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Introduction: Drugs that prolong the QT interval on the electrocardiogram present a major safety con-
cern for pharmaceutical companies and regulatory agencies. Despite a range of assays performed to assess
compound effects on the QT interval, QT prolongation remains a major cause of attrition during compound
development. In silico assays could alleviate such problems. In this study we evaluated an in silico method
of predicting the results of a rabbit left-ventricular wedge assay. Methods: Concentration–effect data were
acquired from either: the high-throughput IonWorks/FLIPR; the medium-throughput PatchXpress ion chan-
nel assays; or QSAR, a statistical IC50 value prediction model, for hERG, fast sodium, L-type calcium and
KCNQ1/minK channels. Drug block of channels was incorporated into a mathematical differential equation
model of rabbit ventricular myocyte electrophysiology through modification of the maximal conductance of
each channel by a factor dependent on the IC50 value, Hill coefficient and concentration of each compound tested.
Simulationswere performed and agreementwith experimental results, based upon input data from the different
assays, was evaluated. Results: The assay was found to be 78% accurate, 72% sensitive and 81% specific when
predicting QT prolongation (>10%) using PatchXpress assay data (77 compounds). Similar levels of predictivity

were demonstrated using IonWorks/FLIPR data (121 compounds) with 78% accuracy, 73% sensitivity and 80%
specificity. QT shortening (b−10%) was predicted with 77% accuracy, 33% sensitivity and 90% specificity using
PatchXpress data and 71% accuracy, 42% sensitivity and 81% specificity using IonWorks/FLIPR data. Strong quan-
titative agreement between simulation and experimental results was also evident. Discussion: The in silico action
potential assay demonstrates good predictive ability, and is suitable for very high-throughput use in early drug
development. Adoption of such an assay into cardiovascular safety assessment, integrating ion channel data from
routine screens to infer results of animal-based tests, could provide a cost- and time-effective cardiac safety screen.
© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license. 
1. Introduction

Drug interactionswith cardiac ion channels can lead to lengthening of
the QT interval on the electrocardiogram (ECG) (Grant, 2009; Yap &
Camm, 2003). This phenomenon has been linked with the potentially
lethal ventricular arrhythmia Torsades de Pointes (TdP) (Dessertenne et
G, electrocardiogram; ECVAM,
s; FLIPR, FLuorescence Imaging
er-a-go-go Related Gene; IC50,
ference for Harmonization; IKr,
ed rectifier potassium current;
50, minus log10 of IC50; TdP,

e).

nc. Open access under CC BY license. 
al., 1966; Pollard et al., 2010). Cardiovascular toxicity remains the main
safety reason for the discontinuation of development and market with-
drawal of compounds (Valentin, 2010). 21.4% of the withdrawn com-
pounds from major international markets between 1990 and early 2012
were as a consequence of QT prolongation liability and/or association
with TdP (Shah, 2012). Compound withdrawal not only implies that a
risk to patient safety has been posed, but also results in a substantial
loss of invested time, money and resources. It is thus important for phar-
maceutical companies to identify compounds that prolong QT as early as
possible during drug development (Laverty et al., 2011).

Often, compounds which prolong the QT interval inhibit the rapid
component of the delayed rectifier potassium current IKr (encoded by
human Ether-a-go-go Related Gene (hERG), whose protein forms the
pore alpha-subunit of the IKr channel) (Sanguinetti, Jiang, Curran, &
Keating, 1995). Due to its fundamental role in controlling repolarisation
of the ventricular action potential, hERG channel block leads to a length-
ening of theAction Potential Duration (APD) of a single cell,manifested as
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QT prolongation on the ECG. Thus, hERG channel block and QT prolonga-
tion are considered important factors in the detection of pro-arrhythmic
liability (Pollard, Valentin, & Hammond, 2009). However, consideration
of drug interactionswithmultiple ion channels is important for improved
pro-arrhythmic risk prediction (Davies et al., 2012; Mirams et al., 2011;
Obiol-Pardo, Gomis-Tena, Sanz, Saiz, & Pastor, 2011). Some pharmaceuti-
cal companies now routinely screen a selection of ion channels in addi-
tion to hERG, including sodium and L-type calcium channels to facilitate
such investigations.

The International Conference for Harmonization (ICH) proposed the
ICH S7B (Anon, 2005b) and E14 (Anon, 2005a) guidelines, which pro-
vide advice for preclinical and clinical assessment of drug-induced QT
prolongation liability (Darpo, Nebout, & Sager, 2006). ICH S7B suggests
that in vitro IKr and in vivo QTmeasurements are performed as standard
during drug development. These tests typically comprise patch clamp
experiments using a hERG expression system and a conscious animal
QT study (typically in dog), but can non-exclusively include: rabbit
and dog ventricular wedge studies, Langendorff heart preparations
and in vivo studies in other animals (Pugsley, Authier, & Curtis, 2009).
The ICH E14 suggests that a human thorough-QT trial is conducted
during clinical development (Pollard et al., 2010; Recanatini, Poluzzi,
Masetti, Cavalli, & De Ponti, 2004).

The ICH guidelines were intentionally written in an unrestrictive
manner, enabling pharmaceutical companies to explore new in vivo,
in vitro and in silico methodologies for acquiring QT measurements
(Darpo, 2009; Picard et al., 2011). In silico assays have great potential,
particularly in early drug development, to provide integrative, high-
throughput, cost-effective and efficient solutions. Pharmaceutical
companies are currently exploring such approaches (Mirams, Davies,
Cui, Kohl, & Noble, 2012). Through integrated risk assessment, these
approaches could complement existing safety tests and reduce the cur-
rent use of animal-based experiments. An in silico approach, frequently
enlisted within pharmaceutical companies, is Quantitative Structure
Activity Relationship (QSAR) modelling which uses information regard-
ing the chemical structure of compounds to infer properties of their bio-
logical activity (Inanobe et al., 2008).

Additional in silico approaches, developed in collaboration with,
and having applicability to inform decisions within, pharmaceutical
companies, include the work of Bottino et al. (2006), Mirams et al.
(2011) and Davies et al. (2012). These approaches all use ion channel
data acquired from routine high-throughput screens performed early
in preclinical development, to infer results which would be of interest
during later compound development. Davies et al. (2012) evaluate
the ability of an in silico assay in predicting the results, and the asso-
ciated inter-individual variability, of drug effects on canine APD in
isolated myocytes. The assay demonstrates high levels of sensitivity
and specificity.

The approach adopted in this study is similar.We evaluate the ability
of an in silico action potential simulation assay, which uses concentra-
tion–effect data from high-throughput ion channel screens, to predict
the results of the rabbit left-ventricular wedge assay. The rabbit wedge
assay is performed during compound development at GlaxoSmithKline
(GSK) and the preclinical data obtained has been found to correlate
well with clinical outcomes (Joshi, Dimino, Vohra, Cui, & Yan, 2004;
Liu et al., 2006). The number of compounds we include for evaluation
in this study is much increased to that of Davies et al. (2012), strength-
ening the confidence in conclusions drawn. Compounds included belong
to a wide variety of chemical and therapeutic categories. Additionally,
we examine the use of ion channel data from three different stages of
assay; (QSAR, IonWorks/FLIPR and PatchXpress). Simulated action po-
tentials generated from single cell simulations, and pseudo-ECGs from
one-dimensional tissue simulations, are compared to ECGs recorded in
the rabbit ventricular wedge assay. The predictivity of the model is
assessed when using the available ion channel data in a number of dif-
ferent ways. In addition to evaluating the assay's predictive capacity,
the evaluation has allowed us to infer the most advantageous use of
available ion channel data, and where in the drug development process
such an in silico approach would be most beneficial.

2. Methods

2.1. Statement on use and care of animals

All animal studies were ethically reviewed and carried out in
accordance with Animals (Scientific Procedures) Act 1986 and the
GlaxoSmithKline Policy on the Care,Welfare and Treatment of Animals.

2.2. Electrophysiology

2.2.1. Ion channel screens
Ion channel screens are performed on cell lines, based on Human

Embryonic Kidney-293 (HEK-293) and Chinese Hamster Ovary (CHO)
cells. TheMolecularDevices PatchXpress 7000A assaywas used to screen
hERG, NaV1.5 and CaV1.2 channels. The Molecular Devices IonWorks
Quattro assay was used to screen hERG, NaV1.5 and KCNQ1 channels.
The Molecular Devices FLuorescence Imaging Plate Reader (FLIPR)
assay was used to screen the CaV1.2 channel. CaV1.2 data from FLIPR
was gathered alongside data from the IonWorks assay for the hERG,
NaV1.5 and KCNQ1 channels.

Details of the cell culture and preparation process, the solutions pre-
pared for ion channel screening and the controls used are described in
Supplementary material S.3. Voltage protocols applied to obtain IC50
value estimates from the IonWorks and PatchXpress assays and the
method of fluorescence measurement used in the FLIPR assay are also
outlined. Details of the methodologies used for PatchXpress assay
screening of the hERG and NaV1.5 channels can be found in Donovan
et al. (2011). A curve of the form shown in Eq. (1) was fitted to the
concentration‐response data derived from the normalised data pro-
duced by each of the assays in order to determine IC50 values (and
in some cases Hill coefficients).

2.2.2. QSAR models
QSAR models for hERG, NaV1.5 and CaV1.2 were created from avail-

able measured data from ion channel assays described in Section 2.2.1.
The structures andmeasured responseswere presented to an automated
modelling software application (QSAR Workbench (Accelrys Inc.)).
Models based upon Support Vector Machines (SVM) (Burbidge, Trotter,
Buxton, Holden, et al., 2001) were developed for the hERG and NaV1.5
channels, whilst a random forest classifier (Svetnik et al., 2003) was se-
lected for the CaV1.2 channel. The output from the SVMwas a predicted
pIC50 value for each compound. The output for the CaV1.2 channel was a
predicted class which was then equated with a pIC50 value.

2.3. Rabbit ventricular wedge assay

Details of the preparation of rabbit left-ventricular wedge have been
described previously in Liu et al. (2006). Briefly, female rabbits were
sedated with 6 mg/kg xylazine (i.m.), anticoagulated with 800 U/kg
heparin (i.v.) and anaesthetised with ketamine (30–35 mg/kg, i.v.), or
with pentobarbital (50 mg/kg, i.v.). The left circumflex or anterior de-
scending branch of the coronary artery of the excised rabbit heart was
cannulated and perfused in cardioplegic solution. A transmural left-
ventricularwedgewas dissected andplaced in a tissue bath and arterially
perfused with Tyrode's solution. After approximately 1 h of equilibration
in the bath at a stimulation frequency of 1 Hz, the stimulation frequency
was reduced to 0.5 Hz for 5 min of stabilisation where the baseline ECG
was measured. The preparations were then returned to a stimulation
frequency of 1 Hz and perfused with Tyrode's solution containing a test
compound. For each test compound concentration, the preparation was
perfused for approximately 30 min at a frequency of 1 Hz followed by
5 min at a frequency of 0.5 Hz, where again the ECG was recorded.



Fig. 1. a) An action potential generated from a single cell simulation and b) a pseudo-ECG
from a one-dimensional tissue simulation at a range of concentrations for compound 2659
(see Supplementary data). Simulations were performed using PatchXpress data,
parameterising the drug block model with the IC50 value and Hill coefficient in the single
cell simulation and with just the IC50 value (and assuming the Hill coefficient is 1) in the
one-dimensional simulation. The intervals used for calculation of the APD90 value and QT
interval from the simulated control result are indicated in a) and b). Arrows indicate the
effect observed in the APD90 value/QT interval with increasing compound concentration.
In c) the percent change inAPD90/QT interval determined from the simulation results and
experimental results (both individual preparation results and the average of these) in the
rabbit ventricular wedge assay is plotted for comparison.
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2.4. Simulations

2.4.1. Concentration–effect curve fitting
Where more than a 50% block of an ion channel was observed at the

compound concentrations tested in the PatchXpress and IonWorks/
FLIPR assays, the concentration–effect data were fitted with the proce-
dure outlined in Section 2.2.1, and the IC50 value (and Hill coefficient
in some cases) recorded was used directly. Where a 50% block was
not achieved, concentration–effect data acquired from the assays were
fitted with a sigmoidal curve, of the form described in Eq. (1), using
an implementation of the Nelder and Mead (1965) optimisation algo-
rithm.

b ¼ 1

1þ IC50½ �j
C½ �

� �n� � : ð1Þ

Here, b is the proportion of blocking effect, [C] is the com-
pound concentration, [IC50]j is the IC50 value for channel j and n
is the corresponding Hill coefficient. Fitting of the Hill coefficient
was constrained so that a value in the experimentally expected
range (between 0.5 and 5) was obtained. Data from the QSAR
model took the form of an IC50 value and so did not require any
fitting.

All IC50 and Hill coefficients considered in this study are available
to download, see Supplementary material S.1 for details.

2.4.2. Mathematical model
A biophysical model of the rabbit ventricular myocyte (Shannon,

Wang, Puglisi, Weber, & Bers, 2004) was modified to incorporate drug
interactions with the hERG, NaV1.5, CaV1.2 and KCNQ1 channels.
Drug interaction is modelled with a simple pore-block mechanism
(Brennan, Fink, & Rodriguez, 2009), scaling the maximal conductance
of each channel by the factor in Eq. (1).

The mathematical model is comprised of a system of Ordi-
nary Differential Equations (ODEs) describing the action of in-
dividual ionic currents. Ionic currents are of the form shown
in Eq. (2).

Ij ¼ gj 1−bð ÞO V−Eionð Þ; ð2Þ

where gj is the maximal conductance of channel j, O is the probability
of the channel being in the open state, V is the membrane potential
and Eion is the reversal potential of the channel. The parameter b is a
scale factor from Eq. (1) used to incorporate the effects of drug
block. For example, a value of b = 0.2 corresponds to a 20% reduction
of the maximal conductance.

2.4.3. Single cell simulations
Pacing was initiated by applying a stimulus current of magnitude

9.5 μA/μF and duration of 5 ms. Pacing was continued at 0.5 Hz, corre-
sponding to the pacing frequency performed in the rabbit ventricular
wedge experiments. The stimulus was applied at 0.5 Hz until a steady
state was reached. Steady state is defined to be when the square root
of the sum of the squared differences of the state variables at the start
of successive paces is less than 10−6. Eq. (3) was solved to determine
the action potential following administration of a given compound con-
centration.

dV
dt

¼ − 1
Cm

∑
channels

Ij þ Istim

� �
: ð3Þ

Here, V is the membrane voltage, Cm is the membrane capacitance,
Ij represents the current from channel j and Istim is the stimulus cur-
rent applied to pace the cell. The APD90 value, that is the duration
between times at which the membrane potential is at 90% of its
repolarisation potential, was calculated and the percent change in
APD90 at each concentration, as compared to the control, was
recorded (see Fig. 1).
2.4.4. One-dimensional tissue simulations
The one-dimensional simulation setup is analogous to a line of

coupled cells, forming a 1 cm long homogenous fibre. Simulation
nodes were spaced 0.1 mm apart. The monodomain Partial Differential



Table 1
Classification matrix presenting categorical classification of simulation and experimental
results when considering the assay's ability to predict QT prolongation. The results were
obtained when using PatchXpress assay data, assuming compounds can interact with
multiple channels and parameterising the drug block model with both the IC50 value
and the Hill coefficient for a set of 77 compounds. The accuracy, sensitivity, specificity,
and positive and negative predictive values are calculated as indicated.

Simulation
prolonger

Simulation
non-prolonger

Experimental
prolonger

18 7 Sensitivity = 18
18þ7

= 72.0%
Experimental
non-prolonger

10 42 Specificity = 42
42þ10

= 80.8%
Positive predictive
value = 18

18þ10 =
64.3%

Negative predictive
value = 42

42þ7 =
85.7%

Accuracy = 18þ42
18þ7þ10þ42

= 77.9%
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Equation (PDE), as shown in Eq. (4), was solved, using a time step of
0.01 ms and an adaptive ODE time step for Eq. (3), to determine the
voltage across the tissue over time,

Cm
∂V
∂t ¼ − Iion þ Istimð Þ þ∇⋅ σ∇Vð Þ: ð4Þ

Here, V is the membrane potential over space and time, σ is the
conductivity tensor, Istim is the stimulus current applied to pace the tissue
and Iion is the flow through the cell membrane per unit area, as dictated
by the action potential model. A stimulus of 250,000 μA/cm2was applied
at one end of the fibre for 5 ms in order to initiate propagation. The fibre
was paced at 0.5 Hzuntil steady statewas reached.Here, steady statewas
defined to be when the difference in the APD90 at the central node on
successive time steps was less than 0.1 ms. The intracellular conductivity
was set to 0.174 S/m (Bishop et al., 2010). A pseudo-ECG, as defined in
Gima and Rudy (2002) was generated from the solution by measuring
the membrane potential through a virtual electrode situated at the
central node of the chain, from which the QT interval was estimated.
We define the QT interval to be the time between the application of the
initial stimulus and the peak of the T-wave on the ECG (or minimum
where the T-wave is inverted on the pseudo-ECG), corresponding to
the measurement taken in the rabbit wedge assay. The definition of the
QT interval (as well as the APD90 value), as measured from the simula-
tion results, is indicated in Fig. 1. The QT interval was calculated at the
drug concentrations tested in the rabbit wedge assay, as well as lower
concentrations of 0.001 μM, 0.01 μM, 0.1 μM and 1 μM where these
were not included. The percentage change in the QT interval at each con-
centration as compared to the control was recorded.

In Fig. 1, a simulated action potential and pseudo-ECG from a single
cell and one-dimensional tissue simulation respectively, are plotted for
one example compound (compound 2659 in the Supplementary data).
The simulated percent change in the APD90 value and QT interval is
plotted together with the rabbit wedge assay results at a range of com-
pound concentrations.

2.4.5. Implementation
An XML representation of the Shannon et al. (2004) rabbit action

potential model was taken from the CellML repository (Lloyd,
Lawson, Hunter, & Nielsen, 2008) and PyCML (Garny et al., 2008)
was used to translate the CellML format into C++ code. Simulations
were performed using the Chaste library (Mirams et al., 2013), with
PETSc PDE solvers (Balay et al., 2012) and the CVODE package for
ODEs (Hindmarsh et al., 2005), based upon adaptive time stepping with
numerical differentiation formulae, using relative and absolute tolerances
of 10−6 and 10−8 respectively. The full code used, together with input
data, is available to download from www.cs.ox.ac.uk/chaste as detailed
in Supplementary material S.1.

2.5. Statistical evaluation

The simulated percentage change in APD90/QT interval from single
cell/one-dimensional tissue simulations respectively was compared to
the percent change in QT interval recorded in the rabbit wedge assay.
Where multiple assay repeats were performed, the average of the ex-
perimental results was used for comparison. Here we discuss how the
ability of the assay to predict both QT prolongation and shortening in
the rabbit ventricular wedge experiments was assessed.

Experimental and simulation results for each compound were in-
dependently classified into one of two categories. When focusing on
predicting QT prolongation, if at any concentration tested, the experi-
mental/simulation result showed more than a 10% change in the
recorded QT interval/APD90 value, the compound was classified
as a “prolonger” of the QT interval in the experimental/simulation
result as appropriate. Otherwise, the compound was classified as a
“non-prolonger”. When focusing on predicting QT shortening, if at any
concentration tested the percentage change in APD90 value/QT interval
was less than−10%, the compound was classed as a “shortener”. Other-
wise the compound was classified as a “non-shortener”. 10% was chosen
as the threshold for defining prolongation and shortening based upon the
authors' experience in recognising that a compound causing such a
change in QT interval may be a cause for concern and warrant further in-
vestigation. This threshold also coincidedwith the value atwhich greatest
correspondence between simulation and experimental results was seen
in a preliminary threshold analysis.

The classification matrix in Table 1 presents the classification results
obtainedwhen considering the assay's ability to predict QT prolongation
whenusing PatchXpress data, assumingdrugs interactwithmultiple ion
channels (hERG, NaV1.5 and CaV1.2), andparameterising the drug block
model with both the IC50 value and the Hill coefficient.

The classification matrix is used to calculate performance-related
metrics to assess the agreement between experimental and simulation
results. The overall accuracy is the proportion of compounds for which
the experimental and simulation classification categories coincide. The
sensitivity and specificity indicate the proportion of true positive and
true negative results correctly identified. The positive and negative pre-
dictive values represent how likely a positive or negative simulation re-
sult is to be true. Themethod for calculating thesemetrics is included in
Table 1, as calculated in Valentin et al. (2009). These metrics are calcu-
lated when focusing on predicting QT prolongation and shortening in
the rabbit wedge experiments separately.

The Kappa value (Cohen, 1968) is also calculated, which measures
agreement between simulation and experimental results whilst com-
pensating for chance agreement, as determined by the distribution of
experimental results across each category. The Kappa value is calcu-
lated according to

Kappa ¼ pa−pe
1−pe

; ð5Þ

where pa is the proportion of compounds where simulation and experi-
mental classification categories coincide and pe is the proportion of com-
pounds where agreement is expected by chance. pe is calculated by
multiplying the proportion of compounds with simulation results in a
given category by the proportion of compounds whose experimental
results are in that category and summing these results for all categories.
A value between 0 and 0.2 represents poor agreement, 0.21–0.4 repre-
sents fair agreement, 0.41–0.6 moderate agreement, 0.61–0.8 good
agreement and 0.81–1 very good agreement (Cohen, 1968).

95% confidence intervals are included for eachmetric. For the Kappa
value it is assumed that the Kappa value is normally distributed when
the data set being considered is sufficiently large. Intervals of size 1.96
times the standard error above and below the calculated value can
then be taken. The standard error is calculated as described by Cohen
(1968). Confidence intervals on the accuracy, sensitivity, specificity,

http://www.cs.ox.ac.uk/chaste
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positive and negative predictive values are obtained using Wilson's
score for binomial proportions, as described in Wilson (1927).

3. Results

3.1. Qualitative evaluation of assay predictivity

Table 2 presents the performance of the in silico assay when
predicting QT prolongation in the rabbit wedge assay when considering
different uses of the available ion channel screening data. Table 3 presents
the performance of the assay when predicting QT shortening. Predictive
capacity of the assay is compared when:

i. assuming drugs interact with just the hERG channel or with
multiple channels (hERG, NaV1.5, CaV1.2, KCNQ1),

ii. parameterising the drug block model with just the IC50 value
(and assuming the Hill coefficient is 1) or both the IC50 value
and Hill coefficient,

iii. using IC50 values obtained from data from the IonWorks/FLIPR
and PatchXpress ion channel assays and the QSAR statistical
model, and

iv. performing single cell and one-dimensional tissue simulations.

In Tables 2 and3wepresent ourmain evaluation of the predictions for
QT prolongation and shortening respectively when using all the available
compound data for each assay. The performance upon considering fur-
ther variations of use of the available ion channel data can be found in
the Supplementarymaterial (Tables S1 and S2). The performancemetrics
calculatedwhenpredictingQTprolongation and shorteningwhen includ-
ing a subset of 44 compounds for evaluation for which data were avail-
able from all three ion channel assays and the rabbit wedge assay can
be found in Tables S3 and S4 in the Supplementary material.

The highest valued performance metrics, when predicting both QT
prolongation and shortening, were obtained when using PatchXpress
assay data, and assuming that drugs interact with multiple channels
(case 6 in Table 2 and case 5 in Table 3). The assay has an improved ability
to predict QT prolongation when parameterising the drug block model
with both the IC50 value and the Hill coefficient (case 6) as opposed to
just the IC50 value (assuming theHill coefficient is 1) (case 5). An accuracy
of 77.9% for predictingQTprolongation and 76.6% for predictingQT short-
ening was found; according to the European Centre for the Validation of
Alternative Methods (ECVAM) (Genschow et al., 2002) this corresponds
to a good level of predictivity. A Kappa value of 0.51 for the prediction
Table 2
Prolongationmetric values calculated (with 95% confidence intervals indicated) for evaluation
when considering the different uses of the available ion channel data described. Entries are or

Case
number

Ion channel data use combination Accu
(%)

1 IonWorks/FLIPR data, multiple channel block, fitting for IC50

value (121 compounds)
77.7
(69.5

2 IonWorks/FLIPR data, multiple channel block, fitting for IC50

value & Hill coefficient (121 compounds)
75.2
(66.8

3 IonWorks/FLIPR data, multiple channel block including KCNQ1
interactions, fitting for IC50 value (121 compounds)

77.7
(69.5

4 PatchXpress data, hERG block only, fitting for IC50 value
(77 compounds)

72.7
(61.9

5 PatchXpress data, multiple channel block, fitting for IC50 value
(77 compounds)

74.0
(63.3

6 PatchXpress data, multiple channel block, fitting for IC50 value & Hill
coefficient (77 compounds)

77.9
(67.5

7 PatchXpress data, multiple channel block, fitting for IC50 value,
one-dimensional simulation (77 compounds)

71.4
(60.5

8 QSAR data, multiple channel block (372 compounds) 55.4
(50.3
of prolongation and 0.26 for predicting shortening was calculated, corre-
sponding to moderate and fair agreement respectively (Cohen, 1968).

3.2. Multiple ion channel interactions

The metric values presented in Tables 2 and 3 can aid in identifying
the most advantageous uses of the available ion channel data. Across
all three assays, improved predictivity was demonstrated when assum-
ing drugs interact with multiple channels (hERG, NaV1.5, CaV1.2 (and
KCNQ1 for the IonWorks assay)) as opposed to just the hERG channel.
Increased accuracy is demonstrated, as well as an improved balance be-
tween sensitivity and specificity values. Improved predictivity is most
apparent in the prediction of QT shortening. When assuming com-
pounds interact only with the hERG channel (case 4), a Kappa value of
0 is obtained. This indicates the same level of agreement as expected if
classification had been performed by chance. A sensitivity for shortening
of 0% is also observed. This is because, by assuming that drugs interact
solely with the hERG channel, themodel is unable to predict shortening,
as hERG channel block always leads to APD90/QT prolongation, with no
additional channel interactions to counterbalance this effect.

The inclusion of IonWorks/FLIPR data on block of the KCNQ1/minK
channel (carrying IKs current), in addition to the hERG, fast sodium and
L-type calcium channels, leads to only a small improvement in the
assay's predictive ability. Comparing cases 1 and 3, for the prediction of
QT prolongation, the inclusion of interactions with the KCNQ1/minK
channel yields no increase in accuracy, and a 2.7% improvement in the
sensitivity (75.7% as compared to 73.0%). Whilst only a slight improve-
ment, this is concordant with the increased importance of interactions
with the KCNQ1 channel that may be manifested when drugs block the
hERG channel (consequently leading to increased APD prolongation).

3.3. Including Hill coefficients in drug block parameterisation

Differences in predictivity exhibited when parameterising the drug
block model with both the IC50 value and Hill coefficient, or just the
IC50 value (and assuming the Hill coefficient is equal to 1) are also sub-
tle. When using PatchXpress assay data and assuming drugs interact
with multiple ion channels (cases 5 and 6), an improved ability to pre-
dict QT prolongation is seenwhen parameterising the drug blockmodel
with both the IC50 value and Hill coefficient (case 6 as compared to case
5 in Table 2). However, a decreased ability to predict shortening is seen
(cases 5 and 6 in Table 3). When using IonWorks/FLIPR data to
of the assay's predictivity of QT prolongation in the rabbit ventricular wedge experiments
dered alphabetically by the data type used in the simulations.

racy Kappa
value

Sensitivity
(%)

Specificity
(%)

Positive
predictive
value (%)

Negative
predictive
value (%)

0.50 73.0 79.8 61.4 87.0
–84.2) (0.33–0.67) (57.0–84.6) (70.0–87.0) (46.6–74.3) (77.7–92.8)

0.45 70.3 77.4 57.8 85.5
–82.0) (0.28–0.62) (54.2–82.5) (67.4–85.0) (43.3–71.0) (75.9–91.7)

0.51 75.7 78.6 60.9 88.0
–84.2) (0.34–0.67) (59.9–86.6) (68.7–86.0) (46.5–73.6) (78.7–93.6)

0.48 96.0 61.5 54.5 97.0
–81.4) (0.29–0.67) (80.5–99.3) (48.0–73.5) (40.1–68.3) (84.7–99.5)

0.41 60.0 80.8 60.0 80.8
–82.5) (0.18–0.63) (40.7–76.6) (68.1–89.2) (40.7–76.6) (68.1–89.2)

0.51 72.0 80.8 64.3 85.7
–85.7) (0.31–0.72) (52.4–85.7) (68.1–89.2) (45.8–79.3) (73.3–92.9)

0.41 76.0 69.2 54.3 85.7
–80.3) (0.20–0.62) (56.6–88.5) (55.7–80.1) (38.2–69.5) (72.2–93.3)

0.17 91.4 27.6 49.3 80.6
–60.3) (0.08–0.27) (86.0–94.8) (22.0–34.0) (43.7–55.0) (70.0–88.0)



Table 3
Shortening metric values calculated (with 95% confidence intervals indicated) for evaluation of the assay's predictivity of QT shortening in the rabbit ventricular wedge experiments
when considering the different uses of the available ion channel data described. Entries are ordered alphabetically by the data type used in the simulations. The missing entry is due
to the inability to calculate the metric due to there being no compounds in the relevant categories for its computation.

Case
number

Ion channel data use combination Accuracy
(%)

Kappa
value

Sensitivity
(%)

Specificity
(%)

Positive
predictive
value (%)

Negative
predictive
value (%)

1 IonWorks/FLIPR data, multiple channel block, fitting for IC50 value
(121 compounds)

69.4 0.13 29.0 83.3 37.5 77.3
(60.7–76.9) (–0.10–0.37) (16.1–46.6) (74.3–89.6) (24.7–52.3) (68.0–84.5)

2 IonWorks/FLIPR data, multiple channel block, fitting for IC50 value & Hill
coefficient (121 compounds)

71.1 0.23 41.9 81.1 43.3 80.2
(62.4–78.4) (0.02–0.45) (26.4–59.2) (71.8–87.9) (30.0–57.8) (70.9–87.1)

3 IonWorks/FLIPR data, multiple channel block including KCNQ1 interactions,
fitting for IC50 value (121 compounds)

69.4 0.13 29.0 83.3 37.5 77.3
(60.7–76.9) (–0.10–0.37) (16.1–46.6) (74.3–89.6) (25.0–51.9) (68.0–84.5)

4 PatchXpress data, hERG block only, fitting for IC50 value (77 compounds) 76.6 0.00 0.00 100 – 76.6
(66.0–84.7) (–0.40–0.40) (0.00–17.6) (93.9–100) (66.0–84.7)

5 PatchXpress data, multiple channel block, fitting for IC50 value (77 compounds) 76.6 0.26 33.3 89.8 50.0 81.5
(66.0–84.7) (–0.04–0.56) (16.3–56.3) (79.5–95.3) (31.8–68.2) (70.4–89.1)

6 PatchXpress data, multiple channel block, fitting for IC50 value & Hill
coefficient (77 compounds)

75.3 0.24 33.3 88.1 46.2 81.3
(64.6–83.6) (–0.06–0.54) (16.3–56.3) (77.5–94.1) (29.3–63.9) (70.0–88.9)

7 PatchXpress data, multiple channel block, fitting for IC50 value,
one-dimensional simulation (77 compounds)

72.7 0.22 38.9 83.1 41.2 81.7
(61.9–81.4) (–0.06–0.51) (20.3–61.4) (71.5–90.5) (26.5–57.6) (70.1–89.4)

8 QSAR data, multiple channel block (372 compounds) 79.8 0.10 14.1 93.5 31.0 84.0
(75.5–83.6) (–0.09–0.28) (7.58–24.6) (90.2–95.8) (26.1–36.5) (79.7–87.5)
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parameterise the drug block model, the opposite behaviour is seen. In
all cases, themajority of the performancemetric values being compared
fall within each others' 95% confidence intervals, indicating that, where
differences are seen, these are not large.

3.4. PatchXpress versus IonWorks & FLIPR

The highest level of predictivity for both QT prolongation and
shortening is demonstrated when using PatchXpress assay data.
When predicting QT prolongation, a Kappa value indicating moderate
agreement is obtained and an accuracy of 70–80% is demonstrated
when using PatchXpress data (cases 4–7 in Table 2). A Kappa value
indicating fair agreement is obtained when predicting QT shortening
and assuming drugs can interact with multiple channels (cases 5–7 in
Table 3), which is superior to when using IonWorks/FLIPR assay data
(cases 1 and 3) or QSAR model data (case 8). When using IonWorks/
FLIPR data and parameterising the drug block model with both the IC50
value and Hill coefficient (case 2), fair agreement when predicting QT
shortening is also demonstrated. Focusing on predicting QT prolongation,
when assuming compounds interact with multiple channels, a similar
level of predictivity is seen when using IonWorks/FLIPR data (case 1),
as when using PatchXpress data (case 6). An accuracy of 77.7% as com-
pared to 77.9% and a sensitivity and specificity of 73.0% and 79.8% as com-
pared to 72.0% and 80.8%, respectively, are observed. This suggests it is
possible to use IonWorks/FLIPR assay data in the in silico assay without
a marked loss in accuracy. At GSK this data is available earlier in the
drug development process than PatchXpress.

3.5. QSAR data

Using the QSAR model as the source of ion channel data, the Kappa
values calculated when predicting both QT prolongation and shortening
indicate a small improvement over chance (case 8 in Tables 2 and 3).
However, when predicting QT shortening, the predictivity demonstrated
is not vastly lower than when using IonWorks/FLIPR assay data (case 8
compared to cases 1 and 3 in Table 3). For all cases in Table 3, where
IonWorks/FLIPR andPatchXpress assay datawere used, theKappa values
calculated all fall within the 95% confidence interval calculated on the
Kappa value when QSAR model data is used. However, when predicting
QT prolongation, the performance of themodel when using QSAR data is
markedly worse than when using data from the other assays. It can be
seen that the Kappa values obtained in cases 1–7 do not fall within the
95% confidence interval on the Kappa value from evaluation of the
QSAR model, illustrating this vast difference. With further development
and improvements to the QSAR model, it could potentially be used as a
source of ion channel data for the in silico assay, in the very earliest
stages of drug development. This would enable chemists to identify QT
prolongation liability, andmodify and optimise thedesign of compounds
appropriately, before beginning to synthesise compounds.

3.6. Single cell versus one-dimensional tissue simulations

We evaluate the predictivity of the model when performing single
cell simulations (case 5) as compared to one-dimensional tissue simula-
tions (case 7), when using PatchXpress data, parameterising the drug
block model with just the IC50 value (assuming the Hill coefficient is 1),
and assuming drugs interact with multiple ion channels. Reduced pre-
dictive ability was demonstrated for predicting both QT prolongation
and shortening when performing one-dimensional simulations as com-
pared to single cell simulations (an accuracy of 71.4% as compared to
74.0% for QT prolongation and an accuracy of 72.7% as compared to
76.6% and Kappa value of 0.22 as compared to 0.26 for QT shortening).
However, the same Kappa value of 0.41, corresponding to moderate
agreement, is yielded in both cases when predicting QT prolongation,
and a higher sensitivity (and consequently lower specificity) is associat-
edwith the use of one-dimensional simulations in the prediction of both
QT prolongation and shortening. The metric values calculated when
performing one-dimensional simulations fall within the 95% confidence
intervals of the metrics calculated when performing single cell simula-
tions, illustrating that the difference in the predictivity demonstrated
between the two methods is not large.

3.7. Quantitative evaluation of assay predictivity

Whilst the performancemetrics in Tables 2 and 3 allow anevaluation
of the ability of the assay to predict QT “prolongation” or “shortening”,
an appreciation of the quantitative accuracy of these predictions can be
gained through consideration of a plot of the form presented in Fig. 2.
In this figure, the results of case 6, when using PatchXpress data, are
presented.

Fig. 2 includes compounds forwhich at least oneof the simulation or
experimental APD90 value/QT interval measurements demonstrates
more than a 10% change at one of the drug concentrations tested as
compared to the control. For these compounds, the percentage change
in APD90/QT interval and corresponding concentrations tested are in-
terpolated to determine the concentration at which a 10% (for results
classified as demonstrating prolongation) or −10% (for results classi-
fied as demonstrating shortening) change in APD90 value/QT interval
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is expected (EC10). The EC10 values from the experimental and simula-
tion results for each compound are plotted against one another in one of
the quadrants 1 to 4 marked in Fig. 2. The half log unit lines included in
Fig. 2 indicate the margin of error commonly associated with the ion
channel assays used and so can be thought to provide an indication of
the boundaries of acceptable error. Where less than 10% change was
observed in either the experimental or simulation results, but over
10% was observed in the other result, the EC10 values for compounds
are plotted on the relevant axis.

Most compounds are plotted in quadrants 1 and 3, indicating
qualitative agreement between simulation and experimental results.
Most of these points are also plotted within, or close to, half log unit
boundaries, further indicating the quantitative accuracy of the predic-
tions. Few compounds are plotted in quadrants 2 and 4, which would
indicate that simulation and experimental predictions were opposite
(one being shortening and the other prolongation). Points plotted
along the inner axes of Fig. 2 are located mostly along the central
and inner portions of the axes (closest to the origin). This indicates
that where a disagreement between the classification of experimental
and simulation results occurs (with one predicting that the drug will
induce more than a 10% change in the QT interval and the other not),
it is often the case that the EC10 value is low, corresponding to a rela-
tively weak action. Thus, whilst a qualitative agreement is not evident
using the binary classification system, there is still a degree of quantita-
tive agreement between the simulation and experimental results.

4. Discussion

We have evaluated an in silico assay which uses ion channel data
from high-throughput ion channel screens to predict the results of the
rabbit left-ventricularwedge assay. Simulations yielded good qualitative
Fig. 2. Plot of concentrations (EC10 values) at which a 10% change in APD90 value/QT interv
pound. The results from case 6, using PatchXpress data, are presented. Compounds exhibitin
istration, as compared to the control measurement, at at least one test concentration were in
are compounds for which more than a 10% change in the QT interval length (as compared
These points are plotted in one of four quadrants according to the classification of the simul
gation (quadrant 1), both show shortening (quadrant 3), experimental results show shorte
shortening and experimental results show prolongation (quadrant 4). Points plotted with a c
show more than a 10% change in the QT interval as compared to the control. Interpolation i
simulation result, the percent change in QT interval is between −10% and 10% (showing “n
responding to the maximum concentration tested in the rabbit wedge assay amongst all the
between −10% and 10%), which has a value of 500 μM. Half log unit lines which correspon
dication of the range of accepted error.
andquantitative predictions. The in silico assay demonstrates high levels
of sensitivity and specificity for the detection of QT prolongation, as
required for an assay suitable for use in preclinical safety assessment.
This indicates that a high proportion of true positive results are re-
cognised by the assay and there is a high level of confidence that a simu-
lation result predicting QT prolongationwill translate into a rabbit wedge
assay result showingQT prolongation. The assay also performswell in the
prediction of QT shortening, although a lower sensitivity is demonstrated.
77 compoundswere included for evaluationwhen using ion channel data
from the PatchXpress assay, 121 compounds when using data from the
IonWorks/FLIPR assay, and 372 compounds when using predicted IC50
values from the QSARmodel. This constitutes an unprecedented number
of compounds for the evaluation of such an in silico assay.

We identified the most advantageous ways of using the available
ion channel screening data. The best predictions occurred using the
PatchXpress assay as the source of concentration–effect data for
parameterisation of the drug block model, when assuming drugs inter-
act with multiple ion channels (hERG, NaV1.5 and CaV1.2), and fitting
the drug block model with both the IC50 value and Hill coefficient
(case 6).

Performing one-dimensional tissue simulations in place of single-
cell simulations did not appear to greatly enhance the predictivity of
the model. Using ion channel data for the KCNQ1 channel from the
IonWorks/FLIPR assay, the predictivity of the model was compared
when assuming drugs interact with the KCNQ1 channel in addition to
the hERG, NaV1.5 and CaV1.2 channels (case 3 as compared to case 1).
A slight improvement in predictivity was observed; however, in the
compound set considered, there were few compounds exhibiting very
strong block of the KCNQ1 channel (with the highest pIC50 value
observed being 5.6). Inclusion of interactions with the KCNQ1 channel
would likely have more of an influence on the level of predictivity
al is expected, as interpolated from simulation and experimental results, for each com-
g more than 10% change in their experimental or simulation results after drug admin-
cluded. This enabled interpolation of the EC10 values. Points plotted with an asterisk (*)
to the control measurement) is exhibited in both simulation and experimental results.
ation and experimental results: both experimental and simulation results show prolon-
ning and simulation results show prolongation (quadrant 2), simulation results show
ircle (○) are compounds for which only one of the experimental and simulation results
s used to determine the EC10 value from this result. For the remaining experimental or
o effect”) at all concentrations tested. This result is assumed to have an EC10 value cor-
compounds which show “no effect” (with the percent change in APD90 or QT interval
d to the error commonly associated with the ion channel assays are included as an in-

image of Fig.�2
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demonstrated by the assay if the compound set had included more
compounds with a strong affinity for this channel. On the basis that
evaluation results are no worse with the inclusion of interactions with
the KCNQ1/minK channel, if available, it would probably be advanta-
geous to include these interactions.

The observation of improved predictivity when assuming drugs
interact with multiple ion channels is concordant with the findings of
Mirams et al. (2011) and Obiol-Pardo et al. (2011). Improved predictivity
when using PatchXpress assay data is as expected, due to this being the
best quality data available for the study. However, it is encouraging to
see similar predictive ability when using IonWorks/FLIPR data, which is
acquired earlier in the drug development process, at a lower cost and a
higher throughput. This indicates the potential for the use of this in silico
assay early in the drug development process.

The level of predictivity demonstrated when performing one-
dimensional tissue simulations as compared to single cell simulations
showing little improvement suggests that the use of single cell simula-
tions, which have lower computational cost, may be sufficient for the
intended purpose.

Low predictive ability is demonstrated when using IC50 values from
the QSAR model. This indicates the value of using direct measurement
of ionic current inhibition from the PatchXpress and IonWorks screens.
However, somepredictive capacity is demonstrated by theQSARmethod,
with metrics indicating levels of predictive power above those achieved
by chance alone, and this is improved when including interactions with
multiple ion channels. Thus, with further improvements to the QSAR
model, there may be future potential for its use with this assay. Such im-
provements could include replacing the class prediction for the CaV1.2
channel with an actual IC50 value as is the case with the hERG and
NaV1.5 channels. Using only data from one test system could also de-
crease the subsequent data variability.

The effect on simulation predictions when parameterising the drug
block model with just the IC50 value (and assuming a Hill coefficient
of one), as has often previously been the method adopted (Bottino et
al., 2006; Mirams et al., 2011) and both the IC50 value and Hill coeffi-
cient has also been explored. The effects of including Hill coefficients
in the drug block parameterisation are not conclusive. Improvements
in predictivity were seen in some cases but reductions in others: in all
cases the differences were only slight. Further investigation, comparing
the impact of the inclusion of Hill coefficients in the drug block model,
dependent on the quantity and quality of concentration–effect data
available for fitting would clarify this further.

4.1. Limitations of the in silico assay

The evaluation presented demonstrates the ability of this in silico
assay to predict the results of the rabbit left-ventricular wedge assay
using integrated concentration–effect data for four cardiac ion chan-
nels (hERG, NaV1.5, CaV1.2 and KCNQ1). However, elevated levels
of predictivity would be desired before this approach would be con-
sidered as a replacement for this experiment. A number of limitations
of the present approach could be addressed in order to improve the
predictive capacity. The conductance block drug block model we as-
sumed, representing drug interactions with the individual ion chan-
nels, is commonly adopted (Bottino et al., 2006; Davies et al., 2012;
Mirams et al., 2011), and easily parameterised with readily available
high-throughput ion channel screen data. However, it is a simple rep-
resentation, lacking in its ability to describe complex drug-ion chan-
nel interactions. It includes no consideration of the rate of binding
and unbinding of the drug, and assumes that the drug block is imme-
diately in steady state. The incorporation of a Markov model drug
block formulation, which could capture and represent kinetic effects
of the ion channels would thus be desirable, as has recently been in-
vestigated in Di Veroli, Davies, Zhang, Abi-Gerges, and Boyett (2013).

The comparison of model predictions when using single-cell and
one-dimensional tissue simulations was performed to acknowledge
that differences inherent in tissue may not be fully captured by single
cell models. Initial comparison has shown that themodel demonstrates
marginally increased sensitivity when one-dimensional simulations are
performed. It would be desirable to explore simulation setups more
akin to those used in the rabbitwedge assay and compare the predictivity
demonstrated. This would include considering higher dimensional simu-
lations, including variation in cellular properties across the ventricular
wall, and the addition of a perfusing bath. Increasing the number of com-
pounds used for evaluation, aswell as investigating the inclusion of inter-
actions with additional ion channels, would add further weight to
findings and conclusions drawn from this evaluation. Such investigations
would aid in finding themost suitable in silico assay for use in pharmaco-
logical practice for the prediction of the results of animal-based tests.

The assay does not perform as well when predicting QT shortening
as when predicting QT prolongation. As the QSAR model is unable to
identify hERG activators, which can be the cause of QT shortening,
this could offer an explanation for the reduced predictive ability in
this case. Whilst the IonWorks and PatchXpress assays have the capa-
bility to detect such compounds, no such compounds were included
for evaluation of these two assays. It would be of interest to compare
the performance of the in silico assay when including a selection of
hERG activators in the compound set used for evaluation.

There are many other ionic currents in cardiac tissue, travelling
through additional ion channels, pumps and exchangers, that are not
screened, and hence blockade of these cannot be accounted for by this
in silico assay. Similarly, pharmaceutical compounds have also been
known to interfere with trafficking of ion channel proteins to the cell
membrane, and whilst some in vitro screens can detect such effects
(Wible et al., 2005), high-throughput screens typically used in safety
assessment are unlikely to detect these. Such effects can be detected
using an in vivo animal-based screen. So whilst the in silico assay
could be used to reduce animal-based testing, complete replacement
of all animal-based pro-arrhythmic screening is not yet practical.

The variability associated with high-throughput screens can be con-
siderable. In related work, we have quantified this uncertainty, and pro-
posed a method for estimating the subsequent confidence in simulation
outputs (Elkins et al., 2013, in this issue). This technique will be applied
to rabbit wedge QT predictions in future work. Variability is also seen
across the screening platforms depending upon the cell type used and
the voltage protocol adopted. As can be seen from the ion channel screen-
ingmethods detailed in the Supplementarymaterial (S.3), some suchvar-
iations exist between the methods adopted which may contribute to
differences in predictive ability seen when using data acquired from dif-
ferent assays. In addition, the ion channel screens are performed at
room temperature. If experiments were instead to be performed at phys-
iological temperatures, any temperature-dependent effects would be
eliminated and hopefully an improved agreement between simulation
and experimental results would be seen.

We have demonstrated the ability of an in silico assay which inte-
grates concentration–effect data from high-throughput ion channel as-
says to predict the results of the rabbit left-ventricular wedge assay. The
evaluation of this approach has been undertaken on a substantial number
of compounds. The predictive ability of the model is found to be good,
particularly for detecting QT prolongation, which is a large focus of safety
assessment. It also performswell in the prediction of QT shortening, albeit
with lower levels of sensitivity demonstrated. Furthermore, the assay
demonstrates good quantitative agreement with experiment.

Simulations are suitable for very high-throughput use in the early
stages of the drug development process and have the potential to com-
plement, reduce, and possibly, in the future, replace some existing
animal-based assays and reduce the associated levels of attrition later
in drug development. It is entirely possible that the use of humanmath-
ematical electrophysiology models, based on the human ion channel
screens, will yield more relevant predictions for human clinical QT pro-
longation, than the current assay does for rabbit tissue. This is an avenue
of future work.
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Incorporation of an in silico action potential assay into safety phar-
macological practice will provide a time- and cost-effective method
for assessment of pro-arrhythmic liability, capable of much higher
throughput, and more complex mechanistic investigation, than is
possible with the existing methods.
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