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Introduction: Unwanted drug interactions with ionic currents in the heart can lead to an increased pro-
arrhythmic risk to patients in the clinic. It is therefore a priority for safety pharmacology teams to detect block
of cardiac ion channels, and new technologies have enabled the development of automated and high-
throughput screening assays using cell lines. As a result of screening multiple ion-channels there is a need to
integrate information, particularly for compounds affecting more than one current, and mathematical electro-
physiology in-silico action potential models are beginning to be used for this. Methods:We quantified the var-
iability associated with concentration-effect curves fitted to recordings from high-throughput Molecular
Devices IonWorks® Quattro™ screens when detecting block of IKr (hERG), INa (NaV1.5), ICaL (CaV1.2), IKs
(KCNQ1/minK) and Ito (Kv4.3/KChIP2.2), and the Molecular Devices FLIPR® Tetra fluorescence screen for ICaL
(CaV1.2), for control compounds used at AstraZeneca and GlaxoSmithKline. We examined how screening var-
iability propagates through in-silico action potential models for whole cell electrical behaviour, and how confi-

dence intervals on model predictions can be estimated with repeated simulations. Results: There are significant
levels of variability associatedwith high-throughput ion channel electrophysiology screens. This variability is of a
similar magnitude for different cardiac ion currents and different compounds. Uncertainty in the Hill coefficients
of reported concentration-effect curves is particularly high. Depending on a compound's ion channel blocking
profile, the uncertainty introduced into whole-cell predictions can become significant. Discussion: Our tech-
nique allows confidence intervals to be placed on computational model predictions that are based on
high-throughput ion channel screens. This allows us to suggest when repeated screens should be performed
to reduce uncertainty in a compound's action to acceptable levels, to allow a meaningful interpretation of the
data.
© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY license. 
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1. Introduction

Unwanted drug interactionswith cardiac ion channels can lead to an
increased pro-arrhythmic risk in the clinic (Roden, 2008). It is therefore
a priority for safety pharmacology teams to detect these interactions as
early as possible during drug development. As such, it is now common
for pharmaceutical companies to perform high-throughput screening
(HTS) on large numbers of novel compounds, early in development, to
detect whether they block cardiac ion channels (Pollard et al., 2010).
Discovering that a lead compound carries a high cardiac risk at later
stages of development is very costly.

At both AstraZeneca (AZ) and GlaxoSmithKline (GSK), results from
HTS assays for multiple cardiac ion channels inform mathematical
models for a compound's action on whole-cell electrophysiology
(Davies et al., 2012; Mirams et al., 2011). Simulations are run to predict
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Fig. 1. Variability in the concentration-effect curves fitted to results of an IonWorks
Quattro™ hERG screen using Quinidine. These were recorded as a control at GSK,
N = 120 separate assay runs.
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whether significant changes to cellular electrophysiology may occur
with a given compound, and at which concentrations. Development of
compounds that are flagged as having a significant effect can then be
de-prioritised, or they can be referred for further safety testing, which
is more accurate, but also more expensive.

In this study we characterised the variability associated with the
results of HTS assays for cardiac ion channels, and examined how
that variability affects predictions that are made for drug-induced
changes to whole-cell electrophysiology.

1.1. High throughput screening

The current ‘gold standard’ of electrophysiological screening for
ion-channel block involves manual patch clamping of single cells.
This method is resource intensive and technically challenging, conse-
quently it has a throughput that is far too low to be of commercial use
during early drug discovery, when a large number of compounds
need to be screened. To some extent, this problem has been overcome
in recent years with the development of dedicated planar array
high-throughput electrophysiology platforms. These platforms allow
high precision recordings of ion-current inhibition by compounds,
while being amenable to high-throughput screening (HTS).

A number of different planar array electrophysiology platforms have
been developed in recent years, namely: Qpatch by Sophion Bioscience
(Mathes, Friis, Finley, & Liu, 2009), PatchXpress by Molecular Devices
(Ly, Shyy, & Misner, 2007), PatchLiner by Nanion Technologies
(Polonchuk, 2012), IonFlux by Fluxion (Golden et al., 2011), CytoPatch
by Cytocentrics (Stett, Burkhardt, Weber, Van Stiphout, & Knott, 2003)
and IonWorks™ HT/Quattro and Barracuda by Molecular Devices. A
recent comparison of hERG IC50 values obtained across these platforms
with manual patch clamp experiments can be found in Gillie, Novick,
Donovan, Payne, and Townsend (2013, Table 2). TheMolecular Devices
FLuorometric Imaging Plate Reader (FLIPR® Tetra, Schroeder & Neagle,
1996) assay is also used to measure changes in calcium transients
(Sullivan, Tucker, & Dale, 1999).

HTS provides a measurement of the concentration-effect curve of
ion-channel current inhibition, and has established a good record in
detecting ion-channel blockade for a wide variety of compounds
and ion channels.

In this study we consider the Molecular Devices IonWorks®
Quattro™ assays for detecting block of IKr (hERG), INa (NaV1.5),
ICaL (CaV1.2), IKs (KCNQ1/minK) and Ito (Kv4.3/KChIP2.2), and the
Molecular Devices FLIPR assay for ICaL (CaV1.2). These assays have
been used routinely at AZ and GSK for novel compound screening
for a number of years.

1.2. Concentration-effect curves

Ion-channel current inhibition is commonly described by
concentration-effect curves, such as those seen in Fig. 1. This curve
describes how an ‘effect’ or ‘response’ R depends on a ‘dose’ or
compound ‘concentration’ [C]. In this case, the peak ionic current
following a voltage step is recorded repeatedly, and the proportion of
this that remains after addition of a certain concentration (or dose) of
a compound is the recorded effect (or response). Such curves are com-
monly described by a Hill function (Hill, 1910):

R C½ �ð Þ ¼ IC50½ �n
C½ �n þ IC50½ �n ;or equivalently;R C½ �ð Þ ¼ 1þ C½ �

IC50½ �
� �n� �−1

: ð1Þ

This function of concentration [C], has two parameters: [IC50], the
half-maximal inhibitory concentration; and the Hill coefficient n.

In Fig. 1 we present concentration-effect curves that have been
fitted to the output of a hERG-channel HTS that was performed 120
times (on different screening plates). Only those HTS assays that
passed quality-control criteria, i.e. ones in which the positive controls
registered an acceptable positive result, are considered in this study.
We are therefore considering only the variability in ‘acceptable’
measurements, not across all the measurements that were taken.
For discussion of typical quality control criteria used in these assays
please see Bridgland-Taylor et al. (2006), Harmer et al. (2008),
and Davies et al. (2012). Whilst the concentration-effect curves
consistently detect the compound's blockade of IKr, it is immediately
evident that there is substantial variability between individual curves
shown in Fig. 1. Our use of the term ‘variability’ is intended to
represent the variation in IC50 values and Hill coefficients fitted to
concentration-effect curves recorded by HTS assays that are carried
out on separate occasions. Indeed, HTS is thought to provide more
variable results than the ‘gold-standard’ of manual patch clamp, and
we seek to characterise this HTS variability in this study.

1.3. Aims

Formost novel compounds that are of interest in drug development,
repeats of only N = 1 or N = 2 are common. It is therefore difficult to
draw any conclusions about the variability associated with screening a
particular novel compound. Fortunately, a large number of repeats
exist for those compounds used as controls in the assays.

Since AZ and GSK both run positive controls on each IonWorks
Quattro or FLIPR Tetra plate, a whole concentration-effect curve is
evaluated for a control compound each time any compound is
screened. This has led to the accumulation of an unprecedented
amount of information on HTS variability, which we have utilised
here to determine the statistical distributions of both IC50 values
and Hill coefficients that describe the concentration-effect curves.

By using in-silico action potential (AP) simulations, AZ and GSK
have begun to integrate quantitative information on concentration-
effect curves that is gained from a panel of cardiac ion channel
screens (Davies et al., 2012; Mirams et al., 2013). The aim of these
simulations is to provide a prediction of how a compound is likely
to affect the whole cardiac cell, or even the whole heart, early in
compound development (Fletcher et al., 2011; Mirams & Noble,
2011). For example, in related work, we show how HTS data can
be used to predict the results of a rabbit left-ventricular wedge
assay (Beattie et al., 2013–this issue). It has not yet been considered
how variability in HTS results, that are taken as inputs into in-silico
models, might affect such simulation outputs.

The aims of this article are therefore two-fold: firstly, to quantify
the variability in concentration-effect curves produced by HTS, by
examining variability in the IC50 values and Hill coefficients that
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describe them; and secondly, to provide a method for estimating
the subsequent variability in the output of in-silico action potential
simulations based upon HTS.

2. Methods

2.1. Ion-channel screening

Here we describe the IonWorks and FLIPR platforms in general
terms. For details of the experimental protocols that are used at AZ
and GSK, please refer to Supplementary material S1.

The IonWorks™ Quattro platform (first described by Schroeder,
Neagle, Trezise, and Worley (2003)) has been the mainstay of ion
channel electrophysiology HTS at AZ and GSK in recent years. On
this platform, the glass electrodes typical of manual patch clamping
rigs have been replaced by planar, 96 or 384 well, “chips” (known
as the PatchPlate™). Each of the wells contains one hole to which
one cell is clamped. Briefly, the PatchPlate™ is placed on the machine
at the interface between two separate fluid compartments. The
extracellular compartment (above the holes), is loaded with an
external solution. The surface below the PatchPlate™ (the intracellular
compartment), is perfused with a second solution. A vacuum is used to
attach the cells onto the small holes at the base of each well, creating a
high resistance seal (≈100 MΩ) between the cell and the edge of the
PatchPlate™.

Unlike othermethods, this suction is not used to break the cellmem-
brane. Instead, a cell membrane-perforating agent (Amphotericin-B)
is introduced into the intracellular compartment allowing access
to the intracellular compartment from the underside while the high-
resistance seal is maintained. This method, known as ‘perforated
patch’, allows many of the intracellular components required for ion
channel modulation to be retained (Wood, Williams, & Waldron,
2004). The cell can then be voltage clamped and currents across
the membrane are measured by a 48 channel amplifier. Separate
measurements can be taken from each well using this method.

An updated method, known as population patch clamping (PPC)
was developed by Dale, Townsend, Hollands, and Trezise (2007).
This protocol can be utilised on IonWorks™ Quattro and Barracuda
machines and allows for more accurate recordings. In PPC mode,
each PatchPlate™ is perforated by many holes allowing one amplifier
to take recordings from up to 64 different cells. The recorded current
is then the mean current from a number of cells. This dramatically
improves consistency in the recordings, by helping to overcome
some of the inter-cell variability that has been observed with the
single-hole approach (Finkel et al., 2006). All of the data discussed
in this study were acquired using the IonWorks Quattro in the PPC
mode, as described in Supplementary material S1. In brief, cells were
placed into wells at a concentration of between 1 and 5 million cells/
ml (depending on the HTS target), cells were incubated in the presence
of the test compound for 3–5 min before measurements were taken,
and compounds were tested up to the limit of solubility.

We also consider the FLIPR screen that GSK has been using to
detect blockade of CaV1.2 channels (Sullivan et al., 1999). This
screen uses calcium-sensitive dyes to record changes in fluorescence.
Intracellular calcium transients occur upon the addition of a depolarising
solution, reductions in these transients relative to control wells are used
as a proxy for blockade of the L-type calcium current. Details of the
protocols that were used are given in Supplementary material S1.3.

2.2. pIC50 and Hill coefficient distributions

Of particular note, in terms of size, is the IonWorks hERG control
at AZ, in which the compound Cisapride is used. At the time of writing
there had been N = 12,638 replications of this experiment.
We therefore use this example to discuss the fitting of the data to
particular probability distributions. A histogram of the pIC50 values
that have been recorded is shown in Fig. 1. For ease of presentation
and intuition we will work with pIC50 values throughout this article.
These are calculated from IC50 values using pIC50 = − log10(IC50)
with units of Molar for IC50 and therefore log(Molar) for pIC50.
Probability plots revealed that the logistic distribution is a good
descriptor of pIC50 variability in this dataset, this was true for all of
the different HTS control assays (please see Supplementary material
S2 for more detail).

To estimate the parameters of the distribution we used maximum
likelihood estimates, provided by the MatLab™ statistics toolbox ‘mle‘
function (the datasets and fitting code are available to download from
http://www.cs.ox.ac.uk/chaste/download). The logistic distribution is
fitted to the Cisapride hERG control data, and is shown overlaid in
Fig. 1.

Throughout this investigation we therefore assume that pIC50
follows a logistic distribution (pIC50 ∼ Logistic(μ, σ), where μ is the
centering parameter and σ is the spread parameter). Note that since
the pIC50 is calculated from the IC50 using a logarithm, this implies
that IC50 follows a log-logistic distribution (IC50 ∼ LogLogistic(α,
β)), where the two distributions are related by α = eμ and β = 1/σ.
For the equations of the distributions please see the Supplementary
material S2.

We perform a similar characterisation of the variability in Hill
coefficients, that were fitted to concentration-effect curves at the
same time as pIC50 values. In this case all Hill coefficients appeared to fol-
low a log-logistic distribution, as IC50 values do (Hill ∼ LogLogistic(α, β)).
In Fig. 1 we present a histogram of the Hill coefficients that correspond to
the same assay as the pIC50 values shown in Fig. 1.

The peaks at 1.0 and 1.1 in Fig. 1 may illustrate unconscious
‘rounding’ by human operators, affecting the values that are logged
into a database, whereas no such bias exists for pIC50 values. Also of
note is the accumulation of Hill coefficients at 5.0, which was the
maximum allowed Hill coefficient in the fitting process.

2.3. Inferring underlying distributions from limited repeats

In order to simplify this section we discuss pIC50 values, exactly the
same procedure can be followed for Hill coefficients by substituting α
for μ and β for σ, in the following discussion.

When an HTS assay is performed on a novel compound, we
will typically have only a limited number of concentration-effect
curves, and hence very limited knowledge of the distribution of
concentration-effect curve parameters (in contrast to the control
cases discussed above, where we have a very good approximation
to the true distribution).

We must therefore make some assumptions about a distribution
for the novel compounds:

1. When an HTS is repeated a large number of times, μ is equal to the
‘true’ pIC50 value. This is a reasonable approximation since μ is
equal to the mean, median and mode of the logistic distribution
(and for the Hill coefficient case, with the log-logistic distribution,
α is equal to the median). Note this is only really the ‘true pIC50’ if
the HTS assay has no systematic bias resulting in under- or
over-reporting of pIC50 values.

2. The deviation parameter (σ) is the same as that of the relevant
control assays; i.e. if we repeated the HTS for the novel compound
hundreds of times we would fit a distribution with the same
deviation (σ) as the relevant control for that HTS assay, but with
a different median (μ). As we will see in Section 3.1, this is a
reasonable assumption for most of the assays, as different control
compounds tend to share similar deviation parameters, and for a
first approximation we might expect a novel compound to do the
same.

In Supplementary material S3 we provide details of how these
assumptions are used in inference calculations to estimate the

http://www.cs.ox.ac.uk/chaste/download
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underlying distribution of the true pIC50, from individual runs of the
assay. Here we discuss an example of the inference procedure,
shown in Fig. 3.

In Fig. 3we observe how the incorporation of repeat assay results into
our inference procedure influences our confidence in the possibilities for
the ‘true’ pIC50. If repeat experiments yield similar values (as will we see,
this is suggested by the results in Section 3.1), the effect of including them
is to reduce the effective spread of the probability distribution for μ. We
therefore tend to obtain more accurate estimates for the ‘true’ pIC50
values when multiple experiments are performed, as demonstrated in
Fig. 3.

2.4. In-silico action potential modelling

2.4.1. Model
In-silico action potential models are based on the Nobel Prize

winning work of Hodgkin and Huxley (1952). These models describe
the evolution through time of voltage across a cell membrane that
results from differences in intracellular and extracellular ionic
concentrations, caused by transmembrane ion currents, which are
themselves voltage and time dependent. The first cardiac action
potential models were developed over 50 years ago (Noble, 1962),
and models now exist for multiple species and types of cardiac
myocyte (Noble, Garny, & Noble, 2012). These cellular models have
also been integrated into models of tissue electrophysiology to
predict the path of electrical waves up to the whole heart scale
(Clayton et al., 2011). We have recently reviewed the use of these
biophysical cardiac electrophysiology models in pro-arrhythmic
safety testing (Mirams, Davies, Cui, Kohl, & Noble, 2012).

In this study we used the Ten Tusscher and Panfilov (2006) (TT06)
human ventricular action potential model (epicardial variant). This
model was chosen as it has a relatively low number of equations,
making simulations relatively fast, and appears to be robust under
multiple-ion-channel drug action (Mirams et al., 2013). We have
used a simple conductance-block model for ion channel blockade, so
that the maximal conductance of a given channel, gj, is modified
under drug block according to

g j ¼ g j controlR C½ �ð Þ; ð2Þ

where R([C]) is the degree of ion-channel block given by the
concentration-effect curve (Eq. (1)), and gj control is the maximal
conductance of the channel in control (drug free) conditions.

The TT06 model includes all of the currents that are screened
by the HTS assays we are considering, with the exception of an
individual fast Ito current. Fast Ito is molecularly distinct from slow
Ito (Niwa & Nerbonne, 2010), and so models that have separate
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independent assay runs. Solid red lines denote the distributions that have been fitted to th
components may provide more realistic simulation predictions
for use in pharmaceutical safety assessment. However, here we are
interested in demonstrating the method, rather than the quantitative
accuracy of the predictions, and so we block the whole TT06 Ito
current according to the concentration-effect curve from the fast Ito
assays.

2.4.2. Sampling from distributions
In the results section we consider data from a screen of a number

of marketed reference compounds. This screen was performed once,
so to emulate the process of repeat HTS experiments we assume the
screened values represent the ‘true’ values. If the experiment was to
be repeated we assume that the individual sample pIC50 values and
Hills would follow the PDF of those HTS screens, assuming true median
values for μ to be those given in Table 2 and spread parameters to be as
in Table 1. The Bayesian inference scheme is then applied to 1, 2, 4 or 8
data points, drawn at random from these distributions (if one did
possess raw data from multiple repeats the Bayesian inference scheme
should be applied directly to these values).

Having inferred a probability density function for μ, as described in
Section 2.3, we can then sample an estimate for the ‘true’ pIC50, which
is subsequently used to create a sample concentration-effect curve
R([C]), using Eq. (1).

Then for any drug concentration of interest, the sample
concentration-effect curve is used to calculate a new maximal
channel conductance using the conductance block model (Eq. (2)).
This process is repeated as required for all channels of interest.

We differentiate between the cases where we allow: only pIC50 to
be sampled (and Hill coefficient is assumed to be equal to one) or
both pIC50 and Hill (independently, as discussed in Supplementary
material S3); and the inclusion of variability on different numbers
of the ion currents (just hERG, or hERG/NaV/CaV or hERG/NaV/CaV/
IKs/Ito).

2.4.3. Simulations
A pIC50 and Hill coefficient are selected, for each channel, using

the sampling method described above in Section 2.4.2. These
values define a concentration-effect curve for each ion current. We
modified the Ten Tusscher and Panfilov (2006) model to allow scaling
of the channel conductances in response to drug block, as described in
Section 2.4.1 and Eq. (2). We begin with the model in steady state
1 Hz pacing drug-free control conditions. The channel conductance
scalings are applied, then regular 1 Hz pacing continues until the
model reaches a new steady state (limit cycle). The action potential
duration (at 90% repolarization, APD90) is then calculated and
recorded. Note that any marker of interest could be processed from
the simulated action potentials, for example upstroke velocity, or
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triangulation. Here we have restricted the analysis to APD90, as this
is the most widely used marker in computational cardiac safety assess-
ment at present, and has been linked to human clinical Torsadogenic
risk (Mirams et al., 2011). The process is repeated for a range of
concentrations for each sample of pIC50 and Hill coefficient. This
‘workflow’ is depicted in schematic form in Fig. 4.

A new pIC50 and Hill coefficient are sampled, and the process
shown in Fig. 4 is repeated for the new values. By repeating this
process 200 times for each compound, resulting in 200 distinct
APD-response curves, we can build up a probability distribution for the
outputs. By ignoring the 5 maximum and 5 minimum of the
200 simulated APDs at each concentration, the remaining spread
of APDs defines an estimate for the 95% credible interval for the
simulated response curve. The simulation takes a few hours on
a single processor of a modern desktop PC (the time varies
depending on the action-potential model used), but moving the
calculations to parallel evaluation on larger computing resources
is trivial.

For the interested reader we have made the following resources
available: the full control datasets to which distributions were fitted,
with the corresponding MatLab script; the Bayesian sampling code;
the action potential modelling software; and the scripts for
Table 1
Distribution of concentration-effect curves for control compounds. This table lists the fitted
compound, for each cardiac ion channel assay.

Ion channel Control compound HTS platform Performed at

NaV1.5 Flecainide IonWorks AZ
NaV1.5 Amitryptiline IonWorks GSK
NaV1.5 Tetracaine IonWorks GSK
NaV1.5 GSK-A IonWorks GSK
CaV1.2 Verapamil IonWorks AZ
CaV1.2 Nicardipine FLIPR GSK
CaV1.2 Nifedipine FLIPR GSK
CaV1.2 Diltiazem FLIPR GSK
hERG Cisapride IonWorks AZ
hERG Quinidine IonWorks GSK
hERG Pimozide IonWorks GSK
hERG Haloperidol IonWorks GSK
hERG Verapamil IonWorks GSK
IKs XE991 IonWorks AZ
IKs XE991 IonWorks GSK
IKs GSK-B IonWorks GSK
Ito Flecainide IonWorks AZ
generating the figures presented in this article. These can be
downloaded as a ‘bolt-on project’ for the open-source cardiac simu-
lation software Chaste (written to work with v3.1) from http://
www.cs.ox.ac.uk/chaste/download.

A brief description of the computational techniques follows. We
used a machine readable version of the Ten Tusscher and Panfilov
(2006) model, taken from the CellML repository (Lloyd, Lawson,
Hunter, & Nielsen, 2008). PyCML was used to convert the CellML
format into C++ code, the CellML file being tagged with metadata
denoting the conductances of interest (Cooper, Corrias, Gavaghan, &
Noble, 2011; Cooper, Mirams, & Niederer, 2011). The equations
were solved using the adaptive CVODE solver (Hindmarsh et al.,
2005), with relative and absolute tolerances of 10−6 and 10−8

respectively, in a custom-made program based on the open-source
Chaste library (Mirams et al., 2013; Pitt-Francis et al., 2009).

3. Results

3.1. Screening variability

In this section we present the variability associated with fitting
concentration-effect curves to the output of HTS assays. Each of the
parameters for the pIC50 (logistic) and Hill (log-logistic) distributions for each control

Repeats
N

pIC50 Logistic Hill Log-logistic

μ σ α 1/β

2307 5.235 0.0760 1.188 0.0835
362 5.765 0.1388 1.744 0.1983
248 6.060 0.1459 1.530 0.2089
121 5.315 0.2044 0.930 0.1529
369 5.571 0.1597 0.605 0.1206
395 7.378 0.2216 1.325 0.2386
328 7.248 0.1856 1.179 0.2213
244 5.249 0.1560 0.979 0.2263

12638 6.408 0.1034 1.790 0.1784
120 5.625 0.1033 1.708 0.1544
94 7.321 0.1914 1.586 0.2486
84 6.852 0.1498 1.469 0.2031
72 6.169 0.1464 1.429 0.2025

525 6.217 0.1053 1.127 0.1510
79 5.927 0.1342 1.011 0.1837

451 7.414 0.1808 1.318 0.1677
366 4.860 0.0860 1.063 0.0862

http://www.cs.ox.ac.uk/chaste/download
http://www.cs.ox.ac.uk/chaste/download


Fig. 4. A schematic of the simulation and processing workflow. Step 1: concentration-effect curves are fitted to the result of each HTS assay. Step 2: for a given concentration,
percentage blocks of the relevant ion channels are calculated from the concentration-effect curves, and applied to the mathematical electrophysiology model. Step 3: the model
is paced at 1 Hz until it reaches a steady state, and the resulting action potential is recorded. Step 4: steps 2 & 3 are repeated for a range of concentrations, to build up a
concentration-APD curve.
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compounds we consider has been screened a large number of times
as a positive control at either AZ or GSK.

Each assay generates a histogram of reported pIC50 and Hill
coefficients, such as those shown in Fig. 2 for Cisapride in the hERG
IonWorks screen. Analogous figures are presented in Supplementary
material S4 for each control compound. The probability distributions
that were fitted to the datasets for each control compound, as
discussed in Section 2.2, are shown in one figure for each assay
(Figs. 5 & 6). The individual fit parameters are summarised in Table 1.

Of particular interest in Table 1 is the consistency in the values of
the ‘spread’ parameters σ and 1/β for each assay, as we would expect
μ and α to vary between different compounds. Note that the spread
of the Hill (log-logistic) distribution shown in Figs. 5 & 6 naturally
increases as the median α increases, even with an unchanged scaling
(1/β) parameter (see Supplement Fig. S4). The values in Table 1 may
therefore be a better representation of the differences in the variability
associated with the Hill coefficients than Figs. 5 & 6.

Those assays withmultiple controls, which are hERG (Fig. 4), CaV1.2
FLIPR (Fig. 4), and IKs (Fig. 5), demonstrate similar levels of variability in
both pIC50 and Hill coefficients for all of the compounds considered.
These results provide evidence that the second assumption we
made in Section 2.4.2 about consistency in the spread of pIC50 and Hill
coefficients is reasonable for these assays. A possible exception to this
is the NaV1.5 IonWorks screen, that shows slightly higher variability
in the pIC50 spread associated with different compounds. Ideally
data would be acquired on additional NaV1.5 control compounds
to characterise this assay further. In the absence of any further
information, we keep the same assumption for the CaV1.2 IonWorks
and Ito screens, for which data were only available for one control
compound each.

Figs. 5 & 6 and Table 1 show that the variability associated with
Hill coefficients fitted to HTS results is considerable (but the level of
variability is consistent between different compounds in a given
assay). Such high variability may suggest that there would be less
error associated with making the assumption that the Hill coefficient
is always equal to one, than there is in taking the Hill coefficient from
an HTS assay.

There did not appear to be a correlation between the pIC50 and
Hill coefficients recorded in any of the assays (see Supplementary
material Fig. S5).

3.2. Simulation variability

In this section we show how the uncertainty in the ‘true’
concentration-effect parameters propagates through an action potential
simulation. We performed HTS at AZ for the ion channels of interest for
a number of reference compounds, the results are shown in Table 2.

We selected an underlying spread parameter for each assay,
shown in Supplementary material Table S1, based on the data
shown in Table 1. Where there was a choice to be made between
AZ or GSK spread parameters, we chose the AZ ones, as the
experiments for this section were performed using those reagents,
protocols and machines. We then performed the Bayesian inference
method to obtain probability distributions for the ‘true’ pIC50 value
and Hill coefficient, as discussed in Section 2.4.2. We sampled from
these distributions to explore the range of possible concentration-
effect curves that are input into the simulations (as shown in
Fig. 4). In practice to apply this method, you should characterise the
variability of your own assay as shown above, and use the resulting
spread parameters in the inference step.

The results consist of concentration-effect curves for action potential
duration (APD90), with 95% confidence limits evaluated from the many
trajectories of the individual runs, as shown in Tables 3 & 4 and Tables
S2–S9. In the following sections we present the variation we expect to
be associated with simulation outputs, based on the level of variability
in the HTS ion channel screens, for each of the compounds listed in
Table 2.

3.2.1. Alfuzosin case study
Table 3 summarises the findings for Alfuzosin when considering

the variability associated with pIC50 measurements, but not Hill
coefficients. Table 4 summarises the findings when including both
sources of variability.

In the Thorough-QT (TQT) study a maximum QTc prolongation of
7.7 ms was observed (Gintant, 2011). In Tables 3 & 4 we see that
simulations based on single screens could give misleading results. In
some cases small, and in others very large, prolongation is predicted
at high concentrations (top right plots in each table), particularly when
considering variability associated with Hill coefficient measurements
(Table 4).

By repeating the ion channel screens we gain more reliable
channel block estimates, and the lower panels exhibit the correct
behaviour — mild/moderate prolongation of repolarization.

3.2.2. Dofetilide case study
The remaining simulated concentration-action potential duration

(APD90) curves for this section are presented in Supplementary
material S5. Tables S2 & S3 summarise the findings for Dofetilide.

Dofetilide is a well known QT-prolonging hERG blocker, we see
that prolongation occurs at low concentrations of 0.01–0.1 μM.
Since the hERG IC50 is in this range, a large amount of variability is
introduced at these concentrations. When considering only hERG
block (Tables S2 & S3, left columns) the variability is reduced at
high concentrations. This is due to the blockade of hERG being close
to 100% at 1 μM and above, regardless of the variation in IC50 reported
by the HTS assay. In a similar situation, at 100 μM of Quinidine in
Fig. 1, all 120 assay runs reported at least 90% block.

Whenwe consider the results of the other channel assays, variability is
introduced at higher concentrations, where those assays' concentration-
effect curves become active (Tables S2 & S3, centre and right columns).
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In particular, the next IC50 to be encountered is that of CaV1.2 (Table 2);
and as we might expect blockade of the L-type calcium current at
concentrations close to 100 μM begins to cause significant shortening in
some of the runs, and correspondingly large confidence intervals on the
simulation output.
1 http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/
022068s000_PharmR_P1.pdf.
3.2.3. Lacosamide case study
Lacosamide is an example of a QT-shortening compound. It has a

very low hERG affinity, and a significant CaV1.2 affinity. In the TQT
study Lacosamide showed a shortening of around 6.3 ms (Gintant,
2011).

Tables S4 & S5 summarise the simulation results for Lacosamide.
As we might expect, including assay variability for hERG has almost
no effect, as the concentrations we are considering (up to 100 μM)
are never close to any of the possible ‘true’ hERG IC50 values.

The majority of variability is associated with the CaV1.2 IC50
value, and accordingly the additional variability introduced when
considering IKs and Ito is negligible. This example shows how it is
possible, if unlikely, to get very strange behaviour due toHTS variability,
in 0.5–1% of cases with just one assay repeat (N = 1), the simulations
predict prolongation instead of shortening. In this case we would
choose to screen CaV1.2 multiple times, as this has the largest benefit
in terms of constraining the confidence intervals.

3.2.4. Nilotinib case study
Tables S6 & S7 summarise the findings for Nilotinib. In our screens

Nilotinib is not a strong blocker of any current, and simulations
suggest a mild prolongation, or even a possible shortening at high con-
centrations and low numbers of repeats. By increasing the number of
assay repeats, we would consistently predict prolongation.

In the TQT study Nilotinib was a prolonger with 15.8 ms of QTc
prolongation being observed (Gintant, 2011). By examining this
compound's FDA pharmacology review,1 we find that hERG IC50=
0.13 μM was reported, substantially lower than our screening result
(Table 2).

3.2.5. Tolterodine case study
The assays suggested that Tolterodine is a strong hERG blocker

(Table 2) that we might expect to have a similar profile to Dofetilide.
Tables S8 & S9 summarise the simulation findings for Tolterodine. The

http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022068s000_PharmR_P1.pdf
http://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022068s000_PharmR_P1.pdf
image of Fig.�5


4 5 6 7 8 9
0

1

2

3

4

P
D

F

pIC50 (−log10 IC50(M))
0 1 2 3 4 5

0

1

2

3

P
D

F

Hill coefficient

Amitryptiline
Tetracaine
GSK A
Flecainide

(a) NaV1.5 Ion Works

4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

P
D

F

pIC50 (−log10 IC50(M))
0 1 2 3 4 5

0

0.5

1

1.5

2

P
D

F
Hill coefficient

GSK B
XE991 GSK
XE991 AZ

4 5 6 7 8 9
0

1

2

3

P
D

F

pIC50 (−log10 IC50(M))
0 1 2 3 4 5

0

1

2

3

P
D

F

Hill coefficient

Flecainide

(b) I Ks Ion Works

(c) I to Ion Works

Fig. 6. Probability density functions for: (left) pIC50 values; (right) Hill coefficients, as fitted to the distributions resulting from large numbers of repeat screens with control
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difference in the profiles shown (ever-longer prolongation at higher
concentrations for Tolterodine but not Dofetilide) is explained by
the fact that there is no CaV1.2 block to stabilise the hERG prolongation
at higher concentrations, and instead blockade of IKs and Ito can be
introduced.

This potentially risky profile would suggest repeating most of the
screening panel multiple times in order to minimise uncertainty in
prolongation predictions.
Table 2
Results of a screen for a number of compounds with varying ion-channel blocking
profiles. These screens were performed once for each ion channel at AZ. Where 50%
block was not achieved, we have performed a least-squares fit of a concentration-effect
curve to the original data, with a minimum allowed pIC50 of 0, a minimum allowed Hill
coefficient of 0.5, and a maximum of 5.00.

Compound hERG NaV1.5 CaV1.2 KCNQ1/
minK

Kv4.3/
KChIP2.2

pIC50 Hill pIC50 Hill pIC50 Hill pIC50 Hill pIC50 Hill

Alfuzosin 4.66 0.92 3.69 0.71 3.75 1.64 3.95 0.50 3.04 0.50
Dofetilide 6.85 1.88 3.46 0.79 3.77 5.00 3.65 0.50 0.00 1.00
Lacosamide 0.00 1.00 3.34 0.72 4.33 0.44 3.62 0.50 0.00 1.00
Nilotinib 4.20 0.53 2.97 0.71 3.67 0.67 3.39 0.50 2.48 0.72
Tolterodine 6.89 1.58 5.24 1.08 0.00 1.00 4.10 0.60 4.93 1.07
4. Discussion

The variability that we have observed in the high-throughput
screens (HTS) could be caused by a large number of factors, including
(but not limited to):

• Noise in recording or ‘instrument error’.
• Variability in the number and condition of cells in each well.
• Variability in the concentration and differences in the condition/
batch of the compound added.

• Variability in the temperature at which the recordings were taken;
temperature is not fixed at a physiological 37° in the screens we
have considered.

Firstly, we characterised variability in pIC50 values andHill coefficients
resulting fromHTS assays by examining controls that have been repeated
a large number of times. pIC50 values fitted to data from an IonWorks or
FLIPR screen are described by a logistic distribution, and Hill coefficients
follow a log-logistic distribution. We observed moderate variability in
pIC50 values (Table 1) that is consistent with a � 1

2 log10 unit ‘rule of
thumb’. There is a larger amount of variability associated with Hill
coefficients.

There can be such a high level of variability associated with Hill
coefficients that it is not clear that including the Hill coefficient from



Table 3
Uncertainty in concentration-effect curves for action potential duration under the action of Alfuzosin, when considering ion-channel assay variability in pIC50 values (not in Hill
coefficients), for various numbers of repeats. Each plot displays action potential duration, APD90, as a function of concentration. Black lines represent simulation results for each
set of sampled concentration-effect inputs, the red line denotes the result when using the numbers reported by the assay directly, with 95% credibility intervals imposed as
described in the text.
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a HTS adds useful information: there may be less error introduced by
assuming that the Hill coefficient associated with each concentration-
effect curve (n in Eq. (1)) is equal to one. This is something we are
investigating in parallel work (Beattie et al., 2013–this issue).

The use of in-silico action potential models to integrate information
from HTS rests on the fact that the average result of a HTS is giving the
‘correct answer’. Careful analysis should be made to ensure that these
screens are not consistently over- or under-reporting ion channel
blockade, by comparing results with manual patch clamping.

We would like other companies and device manufacturers, that
have repeated screens large numbers of times, particularly with other
machines and for other ion channels, also to publish their datasets.
The variability that is associatedwith different assays, reagents and pro-
tocols could then be characterised, and the most reliable screening
methods selected for use.

We also characterised the resulting uncertainty in whole-cell
responses via simulating the action potential duration based on the
uncertainty in the screening data (that the simulation uses as inputs).
This was done by performing a Bayesian inference step: inferring the
distribution of likely ‘true’ concentration-effect parameters, from a
number of sample assay runs, by assuming that the variability level
for a novel compound is similar to that of the relevant control assay
compounds. We then sampled possible concentration-effect curves
for each channel and performed repeated simulations to build up a
probability distribution for the resulting action-potential-duration
vs. concentration curves.

The approachwehave proposeddoes not rule out the consideration of
other sources of variability, for example due to stochasticity of ion channel
gating (Dangerfield, Kay, & Burrage, 2012), or inter-individual variability
(Davies et al., 2012), and could be considered in addition to these.

The choice of number of screening repeats to perform initially
depends upon the expense of the screen, the level of accuracy that
is required, and the time and cost involved in repeating screens to
reduce uncertainty at a later date. An organisation could decide to
perform each screen once, analyse uncertainty using the proposed
method, and perform additional screens as required; whilst another
organisation could choose to perform each screen four times, or
more, to minimise uncertainty from the outset.

Whatever strategy is adopted, ourmethodology provides ameans to
determine whether a particular screen is introducing large amounts of



Table 4
Uncertainty in concentration-effect curves for action potential duration under the action of Alfuzosin, when considering ion-channel assay variability in pIC50 values and Hill co-
efficients, for various numbers of repeats. Each plot displays action potential duration, APD90, as a function of concentration. Black lines represent simulation results for each set
of sampled concentration-effect inputs, the red line denotes the result when using the numbers reported by the assay directly, with 95% credibility intervals imposed as described
in the text.

µ µ µ
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uncertainty, and whether the uncertainty in whole-cell behaviour pre-
dictions is at an acceptable level. This is a basic requirement for sensible
interpretation of simulation results, and therefore a pre-requisite for the
possible future use of simulation in reduction and replacement of
animal-based safety tests.
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