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Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers
a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent
coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which
are controllable through the strength of the local confinement. This approach even permits the cancellation
of two-body terms such that three-body interactions become dominant. We analyze the structure of these
interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on
system ground state on a square lattice. Focusing specifically on a system of 87Rb atoms, we show that the effects
of the multi-body interactions can be maximized via a tailored dressed potential within a trapping frequency
range of the order of a few hundred kHz and for temperatures corresponding to a > 90% occupation of the
atomic vibrational ground state. These parameters, as well as the multi-body induced time scales, are compatible
with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multi-
body interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum
simulators.

Introduction.— In the past years Rydberg atoms [1–3] held
in optical tweezer arrays have emerged as a newplatform for the
implementation of quantum simulators and, potentially, also
quantum computers [4–10]. One- [6], two- [11] and three-
dimensional [12] arrays containing hundreds of qubits are in
principle achievable and the wide tunability of Rydberg atoms
grants high flexibility for the implementation of awhole host of
quantum many-body spin models. The physical dynamics of
these quantum simulators takes place in the electronic degrees
of freedom which mimic a (fictitious) spin particle. Effective
magnetic fields and interactions are achieved via light-shifts
effectuated by external laser fields and the electrostatic dipolar
interaction between Rydberg states. Additional tuning with
electric [13] and magnetic fields [14] permits the realization
of exotic interactions, allowing for the study of ring-exchange
Hamiltonians [15–18], frustrated-spinmodels [19–21] or crys-
tallization phenomena [22–24]. Within this context, in the
last decade systems with tunable two- and three-body interac-
tions [25–29] have attracted a lot of attention since the latter
are responsible for the emergence of many exotic quantum
states of matter, ranging from topological phases [30, 31] to
spin liquids [32, 33].

In this work we put forward a new mechanism for en-
gineering non-binary interactions in Rydberg tweezer ar-
rays [6, 9, 34–43]. Here, each atom is held in place by a
strong local harmonic potential. The simultaneous excita-
tion of neighboring atoms to the Rydberg state gives rise to a
mechanical force that couples the electronic degrees of free-
dom to the local phonon modes. We show that this coupling
gives rise to effective spin-spin interactions between excited
atoms. Similar mechanisms in which effective inter-particle
interactions arise as a consequence of the coupling with an
extra degree of freedom have been extensively studied in con-
densed matter systems. Here, well-known examples include

the electron-electron interactionmediated by lattice phonons in
metals [44] and the indirect spin-spin couplings [45] due to the
Ruderman-Kittel-Kasuya–Yosida [46], superexchange [47],
and Dzyaloshinskii–Moriya mechanisms [48]. In these cases,
integrating out the extra degree of freedom typically results in
two-body effective interactions between the remaining degrees
of freedom. Crucially, in our system, since spins and phonons
are coupled via pairs of Rydberg atoms, not only two-body
but also three-body effective interactions arise. We analyze
in depth the interplay between the various effective couplings
in the case of two-dimensional (2D) bipartite lattice geome-
tries, demonstrating that regimes dominated by three-body
interactions can be achieved. Our results show that the multi-
body interactions arising from the electron-phonon coupling
are highly tunable and can drive non-trivial phase transitions in
the ground state of a Rydberg spin system. By tuning the local
harmonic potentials, we show that checkerboard, striped, and
clustered phases occur as well as signatures of frustration phe-
nomena. Our work is directly relevant for recent developments
on the domain of quantum simulation with Rydberg tweezer
arrays where it highlights a so far unanticipated mechanism
for experimentally realizing exotic interactions.

2D model.— We consider a 2D lattice of N Rydberg atoms
in the x − y plane, whose sites are labeled by k = (kx, ky).
The electronic degree of freedom is modeled as effective two-
level system (with |↓〉 and |↑〉 denoting the ground state and
the Rydberg excited state, respectively) [3, 40]. The two levels
are coupled by a laser with Rabi frequency Ω and detuning ∆
[see Fig. 1(a)]. Each of the atoms, with mass m, is trapped in
a strong three-dimensional harmonic potential, characterized
by trapping frequencies ωµ along the directions µ = x, y, z.
The atomic motion inside the confining potential can then
be described in terms of the bosonic operators bk,µ. The
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FIG. 1. Setup. (a) Each atom is modeled as a two-level system with
ground state |g〉 and excited Rydberg state |r〉. The two levels are
coupled by a laser with Rabi frequency Ω and detuning ∆. The atom
is trapped inside a tight harmonic optical tweezer (grey) and, at low
temperature, it occupies the ground state of the associated phonon
degree of freedom (red). For simplicity, we assume that Rydberg
and ground state experience the same trapping potential. (b) Energy
diagram of a two atom system arranged along the x−axis. When
both atoms are excited to the Rydberg state, |rr〉, they experience, in
addition to the electronic dipolar interaction V , the potential change
δV arising as a consequence of the coupling between spin and phonon
degrees of freedom and consisting of both two- and three-body con-
tributions; see text for details. This also results in a state-dependent
displacement δx1,2 of the atoms from their equilibrium position x0

1,2,
separated by the lattice spacing a.

Hamiltonian describing the single-particle dynamics is

Hsp =
∑

µ=x,y,z

∑
k

~ωµb†
k;µbk;µ +

∑
k

[
Ωσx

k + ∆nk
]
. (1)

Here, nk = (1+σz
k
)/2 and σµ

k
are the Rydberg number opera-

tor and Pauli matrices acting on the atom at site k and position
rk = (xk, yk, zk), respectively. Any two atoms at lattice po-
sitions rk and rm, if excited to the Rydberg state, interact
through the two-body potential V(rk, rm), which depends on
the inter-particle distance |rk − rm | [1, 3, 7]. The overall
Hamiltonian is therefore H = Hsp + Hint with

Hint =
∑′

k,m

V(rk, rm)nknm, (2)

where the prime in the sum implies that terms with equal
indices are excluded. Note that in Eq. (1) we have assumed
the same trapping frequencies ωµ for atoms in the ground and
in the Rydberg state. This “magic” condition can be realized
in Rydberg tweezer arrays through bottle beam traps [49].
Furthermore, a small frequency mismatch between the two
states does not affect our central results, as discussed in the
Supplemental Material (SM) [50].

At low temperature each atom oscillates around the mini-
mum of its local potential, r0

k
, and its position can thus be

written as rk = r0
k
+ δrk, with δrk;µ = `µ(b†k;µ + bk;µ)

being the atomic displacements from equilibrium. Here,
` = (`x, `y, `z) is the vector of the characteristic lengths as-
sociated with the harmonic trapping potentials in the three
spatial directions with `µ =

√
~(2mωµ)−1. As a conse-

quence, the two-body interaction depends on the displace-
ments: V(r0

k
+ δrk, r

0
m + δrm)nknm. Clearly, this implies

that a coupling between electronic and vibrational degrees of
freedom emerges.
This situation is reminiscent of a mechanism for creating

long-range spin models in arrays of trapped ions [51–53]. In
that case, the interplay of long-range Coulomb repulsion be-
tween the ions and laser induced spin-dependent forces results
in an effective long-range spin-spin interaction and allows to
simulate a rich variety of quantum systems. However, in con-
trast to the ions, Eq. (2) implies that in our setup the potential
V(rk, rm) couples electronic and vibrational degrees of free-
dom only when two atoms are excited, which is the origin of
many-body spin interaction terms.
To demonstrate this, we focus on the strong confinement

regime, in which the displacements δrk are much smaller
than inter-atomic distances. Indeed, this represents the typical
situation in Rydberg quantum simulators [6, 9, 38, 39]. By
expanding the potential in Eq. (2) in a Taylor series to the first
order in δr, the atom-atom interaction Hamiltonian acquires
the form

Hint =
∑′

k,m

[
V0
k,m +

∑
µ

Wk,m;µ

(
b†
k;µ + bk;µ

)]
nknm, (3)

where V0
k,m
≡ V(r0

k
, r0

m) and

Wk,m;µ = 2`µ
[
∇rk

V(rk, r0
m)|rk=r

0
k

]
µ

(4)

Finally, since the spin-phonon coupling in Eq. (3) is linear in
the bosonic operators, we can apply a polaron transformation,
U (see SM [50]), to decouple spin and phonon dynamics. We
obtain [50, 51, 54]

UHU† = Hsp + H2B + H3B + Hres +O(`2
µ/a2), (5)

with

H2B =
∑′

k,m

(
V0
k,m − Ṽk;m

)
nknm, (6a)

H3B = −
∑′

k,p,q

Ṽk;p,qnknpnq . (6b)

Here, we have introduced the coefficients Ṽk;p,q =∑
µ(~ωµ)−1Wk,p;µWk,q;µ and Ṽk;m ≡ Ṽk;m,m. Equations (6a)

and (6b) show that, as consequence of the spin-phonon cou-
pling, an effective atom-atom interaction emerges. The latter
consists of an extra two-body [Eq. (6a)] and a novel three-
body term [Eq. (6b)], whose strengths are both ∝ Ṽk;p,q .
Importantly, the coefficients Ṽk;p,q depend on the trapping
frequencies ωµ and are therefore tunable via the harmonic
confinement.
The term Hres in Eq. (5) describes a residual spin-phonon

coupling, which is negligible in the limit |Wk,m;µ | � ~ωµ
[50–52, 54]. In this regime the phonon dynamics decouples
from the spins. The approximation further improves at tem-
peratures low enough to ensure a & 90% population in the
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FIG. 2. MW-dressed potential and three-body interaction
strength. (a) Dressed potential V/~ (units 2π × MHz) as a func-
tion of inter-atom distance R (units µm) obtained via MW dressing.
See text and SM [50]. In the square lattice case, the atomic separa-
tions are a ≈ 5.3µm and aNNN =

√
2a (blue dashed). The functional

form of the potential is described by Eq. (7), withC1/(~a6) = 2π×2.6
MHz, C2/(~a6) = 2π × 0.3 MHz, c1 ≈ −C1, and c2 = 0. (b) Density
plot of V3/~ as a function of C1/(~a6) and ω (units 2π ×MHz), with
ωµ = ω. The regime with |Wk,m;µ | ≤ ~ωµ (in gray) is separated by
the bound given in Eq. (10) (red solid curve). The case with V3 = V2
is indicated by the red dashed curve. The hatched area denotes the
regime where the time scale corresponding to V3 is > 50 µs. Here,
C2/(~a6

NNN) = −0.1C1/(~a6), c1 = −C1, and c2 = 0.

vibrational ground state. Such temperatures can be experi-
mentally achieved in state-of-the-art optical tweezers via Ra-
man sideband cooling [34, 55]. Details on the validity of this
spin-phonon decoupling approximation are provided in next
section and in SM [50].

Microwave dressed Rydberg states.— The strength of the
phonon-mediated effective interactions in Eqs. (6a) and (6b) is
directly connected to the strength of the dipolar ones: This is
because the coefficients Wk,m;µ are proportional to the gra-
dient of V(rk, rm). Typical dipolar interactions exhibit a
power-law behavior ∝ |rk − rm |−α (e.g., α = 6 for a van
der Waals potential). In which case, one generally finds that
V(rk, rm) � Ṽk;m. This means that, in common situations,
phonon-mediated interactions only represent a small correc-
tion. However, the interaction potential between excited atoms
can be tailored via microwave (MW) dressing of two different
Rydberg states [50, 56, 57], allowing to make the effective
interactions dominant. In Fig. 2(a) we show one possible re-
alization of such potential, obtained via MW dressing of the
atomic levels |65S〉 and |75P〉 of 87Rb atoms arranged on
a square lattice. Here, a and aNNN =

√
2 are the distances at

equilibrium between nearest neighbors (NNs) and next-nearest
neighbors (NNNs), respectively. By properly choosing the
MW field parameters (see SM for details [50]), the potential
can be parameterized, to a good degree of approximation, as

V(rk, rm) ≈
{

C1
2 |rk−rm |6

+
c1

2a6 for |rk − rm | ≈ a,
C2

2 |rk−rm |6
+

c2
2(aNNN)6

for |rk − rm | ≈ aNNN,

(7)
with, for a typical dressed potential, V(rk, rm) ≈ 0 for |rk −
rm | > aNNN [50]. MW dressing allows to control the values
of the constants C1,2 and c1,2 in Eq. (7) independently and, in
turn, to tune the strength of the dipolar potential (as well as
its gradient) at NN and NNN distances, denoted by V1 and V2,
respectively.

Phonon-mediated interactions.— For the case shown in

Fig. 2(a), we have V1/~ ≈ 0, V2/~ ≈ 2π × 0.3 MHz, and
~−1dV/dR|R=a = 2π × 1.45 MHz. In this way we can thus
achieve regimes dominated by the phonon-mediated interac-
tions, whose strength along the µ direction is described by the
parameter

V3,µ =
36`2

µ

~ωµa2

(
C1

a6

)2
. (8)

In this case, Eqs. (6a) and (6b) become

H2B =
∑
〈k,m〉

(
V1 − Ṽk;m

)
nknm +

∑
〈〈k,m〉〉

V2nknm, (9a)

H3B = −
∑
〈k,p,q〉

Ṽk;p,qnknpnq, (9b)

where, explicitly, Ṽk;p,q = V3,µ R̃0
k,p;µ R̃0

k,q;µ, with R̃0
k,m

=

a−1(r0
k
− r0

m). The symbols 〈k,m〉 and 〈〈k,m〉〉 denote the
sum over NNs and NNNs, respectively, while 〈k,p, q〉 implies
that the sum is restricted to sites satisfying |R̃0

k,p
| = |R̃0

k,q
| =

1. Note that, due to the presence of the factors R̃0
k,m;µ, the

terms ∝ V3,µ strongly depend on the lattice geometry and, as
we will show for the case of bipartite lattices, they give rise
to anisotropic contributions in atom-atom interactions even if
original dipolar forces are isotropic.
The strength of the phonon-mediated interactions can be

tailored by tuning the trapping frequencies ωµ [see Eq. (8)],
which are typically of the order of hundreds kHz [6, 9, 38,
40]. In particular, Eq. (9a) implies that it is possible to make
the overall two-body term vanish and maximize the effects of
three-body interactions. Recalling Eq. (5), in order to decouple
the electronic and vibration degrees of freedom and to focus
only on the spin dynamics we have to require |Wk,m;µ | �
~ωµ. On the other hand, to access regimes governed by the
effective two- and three-body interactions, one should also
consider V3 =

∑
µ V3,µ ∼ V1,2. From Eqs. (4) and (8), the

above conditions translate into the following bounds on ωµ,

3

√
18~
ma2

(
C1

~a6

)2
� ωµ ∼

√
72

ma2V1,2

(
C1

2a6

)2
. (10)

In Fig. 2(b), we show typical values of the effective interaction
strength V3 for a square lattice geometry. The gray region de-
notes the regime where |Wk,m;µ | ≤ ~ωµ, while along the red
dashed curveV3 = V2. As discussed inmore details in SM [50],
the leftmost condition in Eq. (10), which holds for any value of
Ω, can be relaxed in the strong (effective) interaction regime,
where V3/Ω � |Wk,m;µ |/(~ωµ), while the spin-phonon de-
coupling becomes exact in the classical limit (i.e., with van-
ishing Rabi frequency Ω). Thus, as can be seen in Fig. 2(b),
the regime with V2 ∼ V3 can be accessed experimentally and
corresponds to trapping frequencies and coupling strengths
achievable in Rydberg atom tweezer arrays [6, 40, 42]. Fi-
nally, we note that the time scales associated with the effective
interaction dynamics, τ3 = ~/V3, are < 50 µs in a wide region
of the parameter space [i.e., the non-hatched area in Fig. 2(b)]
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FIG. 3. Interaction terms in bipartite lattices. (a) Square and (b)
honeycomb lattice with NNs (orange dots) and NNNs (blue squares)
interacting through dipolar interactions (red, solid and blue, dashed
lines, respectively). As a consequence of the phonon-mediated effec-
tive multi-body interaction terms arise. Two-body (green, left) and
three-body (purple, right) contributions along the horizontal (solid)
and vertical (dotted) direction are shown, with their corresponding
sign, in panels (c) and (d) for the square and honeycomb geome-
tries, respectively. Note that, in the latter case, horizontal (solid)
terms contribute to both x and y directions, resulting in anisotropic
interactions.

and are thus significantly shorter than the lifetime of the Ry-
dberg states used in tailoring the MW-dressed potential of
Fig. 2(a), which are of the order of hundreds of µs [50].

Phase diagram for a bipartite lattice. — We now focus on
a system of atoms arranged on a bipartite lattice and inves-
tigate the effects of the interplay between (two-body) dipolar
and effective (two- and three-body) interactions on its phase
diagram. The simplest case of a square lattice is shown in
Fig. 3(a). The different contributions to atom-atom interac-
tion are listed in Fig. 3(a,c). Importantly, the lattice-dependent
structure of H3B in Eq. (6b) implies that effective two-body
interactions are attractive while, on the contrary, three-body
terms have a repulsive character. This feature is quite general
and, e.g., in Ising spin models on non-bipartite lattices (trian-
gular, kagome) it could be employed to implement frustrated
interactions [15, 19–21]. The study of such phenomena will
constitute the focus of future investigations. Due to the com-
petition between two- and three-body interactions, we expect
that different phases emerge. Tomap out the phase diagramwe
consider the classical limit (i.e., with vanishing Rabi frequency
Ω) and determine its ground state through a classical Metropo-
lis algorithm [58, 59] by employing an annealing scheme [60].

Results are displayed in Fig. 4(a,b,c). Here, we show the
behavior in the V2 − V3 plane (with V1 > 0 and V3,x = V3,y) of
the average value of the Rydberg excitation density, 〈n〉, of the
density of dimers 〈ndim〉, and of the density of trimers 〈ntrim〉
[see Fig. 3(c,d)]. Beyond the trivial states with all excited and
all de-excited atoms, four further phases emerge, see Fig. 4(d),
which are: (1) checkerboard phase, dominated by the repulsive
contribution ∝ V1, (2) striped phase with a single three-atom

FIG. 4. Phase diagram (square lattice) as a function of V2/~
and V3/~. In panel (a) we show the average density of Rydberg
excitations 〈n〉 as a function of V2/~ and V3/~ (units 2π × MHz),
with V3,x = V3,y , for a square lattice. Note that V3,µ ∼ ω−2

µ and,
therefore, it can be controlled by the confinement strength. In panels
(b) and (c) are reported the density of dimers 〈ndim〉 and trimers
〈ntrim〉, respectively. Dashed red lines represent guides for the eye to
distinguish between the different system phases. In panel (d) we show
typical configurations in the different regions of the phase diagram.
Dark (red) spots correspond to excited atoms. See text for details. In
all panels, L = 10, V1/~ = 2π × 0.2 MHz and ∆/~ = 2π × 1 MHz.

stripe, dominated by NNN two-body (attractive) interaction
∝ V2, (3) frustrated striped phase with one missing line [here,
the trimers occurring in (2) are melted due to the three-body
repulsive contribution ∝ V3], and (4) four-excitation clustered
phase, dominated by attractive two-body interactions ∝ V3.
Concerning this latter, we note that the transition is not as
sharp as the other ones. Indeed, as can be seen from the last
panel of Fig. 4(d), the lattice is not entirely covered by four-
particle clusters. This may suggest either that (4) is a liquid
phase or that it represents a critical region. A full covering
can be obtained for V2 > 0, where attractive NNN interactions
contribute to enhance the energy gain in forming clusters.

Interestingly, effective interactions due to spin-phonon cou-
pling give rise to finite-size frustration phenomena even in a
square lattice in the presence of isotropic dipolar interactions.
This ismanifest in the emergence of the different striped phases
(2) and (3): see Fig. 4, which displays the case of a lattice with
an even number of sites. On the contrary, if an odd number of
sites is considered only a single regular striped phase emerges
in this region of the phase diagram. However, a frustrated
phase forms inside phase (1) (see SM [50]).

In non-square lattices, the geometrical factors characteriz-
ing phonon-mediated interactions [see Eq. (9)] give rise to
anisotropic two- and three-body contributions even if the orig-
inal dipolar interactions between atoms are isotropic. This
can be seen in Fig. 3(d), where the various interaction con-
tributions arising in a honeycomb lattice are displayed. Here,
though the phase diagram is similar to the one shown in Fig. 4,
non-trivial and anisotropic system configurations emerge [50].

The various phases shown in Fig. 4 can be probed in state-of-
the-art Rydberg simulators consisting of 2D defect-free arrays
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of optical tweezers [37]. Indeed, as shown in SM [50], a sig-
nificant part of the phase diagram in Fig. 4 can be mapped out
by employing trapping frequenciesωµ ranging from a few tens
to a few hundreds kHz, while the required dipolar interaction
couplings are of the order of fewMHz. The desiredmany-body
states can be prepared by real-time control of Rabi frequency
and detuning via a generalization of the rapid adiabatic pas-
sage protocol proposed in Refs. [22, 23] and demonstrated in
Ref. [24]. The latter is perfectly compatible with the time
scales associated with the effective interactions and, in turn,
with the lifetime of the Rydberg states we considered.

Conclusions. — We have shown that electron-phonon in-
teractions in Rydberg lattice quantum simulators permit the
engineering of tunable multi-body interactions. We have il-
lustrated the underlying mechanism in bipartite lattices, dis-
cussing in particular the case of an isotropic square lattice,
where we studied the phase diagram in the classical limit. Go-
ing beyond this limit and considering the impact of quantum
fluctuations (Ω > 0) will be possible in Rydberg quantum sim-
ulator experiments. Many future directions of this work can be
envisioned: In particular, we expect that, as a consequence of
the lattice-dependent structure of the induced interactions, pe-
culiar two- and three-body terms would arise in non-bipartite
lattices (e.g., triangular, kagome), allowing for the investiga-
tion of frustrated magnetism in spin models with non-trivial
multi-body interactions. Furthermore, the mechanism leading
from the spin-phonon coupling to effective many-body inter-
actions can be generalized to different kinds of bare atom-atom
potentials (e.g., exchange interactions, oscillating potentials)
and may allow for engineering effective interactions with dif-
ferent structure and/or even n−body (with n > 3) contribu-
tions.

The research leading to these results has received fund-
ing from the European Research Council under the Eu-
ropean Union’s Seventh Framework Programme (FP/2007-
2013)/ERC Grant Agreement No. 335266 (“ESCQUMA”),
the EPSRC Grant No. EP/M014266/1, the EPSRC Grant No.
EP/R04340X/1 via the QuantERA project “ERyQSenS”, and
the Deutsche Forschungsgemeinschaft (DFG) within the SPP
1929 Giant interactions in Rydberg Systems (GiRyd). The
simulations used resources provided by the University of Not-
tingham High-Performance Computing Service.
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Supplemental Material for "Engineering non-binary Rydberg interactions via phonons in an optical
lattice"

In this Supplemental Material we provide additional details on the microwave dressing scheme employed to
tailor the atom-atom potential in the main text. We then discuss in more details the approximations made in
the main text, namely the small displacement expansion leading to Eq. (4) and the spin-phonon decoupling in
system dynamics, and we investigate their validity. We comment about the values of ωµ corresponding to the
phase diagram in Fig. 4 of the main text. We then discuss finite-size frustration phenomena in the phase diagram
of a system arranged on a square lattice with an odd number of lattice sites. Finally, we inspect anisotropic
effects in the case of a honeycomb lattice, showing its phase diagram and some typical configurations.

MICROWAVE DRESSING OF RYDBERG ATOMS

To engineer an atom-atom interaction potential leading to dominant phonon-mediated interactions, we consider two Rydberg
atoms coupled by a microwave (MW) field [56, 57]. The two relevant levels on which we focus are denoted by |r〉 and |p〉. The
Hamiltonian is

H =
∑
j=1,2

[
ΩMWσ

(j)
x + ∆MWn(j)p

]
+

Cr

r6 n(1)r n(2)r +
Cp

r6 n(1)p n(2)p +
C3

r3

(
n(1)r n(2)p + n(1)p n(2)r

)
, (S1)

where ΩMW is the MW Rabi frequency and ∆MW is the detuning. Here, Cr , Cp and C3 are the respective dispersion coefficients
of two atoms in |r〉 and |p〉 state, and of the dipolar interaction. n(j)σ = |σ(j)〉〈σ(j) | is the density operator associated to the state
|σ(j)〉.
By considering different Rydberg states and MW parameters it is possible to tailor the strength of the nearest neighbor (NN)

and next-nearest neighbor (NNN) interactions, denoted byV1 andV2 respectively, and to control the slopes of the potential (forces)
at these points. As stated in the main text [see Fig. 2(a) and Eq. (10)], we are interested in a case with small values of V1 > 0 and
V2 < 0 but with a large magnitude of the gradient of the interaction potential at NN distances, denoted by a. As an example, we
consider two 87Rb atoms and focus on the MW dressing of Rydberg levels |r〉 = |65S〉 and |p〉 = |75P〉 [see Fig. S1(a)]. Their
lifetime is 325.03 µs in |r〉 and 917.87 µs in |p〉 state [61]. The corresponding interaction strengths are Cr/~ = 2π × 0.37 × 103
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FIG. S1. MW dressed potential. (a) Each atom is modeled as a three level system, with ground state |g〉 and Rydberg states |r〉 and |p〉. The
ground state |g〉 and the Rydberg state |r〉 are laser coupled with Rabi frequencyΩ and detuning ∆. A MW field couples the two Rydberg states
|r〉 and |p〉 with Rabi frequency ΩMW and detuning ∆MW . (b) Interaction potentials (units 2π ×MHz) as a function of the inter-atom distance
R (units µm) for a pair of 87Rb Rydberg atoms with |r〉 = |65S〉, |p〉 = |75P〉, ΩMW/~ = 2π × 230 MHz, and ∆MW/~ = −2π × 170 MHz.
Dashed lines denote the interaction potential corresponding to ΩMW = 0. Here, we have Rydberg states |r〉 (black) and |p〉 (blue), and dipolar
interaction (red). After turning on the MW coupling, the potentials are modified by the mixing of different states (solid lines). We will focus on
the repulsive potential at the top of the panel, Vh(R) (blue curve). (c) Plot of the highest potential Vh(R) in (a) in the presence of MW coupling.
With respect to (b), the potential is shifted by V/~ = 2π × 320.4 MHz in order to make it asymptotically vanishing. For a two-dimensional
square lattice with a = 5.3 µm, values at NNs and NNNs are V1 = Vh(a) = 2π × 0.01 MHz and V2 = Vh(

√
2a) = −2π × 0.15 MHz, respectively.

(d) The negative slope (force) of the potential shown in (c). The slope is −2π × 1.45 MHz/µm at R = a and 2π × 0.10 MHz /µm at R =
√

2a.

GHz µm6, Cp/~ = −2π×1.84×103 GHz µm6, and C3/~ = 2π×1.52 MHz µm3. For a MWRabi frequencyΩMW/~ = 2π×230
MHz and detuning ∆MW/~ = −2π × 170 MHz, the higher energy potential Vh(R) at the top of panel (b), which is also shown in
panel (c) and whose derivative is reported in panel (d), meets the above criteria if we consider a lattice spacing a ≈ 5.30µm. In
particular, note that the slope at NNN distance,

√
2a, is an order of magnitude smaller than the slope at a. Therefore, contributions

to the phonon-mediated interactions (which are proportional to the gradient of the interaction potential; see main text) arising
from distances R > a can be neglected.

DETAILS ON THE APPROXIMATIONS AND VALIDITY CHECKS

We provide here additional details about the derivation of Eq. (3) and the polaron transformation employed in the main text
to decouple the spins and phonon dynamics in Eq. (5). In particular, in the strong confinement regime, the Rydberg interaction
potential V(rk, rm) can be expanded in a Taylor series to the first order in δr as V(rk, rm) ≈ V(r0

k
, r0

m) + δV(rk, rm), with

δV(rk, rm) = ∇rk
V(rk, r0

m)|rk=r
0
k
· δrk + ∇rm

V(r0
k, rm)|rm=r

0
m
· δrm. (S2)

By substituting Eq. (S2) into the interaction Hamiltonian Hint [Eq. (2) of the main text] we obtain Eq. (3) of the main text,

Hint =
∑′

k,m

[
V0
k,m +

∑
µ

Wk,m;µ

(
b†
k;µ + bk;µ

)]
nknm, (S3)

with V0
k,m
≡ V(r0

k
, r0

m), Wk,m;µ = 2`µ
[
∇rk

V(rk, r0
m)|rk=r

0
k

]
µ
, and the prime in the sum meaning k ,m.

Since in Eq. (S3) the coupling between spin and phonon degrees of freedom is linear in the phonon operator bk;µ, their
dynamics can be decoupled by applying to the full system Hamiltonian H = Hsp + Hint the canonical (polaron) transformation
defined by [51, 54]

U = e−S with S = −
∑
k,µ

βk;µ(b†k;µ − bk;µ) and βk;µ = nk
∑
m,k

(~ωµ)−1Wk,m;µnm. (S4)

We obtain

UHU† = Hph +
∑
k

[
Ωσx

k + ∆nk
]
+ H2B + H3B︸                                   ︷︷                                   ︸

Hspin

+ Hres +O(`2
µ/a2), (S5)
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with Hspin the Hamiltonian governing the (decoupled) spin dynamics, Hph =
∑

k,µ ~ωµb†
k;µbk;µ the phonon Hamiltonian, and

H2B and H3B defined in Eq. (6) of the main text. The last term is a residual spin-phonon coupling and is given by

Hres = Ω

(
U

∑
k

σx
kU† −

∑
k

σx
k

)
= iΩ

∑′

k,m

∑
µ

Wk,m;µ

~ωµ
(b†

k;µ − bk;µ)(σy
k

nm − nkσ
y
m). (S6)

Effects of this residual coupling are therefore negligible if |Wk,m;µ | � ~ωµ. Furthermore, two additional interesting regimes can
be identified. In the classical limit Ω→ 0 (considered in the last section of the main text), the canonical transformation results
in a complete spin-phonon decoupling,

UHclassicalU† = ∆
∑
k

nk + Hph + H2B + H3B +O(`2
µ/a2). (S7)

On the other hand, we note that, in the strong effective two- and three-body interactions regime, the error introduced by Hres can
be neglected if V3,µ/Ω � |Wk,m;µ |/~ωµ. The latter condition leads to

ωµ �
18~

ma2Ω2

(
C1

a6

)2
. (S8)

We briefly comment here on the situation in which the trapping frequencies corresponding to the ground state, ωµ, and to the
Rydberg state,ω′µ = ωµ+δµ are different. Here, δµ is the trapping frequencymismatch. In this case, the phonon part of the Hamil-
tonian can be written as [64] H ′ph =

∑
k,µ ~ωµ(1 + δµnk)b†k;µbk;µ and, thus, an extra spin-phonon coupling contribution appears.

Nevertheless, a renormalized version of the canonical transformation in Eq. (S4), with β′k;µ = (1+δµ)−1nk
∑′

m(~ωµ)−1Wk,m;µnm,
results in a transformed Hamiltonian in which the spin terms contained in Hspin have exactly the same structure as in Eq. (S5),
though with renormalized coefficients. On the other hand, the residual spin-phonon coupling contribution Hres of Eq. (S6) now
contains the extra term

∑
k,µ ~ωµδµnkb†

k;µbk;µ. The latter limits the validity of our approximation up to times t � (ωµδµ)−1,
which for standard experimental parameters are larger than the typical interaction induced time scales [see Fig. S4(b)]. More-
over, ponderomotive bottle beam traps have recently been proposed for the realization of Rydberg tweezer arrays satisfying the
ground-Rydberg “magic” condition [49], allowing to minimize the trapping frequency mismatch δµ.

To check the validity of the approximations we made in the main text (i.e, the small displacement expansion in Eq. (3) and the
decoupling between phonon and spin dynamics in mapping out the phase diagram), we consider a minimal system of three atoms
aligned along the x−axis with an intermediate value of Ω, corresponding the worse case scenario. See Fig. S2(a). For the sake
of simplicity, we only consider one longitudinal phonon mode per atom. We focus on the spin dynamics starting from a product
state in which the phonons are initialized in a thermal state at inverse temperature β, ρph = e−βHph/Tr

[
e−βHph

]
, and with the

spins prepared in the pure state ρspin = |ψ0〉 〈ψ0 |, with |ψ0〉 =
��sz1, sz2, sz3〉 and szi the projection of the i−th spin on the z−axis. We

then evaluate numerically [62, 63] the fidelity F (t), defined as the overlap between the spin state at time t,
��ψapprox(t)

〉
, obtained

in the small displacement and spin-phonon decoupling limit (i.e., with time-evolution governed by Hspin = HL +H2B +H3B) and
the full system density matrix, evolved with the full Hamiltonian H of Eq. (2) in the main text:

F (t) =
〈
ψapprox(t)

�� e−iHt (ρspin ⊗ ρph)eiHt
��ψapprox(t)

〉
. (S9)

As can be seen from Fig. S2(b,c), F (t) remains close to 1 over a significant time window, especially when small temperatures
are considered [panel (b)]. Here, the latter have been chosen in order to correspond to an average phonon occupation number
nph = 0.5 [panel (b)] and nph = 0.05 [panel (c)], which can be achieved in optical tweezer setups via Raman sideband cooling
[34, 55]. In Fig. S2(d-i) and Fig. S3 we compare the time evolution of the expectation values of the population of the Rydberg state
of atom 1, n1, and of various projectors on states with σz

1 , σ
z
2 , σ

z
3 spin components along the z−direction, e.g., P↑↑↑ = 〈n1n2n3〉,

for the dynamics governed by H and Hspin for two different initial spin configurations. In both cases, the agreement between the
approximate and full dynamics is excellent.

TRAPPING FREQUENCIES RANGE, EFFECTIVE INTERACTIONS TIME SCALES AND CLASSICAL GROUND STATE
PREPARATION

In Fig. S4(a) we reproduce the V2 − V3 plane of Fig. 4 in the main text and show the values of the trapping frequencies ωµ
corresponding to the values of V3 used in drawing the system phase diagram. As can be seen, in the majority of the V2 −V3 plane,
the values of ωµ are both within the approximation validity regimes shown in Fig. 2(a) and within experimentally achievable
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FIG. S2. Full vs approximated dynamics. (a) One dimensional three-atom setup used to verify the approximations made in the main text. For
simplicity, we assume one longitudinal phonon mode per atom. (b,c) Fidelity F (t), quantifying the overlap between

��ψapprox(t)
〉
and the exact

density matrix (ρspin ⊗ ρph)(t) for the system shown in panel (a). Different curves correspond to different initial atomic configurations (see
legend) while phonon modes are initialized in a thermal state with average phonon occupation (b) nph = 0.5 and (c) nph = 0.05. Parameters
are: C1/(~a6)−1 = 2π × 2.5 MHz, C2/(~a6

NNN)
−1 = −0.1C1/(~a6)−1, ω = 2π × 0.3 MHz, Ω/~ = 2π × 1 MHz, ∆/~ = 2π × 1 MHz, and

a = 5µm. (d) Time evolution of the Rydberg population of atom 1 and (e-i) of the projectors Pσz
1 σ

z
2 σ

z
3
(t), with the phonon modes initialized in

a thermal state with average phonon occupation number nph = 0.05 and the spins in the ↓↓↓ configuration. Blue, solid lines correspond to the
approximate dynamics governed by Hspin, while the yellow dashed curves to the one generated by the full Hamiltonian H. Same parameters
as in panels (b,c).
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FIG. S3. Full vs approximated dynamics - spin initialized in an excited state. (a-f) Same as Fig S2(d-i) with spins initialized in the ↓↑↑
configuration.

values. Figure S4(b) displays the time scale associated with the effective two- and three-body interactions, i.e. 1/τ3 = V3/~,
which are considerably lower than the lifetime of the Rydberg levels considered in engineering the MW dressed potential in
Section .

To illustrate how the classical ground states of the system shown in Fig. 4 of the main text can be prepared, we focus on a 3× 3
spin square lattice described by Hspin. Its phase diagram, obtained through exact diagonalization and corresponding to the same
parameters used in Fig. 4, is shown in Fig. S4(c). Note that, as a consequence of the reduced system size, the only non-trivial
phase emerging here is the striped one, [phase (2) in Fig. 4]. As an example, the ground state corresponding to the parameters
identified by the red cross in Fig. S4(c) can be prepared by following the rapid adiabatic passage procedure described in Ref. [24]:
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FIG. S4. Frequency range, effective interaction time scales, and ground state preparation. (a) Density plot in the V2 − V3 plane of the
trapping frequencies (units 2π × MHz) corresponding to the values of the effective interaction V3/~ on the y−axis. (b) Density plot of the
time scale τ3 = ~/V3 associated with the effective interaction V3/~ in the C1/(~a6) − ω plane (units 2π × MHz). As in Fig. 2(b) in main
text, the gray area denotes the regime in which |Wk,m;µ | ≤ ~ωµ (with equality corresponding to the red solid line). Along the red dashed
curve V3 = V2. Here, C2/(~a6

NNN) = −0.1C1/(~a6). (c) Exact phase diagram for a 3 × 3 square lattice spin system for V1/~ = 2π × 0.2 MHz,
V2/~ = −2π × 0.7 MHz, V3/~ = 2π × 1 MHz, Ω/~ = 2π × 0.01 MHz, and ∆/~ = 2π × 1 MHz [corresponding to the red cross in panel (c)]. (d,
e) Many-body energy spectrum of Hspin for a 3×3 square lattice as a function of (d) ∆/~ and (e)Ω/~ (units 2π ×MHz). Here, ∆in/~ = 2π×10
MHz, ∆fin/~ = 2π × 1 MHz, Ωin/~ = 2π × 1 MHz, and Ωfin = 0.The colormap indicates the average excitation density 〈n〉 in the various
eigenstates. The lowest, thick line denotes the ground state. For a large value of the detuning ∆ the spectrum separates in different manifolds
with fixed number of excited atoms (see labels). In the limit of vanishing Ω the ground state becomes 6−fold degenerate, where each one of
the 6 eigenstates corresponds to a specific arrangement of the Nex = 5 excited atoms on the 3 × 3 lattice.

By setting a large value of the detuning ∆in and a vanishing value of the Rabi frequencyΩ, the system is initialized at first in a state
with all the atoms in their ground state (i.e., with 〈n〉 = 0). Then, Ω is slowly increased up to Ωin, inducing a coupling between
states belonging to the various manifolds with different Rydberg excitation density. Subsequently, the detuning is decreased from
∆in to ∆fin and, finally, Ω is reduced to its final value Ωfin = 0. As can be seen from the lowest, thick curve in panels (d) and (e),
this procedure leads to a degenerate ground state with the desired value of 〈n〉 and well-seperated from high-lying many-body
eigenstates. Here, the ground state degeneracy is associated with all the possible arrangements of the excited atoms. As shown
in Ref. [24], an overall laser sweep duration of a few µs is sufficient to ensure a good degree of adiabaticity and, therefore, this
protocol is perfectly compatible with the typical time scales of our system [see, e.g., Fig. S4(b)].

PHASE DIAGRAM FOR A SQUARE LATTICE WITH ODD NUMBER OF SITES

In the main text we have investigated the phase diagram of a system of atoms arranged on a square lattice with an even number
of sites (see Fig. 4 in the main text). In that case, different phases are present and, in particular, finite-size frustration phenomena
emerge [see, e.g., phases (2) and (3) in Fig. 4 in the main text]. Here, we inspect what happens if a square lattice with an
odd number of sites is considered. The phase diagram and some typical system configurations are shown in Fig. S5. The two
(frustrated) phases (2) and (3) of the even number of sites case are now merged [see phase (3) in Fig. S5(a)] in a single phase
showing regular strips of dimers. However, finite-size frustration phenomena emerge in the smallV3 region of the phase diagram:
see phases (1) and (2) in Fig. S5, which consists of stripes of single excitations with a (a) dimer or (b) a missing strip, respectively.
We note that the four-excitation clustered phase occurs in this case as well and exhibits a behavior similar to the one discussed in
the main text.
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FIG. S5. Phase diagram for a square lattice with an odd number of lattice sites as a function of V2 and V3. In panel (a) we show the
average density of Rydberg excitations 〈n〉 as a function of V2/~ and V3,x/~ = V3,y/~ (units 2π ×MHz) for a square lattice. In panels (b) and
(c) are reported the density of dimers 〈ndim〉 and trimers 〈ntrim〉 [see Fig. 3(b) in main text for details], respectively. Dashed red lines represent
guides for the eye to distinguish between the different system phases. In panel (d) we show typical configurations in the different regions of the
phase diagram. Dark (red) spots correspond to excited atoms. In all panels, L = 9, V1/~ = 2π × 0.2 MHz and ∆/~ = 2π × 1 MHz.

PHASE DIAGRAM FOR A HONEYCOMB LATTICE

In this section we finally investigate the phase diagram for a honeycomb lattice. In this case, as stated in the main text, the
geometrical factors present in Eq. (11) can be exploited to realize non-trivial and anisotropic interactions [see Fig. 3(b) of the
main text and Fig. S6(e,f)]. As an example, Figs. S6(a,b,c) show the phase diagram in the V2 − V3,y plane (with V1 > 0) of a
system with L2 = 64 unit cells (and 2L2 = 128 sites) with fixed V3,x/~ = 2π× 1 MHz. Even if the phase diagram looks similar to
the one obtained for a square lattice and discussed in Fig. 4 of the main text, anisotropic phenomena can be seen in typical system
configurations [see Fig. S6(d)]. In particular, as can be seen from Fig. S6(f), with the previous choice of parameters (e.g., with
V3,x/~ = 2π × 1 MHz) the three-body interaction along the x−direction changes from repulsive to attractive when V3,y = 3V3,x .
Above this threshold we thus expect the formation of “chains” of excitations along x to be energetically preferred. Indeed, the
emergence of such structures is clearly visible in the typical configurations associated to phases (2) and (3) in Fig. S6(d).
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FIG. S6. Phase diagram for a honeycomb lattice as a function of V2 and V3. In panel (a) we show the average density of Rydberg excitations
〈n〉 as a function of V2/~ and V3,y/~ (units 2π × MHz) with V3,x/~ = 2π × 1 MHz for a honeycomb lattice with L2 = 64 unit cells (and
2L2 = 128 sites). In panels (b) and (c) we display the density of dimers 〈ndim〉 and trimers 〈ntrim〉 [as defined in panel (f)], respectively.
Dashed red lines represent guides for the eye to distinguish between the different system phases. In panel (d) we show typical configurations
in the different regions of the phase diagram. Dark (red) spots correspond to excited atoms. In panels (a-d), L = 8, V1/~ = 2π × 0.5 MHz
and ∆/~ = 2π × 2 MHz. (e) Honeycomb lattice with NNs (orange dots) and NNNs (blue squares) interacting through dipolar interactions (red,
solid and blue, dashed lines, respectively). (f) Two-body (green, left) and three-body (purple, right) phonon-mediated contributions along the
horizontal (solid) and vertical (dotted) direction.


