log T τ distribution (for an actual or
redicted realization), we make a small modification to our previous 
ethod. We employ an additional step of removing values that 

orrespond to saturated pixels in the flux before fitting a line through
he median log T τ points in the desired log � τ bins. We defined
aturated pixels as when the flux is less than the 1 σ noise lev el. F or
ach sightline, we use all 1000 log � τ –log T τ distribution realizations 
not same as skewers) and estimate T 0 –γ distribution. This provides 
s with joint T 0 –γ distributions for any given 20 h 

−1 cMpc skewer. 
The log � τ also shows a slight bias to wards high densities; ho w-

ver, for log T τ it is most noticeable with different thermal histories.
or instance, the distributions for HOT and COLD are biased low and
igh, respectively. The same is true for models with different redshift
f reionization. G10 shows a significant tail, which can be attributed
o relatively flat and insensitive log T τ along the Ly α flux skewer.
econdly, we are limited by training examples, as most of them are
t γ � 1 . 2 −1 . 5. Although the predicted distributions for individual
imulations can be biased, their co v ering fraction, σcov , still remains
bo v e the expected 68 per cent. 

.6 Ly α flux through the network 

n this section, we will examine the flow of the Ly α flux through
ifferent layers of a simplistic network to build intuition into the
econstruction process. In order to make the outputs easier to 
MNRAS 534, 1299–1316 (2024) 

https://optuna.readthedocs.io/en/stable/
https://github.com/nicenustian/bh2igm
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Figure 3. The residual distributions of predicted log � τ (top row) and log T τ (bottom row) along with the respective σcov for the simulations shown in the 
legends. The dashed purple curve shows a Gaussian distribution with zero mean and unit variance to highlight any skewness or bias. 

Figure 4. The residual correlation matrix of concatenated log � τ and log T τ
for FIDUCIAL model at z = 4. To determine a well-behaved matrix, 40 
randomly shifted skewers from the model were stacked together. This amounts 
to 40 000 skewers. The top-left panel represents log � τ , while the bottom- 
right panel represents residual of log T τ . The rest show the cross matrix 
between log � τ and log T τ . 
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isualize at each stage, we utilize an elementary architecture. The
etwork has two convolutional layers, extracting four and eight
eatures, respectively, forming a two-stage ConvNet. We train the
etwork using N batch = 32 and l r = 10 −4 . We utilize the same data
et as our primary results for training and validation. 

Fig. 5 shows the propagation of a normalized Ly α forest skewer at
 = 4 through different stages. The purpose is to illustrate how the
ubtle differences in Ly α flux between HOT and COLD models with
ifferent T 0 are translated into log T τ predictions. 
NRAS 534, 1299–1316 (2024) 
The first convolution layer extracts four features directly from
he normalized flux. The output is extracted by convolving the
ormalized flux using 3 pixel-wide kernels, which emphasizes the
harp features in the Ly α flux of the COLD model. Notice that the
utput pixels can be below zero, which is only possible with PReLU
cti v ation. Allo wing the neurons to fire even when the output is
e gativ e is crucial to fully utilize the dynamic range of normalized
y α flux pixels. At the second stage of convolution (third row), the

rend is even more pronounced. Notice that each output skewer at the
econd stage is e v aluated by combining all the feature skewers of the
revious stage (in this case, four) through one convolutional kernel. 
The fourth panel shows the output at the dense layer. The

eature skewers are finally transformed into predictions, which are
istributions for each pixel. The network only outputs the parameters
f the distributions that are the mean, μ (dashed curves), and standard
eviation, σ . The predicted distributions are transformed back into
heir original units by using the mean and standard deviations from
he training split. We obtain 1 σ confidence intervals shown as light
haded regions. 

The higher density regions show relatively less Ly α transmission
hat translates into higher uncertainty in log T τ or vice versa. The
ctual log T τ (solid line) falls mostly within the predicted confidence
ntervals (light grey region). It is expected that the actual quantity
hould fall within the predicted light shaded contours at least 68
er cent of the time for the entire data set. It is evident that the
etwork sometimes fails to predict the right confidence intervals,
pecifically for saturated pixels. This gives rise to the modest tails in
he residual distributions. 

 RESULTS  

n this section, we will discuss in detail the predictions, primarily
ocused at z = 4 and with S / N = 50 pixel −1 for noise (Sections 4.2 –
.4 ). Our main goal is to reco v er the IGM log � τ and log T τ along
he sightlines for our models with varying thermal parameters. This
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Figure 5. The flow of the example skewers at z = 4 from HOT and COLD models through the various layers of trained ConvNet discussed in Section 3.6 . The first 
row is the normalized Ly α forest skewer input to network. The second and third rows show the four and eight features, respectively. The second convolutional 
layer extracts each feature by combining all the skewers from first layer. We highlight the most prominent feature skewers for clarity. The output curves at the 
dense layer (fourth ro w) sho w predicted mean (dashed) and 1 σ confidence intervals as shaded regions, at each pixel of input skewers. The solid curves show the 
actual log T τ . 
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ltimately leads us to constrain the thermal parameters (i.e. T 0 and 
). We also extend our analysis for spectra treated with different 
/N (Section 4.4 ). Later, we will extend the results up to redshift
 = 5 . 0 in Section 4.5 . In the final section (Section 4.6 ), we will
how predictions for a segment taken from an observational spectrum 

nd establish that the method can provide reasonable but powerful 
onstraints on thermal parameters. 

.1 Predictions along the sightlines 

igs 6 and 7 show the predictions of example skewers from simula-
ions highlighting the impact of varying thermal parameters at z = 4
ith S / N = 50 pixel −1 . It is evident that the actual quantities (solid

urves) lie mostly within the predicted 1 σ along the skewers. 
The 1 σ intervals are smaller in regions with significant Ly α flux 

ransmission and largest in the saturated parts. The network is unable 
o predict the right confidence intervals for saturated regions (for 
xample, at 5 h 

−1 cMpc in the first panel). This shows that the
etwork is not o v erfitting the training data set. This essentially limits
he predicting power primarily to underdense IGM gas, which is 
ot saturated at z = 4. The prediction for log � τ has very narrow
onfidence intervals as compared to log T τ . This is mainly because 
og � τ reconstruction is very localized and is impacted by very local 
eatures extracted from Ly α forest. The prediction of log T τ at a 
iv en pix el depends on the Ly α pixels on several scales. The small
ncertainties on log � τ predictions make it potentially a method to 
onstrain cosmological models that can impact the IGM densities 
n smaller scales such as warm dark matter (Ir ̌si ̌c et al. 2017 , 2024 ;
illasenor et al. 2023 ). 
Varying T 0 impacts the small-scale IGM densities due to pressure 

moothing (Hui & Gnedin 1997 ; Peeples et al. 2010 ; Nasir, Bolton &
ecker 2016 ). It is clear that the predictions also capture faithfully
og � τ along the sightlines (see top panel of Fig. 6 ). The differences
n log � τ skewers are partly due to the difference in the Ly α Doppler
roadening between models varying T 0 . The COLD has noticeably 
ore structure as compared to HOT . The impact is subtle but smaller

ncertainties help to reliably capture this in log � τ predictions. 
he models with different T 0 also have slightly different slope 
f T 0 –γ relation where COLD ( HOT ) is steeper (shallower) (see
ection 4.4 ). The predicted pixel distributions for log T τ along the
kewers remarkably trace the underlying temperatures with the right 
onfidence intervals (except for saturated regions). The predicted 
 0 values for the example skewers are predicted within a few
undred Kelvins of their actual values with 1 σ confidence intervals 
f δT 0 � 1000 K for most cases. 
The predicted log T τ for models with varying γ (second panel, 

ottom row) can also capture the trend of actual log T τ within
redicted confidence intervals. The Ly α flux for G10 by and large
s insensitive to variations in log T τ . However, the actual log T τ
till lies within narrow confidence intervals. The z re parameter 
as a very fine imprint on the flux that simply translates into
arger uncertainties on log T τ predictions. Ho we ver, log � τ is well
onstrained with similar uncertainties as compared to rest of the 
odels. The subtle differences among these models are essentially 

ue to Jeans smoothing in the gas. 
Lastly, we have shown our test models NYX-LATE and NYX-EARLY 

n the bottom panel of Fig. 7 . There is one point worth reiterating that
hese models were run with entirely different hydrodynamical code. 
he predictions are obtained with exactly the same method with 

rozen network weights. Qualitatively, the predictions are similar to 
hose from the Sherwood runs. Ho we ver, one dif ference is predicted
hat log T τ does not strongly correlate with log � τ , which results
MNRAS 534, 1299–1316 (2024) 
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Figure 6. The predicted log � τ and log T τ along example skewers for the simulations varying T 0 (top panel) and γ (bottom panel) at z = 4 with S / N = 50 
pixel −1 . Actual quantities are shown as solid curves overlaid with predicted mean (dashed curves) along with 1 σ confidence intervals as shaded regions. The 
actual T 0 and γ are shown in second row of every panel, while estimated in every third row along with 1 σ confidence interval. 
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n systematically underestimated γ value. We will later discuss this
ssue in Section 4.3 . 

.2 log � τ and log T τ distributions 

o examine the range of IGM conditions probed by our reconstruc-
ion method, we examine the actual (solid curves) and predicted
dashed curves) probability density functions (PDFs) in Fig. 8 . We
av e o v erlaid the scatter in the distributions o v er 20 h 

−1 cMpc
kewers as the 1 σ shaded region in Fig. 8 . Overall, there is an
xcellent agreement and no noticeable bias between the predicted
nd actual distributions. Despite some expected scatter among the
0 h 

−1 cMpc skewers, the distributions can capture the broad trends
n densities and temperatures probed by the Ly α forest at z = 4. It
s worth mentioning that the step-like feature at the high log � τ and
igh log T τ is statistical, simply due to lack of pixels. 
The log � τ distributions are very similar for all models and are in

greement (see top row of Fig. 8 ). The sharp drop in the distribution
t mean cosmic density, log � τ � 0, suggests that forest is mostly
ensitive to underdense gas at z = 4. The exact densities can slightly
NRAS 534, 1299–1316 (2024) 
iffer based on the simulation thermal parameters and history. This
an be seen in models with different γ (second last column) showing
ubtle differences at the high-density tail end. The actual distributions
how a small excess at log � τ � 0 . 2. This is primarily due to Ly α
ux saturation and consequently losing sensitivity at high densities,
hich ultimately degrades the reconstruction accuracy. The median
f the predicted distributions ranges from log � τ = −0 . 33 to −0 . 37,
ery closely following the actual range from −0 . 32 to −0 . 38. 

Broadly, the predicted log T τ distributions agree very well with a
ew exceptions. The G10 (third panel) is slightly narrow and exhibits
 subtle offset. The ZR525 is almost indiscernible from ZR750 . The
YX-LATE model shows a bimodal distribution at the high log T τ end.
s the shaded regions show the variations you would expect from a
0 h 

−1 cMpc sightline, it is evident that we can reliably estimate the
GM conditions with one sightline. We can expect a systematic bias
hat depends on the thermal parameters of model. Ho we ver, this bias
s typically small as compared to predicted confidence interval. It is
orth noting that the predicted log T τ distributions are generally
roader than the truth, but this is expected given the predicted
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Figure 7. Same as Fig. 6 but now for runs varying redshift of reionization (top panel) and test models (bottom panel). 
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.3 log T τ –log � τ plane 

he characterization of IGM by thermal parameters (i.e. T 0 and γ ) 
lthough useful is an o v ersimplification. It is a fit to the complex
wo-dimensional (2D) distribution of temperature and density. It is 
ighly non-trivial to reco v er the entire log � τ –log T τ distribution
nd typically only thermal parameters are provided as a statistical 
nsight. Ho we ver, o wing to our reconstruction method, we can show
he log � τ –log T τ plane and examine the detailed 2D distributions 
or models with varying thermal parameters. 

In Fig. 9 , we have shown the predicted log � τ –log T τ distributions,
 v erlaid with 68th and 95th percentiles for predicted (broad) and
ctual (narrow) as contours. The median log T τ on log � τ bins (bin 
ize of 0.1) are shown as dashed curves. The estimated T 0 and γ
re also shown and appropriately coloured. By comparing the 2 σ
ontours, it is evident that the predicted distributions are broader 
han the actual distributions. A typical T 0 is within few hundred 
elvins of the actual value, indicating that we can reliably estimate 

hermal parameters across various models. 
The median log T τ shown as dashed curves broadly follows the 

rend but shows some noticeable deviations at low ( log � τ � −0 . 4)
nd high densities ( log � τ � 0 . 4). Therefore, in order to have
inimal biases on the thermal parameter estimates, we fit a line 
f  
hrough bins ranging from log � τ = −0 . 4 to 0.2 after removing the
aturated pixels. The distributions follow the trend we expect from 

he temperature–density relation in simulations evolved with non- 
quilibrium codes such as Sherwood-Relics (see Puchwein et al. 
015 ). In general, we can reconstruct the deviations from simple
ower law at lower densities. 
The test simulations ( NYX-LATE and NYX-EARLY ) shown in last

olumn exhibit a very narrow and rather steeper distribution. Recall 
hat these simulations were evolved assuming photoionization equi- 
ibrium and therefore do not show any deviations from power law
t lower densities. Our predictions fail to capture these differences 
t the lower density end as highlighted by the median log T τ curves
hown in red. Another reason for these deviations is that we do not
av e an y simulation run that is relatively steep, γ � 1 . 4, but colder,
 0 � 8800 K. Therefore, predictions show a rather lower γ similar

o our colder models such as COLD and ZR525-COLD . These results
an be impro v ed with a more comprehensive model grid sampling
he T 0 –γ space. 

.4 T 0 –γ distributions 

e now proceed to show our main results of T 0 –γ distributions
or models. Recall that we have 1000 log � τ –log T τ realizations for
MNRAS 534, 1299–1316 (2024) 
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Figure 8. The log � τ (top row) and log T τ (bottom row) distributions for 20 h −1 cMpc skewers. The mean for actual and predicted quantities are shown as 
solid and dashed curves, respectively. The shaded regions represent the 1 σ scatter over realizations (see Section 3.5 for details). 

Figure 9. The predicted log � τ –log T τ distributions for the models shown in legends. The contours encapsulate the central 68th and 95th percentile interval 
for predicted and actual quantities. The estimated T 0 and γ for the entire skewers are also shown in legends. The dashed curves represent the median log T τ on 
log � τ bins. 
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ach 20 h 

−1 cMpc skewer and their estimates for T 0 –γ using our
est split. In total, we have 40 000 T 0 –γ data points for each model.

e have shown the T 0 –γ distributions (using all data points) using
ifferent S / N (first through third rows) in Fig. 10 . We add zero-
entred Gaussian noise with a desired S/N during training/validation,
NRAS 534, 1299–1316 (2024) 

s we have discussed in Section 3.3 . The contours cover 68th and 95th 
ercentiles of data points. The medians of actual and predicted values
re shown as cross and plus symbols, respectively. The predicted T 0 
nd γ along with 1 σ confidence intervals for each model are shown
n legends. 

It is evident that the predicted distributions are in good agreement
ith actual values (cross symbols) lying mostly within predicted
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Figure 10. The T 0 –γ distributions with different S/N (shown in legends) at z = 4. Each row represents sightlines that are post-processed with added Gaussian 
noise with S / N = 100 , 50, and 20 pix el −1 , respectiv ely. The distributions are obtained by estimating T 0 –γ for each realization of 20 h −1 cMpc sightlines (1000 
realizations for each skewer). The contours encapsulate the central 68th and 95th percentiles of the points. The estimated T 0 and γ along with their 1 σ confidence 
intervals are shown in the legends. The plus and cross symbols mark the median of actual and predicted values for entire model. 
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8th percentile. The T 0 predictions are very constraining with typical 
ncertainties δT 0 � 250 −2500 K. The γ estimate also shows promise 
ith 1 σ uncertainties at δσ � 0 . 04 −0 . 15. 
As expected, the constraining power degrades with decreased 

/N. We can constrain our typical model with varying T 0 with 
 σ confidence interval at S / N = 100 (except ZR525-HOT ), while 
t S / N = 20, it drops to 1 σ . The constraints for models varying

are less stringent. For example, for S / N = 100 case, the G10 is
onstrained with 2 σ , while G14 and G16 with only 1 σ confidence.
or NYX models, there is a systematic bias, with γ underpredicted 
y ∼0 . 1. We have already discussed this issue in Section 4.3 . 
The uncertainties on thermal parameters also depend on the model. 

y comparing models for S / N = 50 shown in second row, FIDUCIAL 

as uncertainties at δT 0 ∼ 1000 K, while COLD has significantly 
ower δT 0 ∼ 400 K. Same is true for ZR525-COLD and ZR525- 
OT . Notice that the uncertainties are very similar for models with
ifferent γ (similar T 0 ) as shown in third column. The subtle 
ifferences in γ for different z re models can be seen in fourth column.
elatively late reionization ZR525 tends to have small values for γ
s compared to early model ZR750 , mostly due to IGM adiabatic
ooling. The estimated median γ hints about this evolution, although 
he uncertainties remain quite large. 

So far, we have discussed the reco v ery of T 0 –γ in the context of
ndi vidual ske wers. We can significantly impro v e these constraints if
e consider combining several 20 h 

−1 cMpc se gments. F or this, we
ombine their log � τ –log T τ realizations first and later we estimate 
he T 0 –γ by fitting a line to the binned log � τ –log T τ as before. To
btain the T 0 –γ distributions, we simply draw 10 000 times o v er an y
 or 10 skewers with repetition and estimate T 0 –γ . The resulting
istributions for both cases are shown in Fig. 11 . The redshift path-
ength for 5 (10) skewers is �z � 0 . 2(0 . 4) with fixed S / N = 50
ixel −1 . 
As expected, the constraints get tighter with additional skewers, 

y comparing the T 0 –γ distributions shown in Fig. 10 (middle row)
 S / N = 50 case) and Fig. 11 . F or e xample, for models varying T 0 
first panel), the uncertainties are now reduced up to 50 per cent for
z � 0 . 2 case. They are further reduced by ∼25 per cent for �z �
 . 4, which we expect with the increase in path-length according to
entral limit theorem. Furthermore, the increase in path-length does 
ot result in any noticeable bias among models except for G10 . 
Overall, the T 0 –γ constraints provided by our method are more 

owerful as compared to the Ly α forest flux power spectrum. Using
ur approach, a single high-resolution 20 h 

−1 cMpc segment of 
he Ly α forest can provide constraints on IGM temperature with 
ncertainties δT 0 � 1000 K with a typically thermal history. This 
ethod potentially provides below δT 0 � 500 K constraints with a 

edshift path of �z � 0 . 4, which is 10 times lower than existing
tudies. In addition, the thermal parameter reco v ery for models
arying γ is also very encouraging, although a slight bias should 
e accounted for, in case of extreme γ . A single skewer reconstruct
an gi ve belo w δγ ∼ 0 . 1, which is usually achie ved for considerable
ized data sets using flux power spectrum studies in the literature. 
MNRAS 534, 1299–1316 (2024) 
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M

Figure 11. Same as Fig. 10 but now distributions are obtained by reiterating 100 000 times o v er 5 (top) or 10 (bottom) log � τ –log T τ realizations with 
replacement from different skewers and estimating a joint T 0 –γ . This corresponds to total redshift path-lengths of �z � 0 . 2 (top) and �z � 0 . 4 (bottom). The 
S/N is kept fixed at 50 pixel −1 . 
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.5 Redshift evolution 

ntil now, we have shown results at a fixed redshift z = 4 . 0. To pose
onstraints on the thermal history of IGM, we need to extend this
ethod to higher redshifts. As the Ly α forest flux is the only input to

ur neural networks, it is likely that the performance could degrade
ue to significant drop in mean transmitted flux by z = 5 . 0. In this
ection, we will present our results at z = 4 . 4 and 5.0. 

We show the T 0 –γ distributions at z = 4 . 4 (top row) and z = 5 . 0
bottom row) in Fig. 12 . It is evident that the drop in mean flux
mpacts the constraints on T 0 and γ . Overall, there is a trend of
ise in uncertainties with higher redshift. All distributions tend to
ecome broader, which is most noticeable for models with varying
, i.e. G10 , G14, and G16 . By comparing the 95th percentile between

edshifts, most of the distributions become broader in the T 0 direction.
he increase in δT 0 can be up to ∼50 per cent. Notice that due to

he significantly broader distributions, models with different thermal
arameters tend to o v erlap reducing the constraining power of the
redictions using only single 20 h 

−1 cMpc skewer. 

.6 Obser v ational sightline 

o far, we have tested our method with mock spectra with different
 / N and at different redshifts. In order to put method to practice and
etermine that any instrumental effects would not compromise our
esults, we take a 20 h 

−1 cMpc segment from quasar J021043, which
s part of SQUAD DR1 4 surv e y. The details of the reduction can be
ound in Murphy et al. ( 2019 ). The spectrum is observed using VL T -
VES instrument that has resolution of FWHM ∼ 6 km s −1 with

v erage S / N = 20 pix el −1 o v er the skewer. The emission redshift
f quasar is z = 4 . 65. The spectrum is continua-normalized and has
ias regions removed for quasar proximity effect. 
To determine the appropriate noise realizations for the mock

pectra of this observational spectra, we determine a noise model
NRAS 534, 1299–1316 (2024) 

 https:// github.com/ MTMurphy77/ UVES SQUAD DR1 

t  

a  

m  
y using the noise vector from sightline. As the noise is correlated
ith the transmitted flux level, we calculate median S/N in flux bins
ith bin size of 0.01. Later, we add zero-centred Gaussian noise
ith the determined S/N based on the Ly α flux of mock spectra
uring training/validation. To remo v e the dependence on periodicity
f skewers, we modified our training/validation by masking 16 pixels
t left edge after shifting the skewer as before. 

The predictions for log � τ (middle) and log T τ (bottom) for the
y α forest segment (top) overlaid with its noise vector are shown

n Fig. 13 . The mean (dashed curves) along with 1 σ confidence
ntervals as shaded regions are shown. The segment has a mean flux
f 〈 F 〉 = 0 . 55 and S / N � 20 pixel −1 . The estimates for the thermal
arameters are T 0 = 8270 K 

+ 1467 K 
−1036 K and γ = 1 . 5 + 0 . 2 

−0 . 15 . The reco v ered
alue for T 0 is very similar to our COLD model. We want to reiterate
he fact that only single 20 h 

−1 cMpc skewer realizations are used
or estimating any T 0 –γ distribution. One skewer corresponds to
 redshift path-length of �z � 0 . 04 at z = 4. For reference, the
xisting measurements at 4 ≤ z ≤ 5 utilized redshift path-length
f �z � 4 or 6, typically using 15 or more high-resolution quasar
pectra (Boera et al. 2019 ; Walther et al. 2019 ). The measurements
e have obtained from this example are also consistent with earlier
easurements using summary statistics of the Ly α forest (Becker

t al. 2011 ; Boera et al. 2019 ; Walther et al. 2019b ). Ho we ver, we do
ot intend to present this result as a measurement but rather a way to
alidate the method. In future studies, we plan to apply this method
o a more comprehensive quasar data set at z = 4 −5 to measure the
GM thermal history in unprecedented detail. 

 C O N C L U S I O N S  

e have established that reconstruction of IGM gas conditions
sing neural networks offers significant advantage o v er traditional
ummary statistics. The method helps us to transform the Ly α
ransmitted flux directly to (optical depth-weighted) gas densities
nd temperatures. This pix el-by-pix el reconstruction enables the
apping of the entire log T τ –log � τ plane. This is not possible

https://github.com/MTMurphy77/UVES_SQUAD_DR1
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Figure 12. Same as Fig. 10 but at z = 4 . 4 (top), and z = 5 . 0 (bottom) with S / N = 50 pixel −1 . 

Figure 13. The predictions for IGM gas conditions of quasar J021043. This is 20 h −1 cMpc segment centred at z = 4, o v erlaid with noise vector. The predictions 
for log � τ and log T τ are shown in middle and bottom panels, respectively. The predicted mean (dashed curves) along with 1 σ confidence intervals are shown. 
The estimated T 0 and γ , with 1 σ confidence interval, are also shown in the last row. 
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ith traditional methods that only reco v er thermal parameters using
tatistics such as the Ly α flux power spectrum. We have shown 
hat only one 20 h 

−1 cMpc segment of the Ly α forest from a single
uasar can deliver constraints comparable to moderately sized data 
ets usually employed for such studies. We have seen that our method
an provide fairly robust constraints on thermal parameters even in 
he presence of significant instrumental noise. We can also perform 

 reasonable reconstruction with test data set from NYX simulations 
y our trained neural network with frozen weights. In addition, the 
ethod can be extended up to redshift z = 5 . 0, providing valuable
nsight into the thermal evolution of IGM. Ho we v er, we e xpect the
erformance to get worse with mostly saturated spectra; therefore, 
t might require a significant change in the current architecture. The
echnique can also be pushed towards lower redshifts z � 4, until

ost of the flux is at the continuum level. 
Neural networks utilize quite complex feature-space transforma- 

ion to convert Ly α flux to the IGM conditions. This can potentially
ake inference somewhat more model-dependent than traditional 
MNRAS 534, 1299–1316 (2024) 
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ethods. For instance, traditional methods cannot capture the small
eviation from a power law in the temperature–density plane using
he statistical thermal parameters T 0 and γ . As our method can
econstruct the entire plane, it requires the mock spectra to be a
ealistic representation of observations. This includes incorporating
ll the physical processes that can impact the IGM conditions such
s non-equilibrium photoionization. An important aspect of training
arge neural networks is to come up with clever solutions to overfitting
roblems. We found that training can be sensitive to noise realization,
kewers with correlated density structures, and more importantly
he network architecture. We have taken appropriate measures to
 v ercome these problems by adopting strategies for o v erfitting by
dding noise during training stage, constructing realistic mock data
ets, and performing a grid search o v er the hyperparameters of the
etwork. 
In the future, we plan to provide thermal parameter constraints

sing observational spectra at 4 ≤ z ≤ 5. We have shown a glimpse
f IGM gas conditions’ reconstruction from a real spectrum in
ection 4.6 . This unique approach enables insight into the IGM using

ndividual 20 h 

−1 cMpc segments contrary to current methods that
equire averaging together a much larger volume of the Universe. An-
ther possible implication of our method is to perform reconstruction
or models with thermal fluctuations at z = 5 . 0. This method would
equire grid of inhomogeneous reionization simulations on much
arger scales. Potentially, we can see evidence of excess scatter in
he distribution of reco v ered thermal parameters along individual
ightlines. 
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PPEN D IX  A :  C O M PA R I S O N  WITH  

EAL- SPACE  DISTRIBU TIONS  

n this paper, we have chosen to work with optical depth-weighted 
uantities and have determined thermal parameters using predicted 
og � τ –log T τ distribution realizations. In actuality, the weighted 
uantities are just a proxy for real-space distribution, i.e. log T –
og � . So, a comparison of density, temperature, and T 0 –γ dis-
ributions using real-space and optical depth-weighed quantities is 
resented in this section. We have summarized the results in Figs A1
nd A2 . 

In Fig. A1 , we have compared real-space (red dotted), Ly α optical
epth-weighted (black dashed), and predicted (blue solid) quantities 
or density (top row) and temperature (bottom row) distributions. The 
haded regions represent the 1 σ scatter over 20 h 

−1 cMpc skewers, 
hich is appropriately coloured. 
As expected, the IGM density distributions (comparing between 

urves across panels in first row) are very similar. Furthermore, 
he real-space, optical depth-weighted, and predicted quantities for 
iven model (comparing curves in single panel) also closely match, 
lthough the distributions of optical depth-weighted density (blue 
urv es) hav e a slight tail at the high-density end, log � τ � 0 . 2.
he reason is that the act of optical depth-weighting shifts slightly
nderdense gas into mild o v erdensities. A comparison of the shaded
egions suggests that all quantities exhibit a very similar scatter over
0 h 

−1 cMpc skewers. 
The real-space (red) and optical depth-weighted (black) temper- 

ture (bottom row in Fig. A1 ) also indicate a very similar trend,
here the latter has tail at the higher temperature end. In addition,

here is significantly more scatter at around median temperatures 
n the optical depth-weighted case for the reasons discussed before. 
verall, the predicted distributions are broader than the rest and show

ignificantly more scatter as well. Note that at the low-temperature 
nd the distribution cannot capture the sharp rise for models with
elati vely lo wer γ (panels 1 and 2), which gives a noticeable tail.
he reason is that models with relatively shallower slope have a
mall range of temperatures that corresponds to a large range of
ensities. 
Fig. A2 shows a comparison of T 0 –γ distributions using log � –

og T (real-space), log � τ –log T τ (optically weighted), and real- 
zations of log � τ –log T τ plane. The 68th and 95th percentiles of
hese distributions are shown as dashed, dotted, and solid contours, 
espectively. 

It is obvious that the predicted T 0 –γ distributions are broader 
han the rest. This reassures us that we do not have to incorporate
dditional uncertainties from our choice of optical depth-weighted 
uantities into our predictions. Upon close inspection, we can see 
 subtle bias between actual optical depth-weighted and real-space 
istributions. The former has slightly lo wer v alue of T 0 ( ∼500 K)
or majority of models. Notice that this also causes the predicted
istributions to slightly underpredict T 0 for majority of models, which 
an be seen by comparing the plus symbol with the dashed contours.
espite these subtle biases, the real-space distribution broadly lies 
ithin 1 σ of the predicted optical depth-weighted distributions. 
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M

Figure A1. Same as for Fig. 8 , but now for selected models shown in legends. Each panel shows real-space (dashed), Ly α optical depth-weighted (dotted), and 
predicted (solid) quantities. 

Figure A2. Same as for Fig. 10 but now a comparison between real-space (dashed), Ly α optical depth-weighted (dotted), and predicted (solid) quantities with 
S / N = 50 . The contours enclose 1 σ and 2 σ scatter o v er 20 h −1 cMpc skewers. 
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PPEN D IX  B:  M E A N  FLUX  TESTS  

o quantity the impact of uncertainties on the mean flux on our
 0 –γ predictions, we rescale Ly α flux to match 〈 F 〉 = 0 . 468 05 and
.382 95, which is 10 per cent higher and lower than our value for
igure B1. Same as for Fig. 10 , but now for Ly α flux matched to mean flux 10 p
 / N = 50 pixel −1 . 
 / N = 50 pixel −1 case. These rescaled data sets are used to provide
he predictions from network with frozen weights and shown in 
ig. B1 . Overall, there is no noticeable change; ho we ver, there is
ome subtle change in γ that is underpredicted most noticeably (2–3 
er cent) for higher mean flux case. 
MNRAS 534, 1299–1316 (2024) 

er cent higher (top) and lower (bottom) than fiducial value at z = 4 . 0 with 
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PPENDIX  C :  BOX  SIZE  TEST  

e have taken six more runs from Sherwood-Relics to see the
mpact of box size on the network predictions with fixed mass
esolution. These runs have box length of 40 h 

−1 cMpc and have
048 3 gas and dark matter particles. We have taken 20 h 

−1 cMpc
ong skewers from these boxes for this e x ercise. These skewers
re only used at the prediction stage. Our network relies on the
eriodicity of skewers during training, which is not the case for
hese sk ewers tak en from 40 h 

−1 cMpc box. Therefore, we slightly
odified our training by masking (16 pixels) at start of Ly α skewer

uring training with our 20 h 

−1 cMpc boxes to break dependence of
etwork on periodicity at boundaries. The masking was done after
ach sk ewer w as periodically shifted by a random value. We use this
lightly modified network to obtain predictions for 40 h 

−1 cMpc runs
model shown in legend) as shown in T 0 –γ distributions in Fig. C1 .
lthough the mean values remain largely unchanged, the predicted
istributions are in quite broad. This is partly because network cannot
ely on periodic boundary and partly due to box size impacting the
 0 –γ distribution prediction. 
NRAS 534, 1299–1316 (2024) 
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igure C1. Same as for Fig. 10 , but now for 40 h −1 cMpc boxes from
herwood-Relics at z = 4 with S / N = 50 pixel −1 . 
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