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Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot
Arm with an Identical Twin Master

Jayant Singh1, Aravinda Ramakrishnan Srinivasan1, Gerhard Neumann1,2 and Ayse Kucukyilmaz3,1

Abstract—In this study, we describe two techniques to enable haptic-
guided teleoperation using 7-DoF cobot arms as master and slave devices.
A shortcoming of using cobots as master-slave systems is the lack of
force feedback at the master side. However, recent developments in
cobot technologies have brought in affordable, flexible, and safe torque-
controlled robot arms, which can be programmed to generate force
feedback to mimic the operation of a haptic device. In this study,
we use two Franka Emika Panda robot arms as a twin master-slave
system to enable haptic-guided teleoperation. We propose a two layer
mechanism to implement force feedback due to 1) object interactions
in the slave workspace, and 2) virtual forces, e.g. those that can repel
from static obstacles in the remote environment or provide task-related
guidance forces. We present two different approaches for force rendering
and conduct an experimental study to evaluate the performance and
usability of these approaches in comparison to teleoperation without
haptic guidance. Our results indicate that the proposed joint torque
coupling method for rendering task forces improves energy requirements
during haptic guided telemanipulation, providing realistic force feedback
by accurately matching the slave torque readings at the master side.

Index Terms—Force feedback, haptics, haptic-guided manipulation,
human-robot collaboration, robotics, telemanipulation, teleoperation

I. INTRODUCTION

THE uptake of robotics has the promise facilitate the operation of
repetitive tasks that require attention, such as welding, bolting,

and inspection [1]. However, in complex and dangerous contexts,
such as handling nuclear waste or disaster response, automation is
not always possible due to the complexity and variety of tasks,
and the unpredictable nature of potentially hazardous environments.
In addition to such complexities, strict regulatory requirements in
application domains, such as the nuclear industry, inhibits the wide
uptake of autonomous robotic approaches; hence most activities in
such extreme environments are predominantly dealt with through
human teleoperation.

Such scenarios require the development of effective teleoperation
systems that allow human operators to interact with the remote envi-
ronment as realistically as possible. Although realistic force feedback
can be realized through specialised haptic controllers, such devices
are scarcely used in industry and are often much more expensive than
today’s affordable collaborative robots (cobots). This research aims
to explore the use of two identical cobots in a teleoperation setup to
enable haptic-guided shared control, where not only environmental
interaction forces, but also forces for guidance or safeguarding, can
be fed back to the user. To the best of our knowledge, ours is the
first study to demonstrate a mechanism to merge task and guidance
forces in a unique master-slave setup consisting of two identical cobot
platforms (See Figure 1(a)).
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Fig. 1. (a) The teleoperation environment with the master and slave robots,
(b) close-up of the telemanipulation task at the slave side.

We developed two different paradigms to transfer environmental
forces acting on the slave to be felt at the master device. To evaluate
the performance of these paradigms, we conducted an experimental
user study to test the utility and performance of the proposed
techniques in comparison to unilateral teleoperation with no force
feedback. In short, the objectives of this study are:
• To develop feedback mechanisms in a master-slave teleoperation

system, consisting of two 7-DoF cobot arms so that we generate
the forces detected on the slave system as closely as possible at
the master side as an effort to enable ideal transparency [2].

• To enable haptic-guided teleoperation for cobots by generating
virtual guidance forces as well as task forces due to slave
dynamics and environment interaction.

• To create an architecture that separates task and guidance forces
to allow shared control.

• To test the feedback mechanisms through an experimental study
with human subjects, in terms of perceived task load as well as
quantitative measures of task performance and operation.

This study does not address the question of stability as the experi-
ments were conducted with parameters that provided stable operation.

II. RELATED WORK

Haptic guidance is a technique aiming at improving human op-
eration by imposing certain physical restrictions or guides on the
human motion. A popular haptic guidance scheme is virtual fixtures
[3], that introduces virtual overlays to guide or restrict the motion,
akin to a ruler, to constrain a user’s motion on a desired trajectory.
Virtual fixtures were shown to enhance the execution time, quality
and precision of teleoperation tasks [4]–[6]. However, there have
been arguments against using virtual fixtures for training purposes,
as detrimental effects of continuous robot assistance are observed [7]
in line with the “guidance hypothesis” [8].

In contrast to virtual fixtures, which impose task and trajectory-
related constraints in Cartesian space, shared control stands as an
advanced robot-mediated guidance paradigm, where the human and
the robot congruently perform a physically collaborative task [9].
Through sharing the control of a task, the human can become more
active and effectively benefit from guidance provided when and as
necessary [10]. Shared control enables predictive and progressive
mechanisms to change the guidance policy [11]–[13], or allows
dynamic role arbitration and variable autonomy to alter the robot’s
contribution to effort sharing during the task [14]–[20]. The shared
control paradigm has been used to enable haptic-guided teleoper-
ation for facilitating specific task requirements, such as post-grasp
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manipulative actions [21] or non-holonomic cutting constraints [22].
Alternatively, several researchers focused on conveying haptic cues
to improve task operability when dealing with slave systems with
complex morphologies [23], when controlling multiple slaves [24] or
for multi-master-single-slave teleoperation [25] systems.

In teleoperation, haptic feedback is not only important to enable
guidance, but also to aid human teleoperation capabilities through
feeling the remote environment. As put by Powell and O’Malley [26],
two types of forces are generated when implementing haptic guidance
within a physical environment: 1) guidance forces arising from a
perceptual overlay or an expert’s operation, and 2) task forces due to
interactions with the environment. Since commonly used proxy-based
haptic rendering models [27] cannot distinguish between these forces,
it is not straightforward to separate the effects of guidance forces
from task forces when implementing haptic guided teleoperation on
a single master device. As a result, most related studies focus on
a single aspect of the task when generating force feedback. An
exception is by Abi-Farraj et al., who combined haptic cues to provide
trajectory guidance to reach good grasp configurations in addition
to imposing kinematic constraints [28]. Even though this study is
interesting to see a combination of different force cues, the kinematic
constraints were conveyed not through kinaesthetic guidance but
through vibrations. This is similar to the use of cutaneous feedback
to separate task and guidance forces as proposed in [29].

The current study presents an architecture that separately generates
guidance and task forces and merges them through the haptic nego-
tiation paradigm [30]. Haptic negotiation was originally proposed to
enable shared control between a human and a robot. The idea behind
the paradigm is to create a set of interconnected spring-damper-mass
systems to combine the operation of a human (e.g. controlling the
master device) and a robot controller (e.g. generating virtual guidance
forces), while interacting with a dynamic physical task (e.g. feeling
the real task forces). Through controlling the gains, the robot and
the human can be assigned different roles during the task, denoting
dominance levels. In addition, the assistance can be completely turned
on and off to trade control of the task between agents.

A similar model was later proposed by Powell and O’Malley et
al. under the name shared-control proxy model [26]. Both studies
integrated task and guidance forces in haptics-enabled virtual worlds,
whereas the haptic negotiation model was also implemented for phys-
ical human-robot collaboration [20] and for assistive robotics [31].
The current study is the first to integrate guidance and task forces
within a shared control paradigm for teleoperation. The proposed two
layer architecture closely resembles the haptic negotiation framework.
Although not done in the current study, an advantage of this model
is that it allows to assign “weights” to different channels to control
how the user shall receive the force feedback from different sources.
In essence, this is possible through changing the relative weight of
real and virtual torque components.

III. DUAL-ARM TELEOPERATION SETUP

We use two Franka Emika Panda robot arms in a master-slave
configuration as shown in Figure 1. Panda arms are 7-DoF robots,
designed for safe human-robot collaboration. The motivation of this
study is to enable haptic-guided telemanipulation by programming
the master arm as a haptic interface, displaying both environmental
interaction forces acting on the slave (real) and artificial corrective
forces implemented for safeguarding (virtual).

Panda arms are equipped with integrated torque sensors at each
joint actuator. Each robot is connected to a Franka Control Interface
(FCI) on a dedicated workstation using a static ethernet connection to
minimise time delays for the purposes of this study. FCI communi-
cates with the workstation on a low-level bidirectional connection,

operating at a frequency of 1 KHz. The robots are programmed
using the open source libfranka library which allows the robot
to be controlled through: 1) joint torque commands (gravity and
joint friction compensation are handled by FCI), 2) joint positions
and velocities, 3) Cartesian poses and velocities. In addition, the
Simulation Lab (SL) robotics simulator and real time control engine
[32] runs on both master and slave systems to issue real time
control signals at 1KHz, thus enabling torque control. A control script
running on the master system provides a single point of execution
and control.

IV. HAPTICS-ENABLED TELEOPERATION IMPLEMENTATION

Most haptic systems use specialized haptic interfaces and im-
plement virtual coupling within the task frame to match the end-
effector positions and generate force feedback [33]–[35]. However,
working with identical master/slave arms brings different constraints
due to robot morphology as well possibilities when generating force
feedback due to the joint sensing capabilities. In particular, when
designing master/slave teleoperation with twin arms, we are not only
concerned with end-effector positions, but rather want to match all
slave joints to the exact movement of the whole master arm, which
can, for example, be beneficial for obstacle avoidance. Such joint
coupling can be achieved through:

• Joint angle coupling: matching the position of the joints and gen-
erating force feedback using bilateral position control between
devices (this is similar to how forces can be rendered through
virtual coupling with an impedance-type haptic interface).

• Joint torque coupling: matching the torques sensed at the joints.

In this study, we implemented both techniques to render real task
forces at the master side. In addition, virtual forces are generated
using repulsive potential fields around obstacles. Both virtual (re-
pulsion) and real (task) forces are integrated to be displayed as the
commanded torque at the master side, following the haptic negotiation
framework [30] using equal weights for the components.

A. Master to Slave Control with No Feedback

As the baseline setup, we implemented a position-based unilateral
PD controller to control the slave motion via the master. This
baseline implementation realizes teleoperation to move the slave
arm, however, no feedback is provided at the master side. For
this reason, we call this baseline the “No Feedback” condition.
The torque command at the slave side is computed using a PD
controller with gains kp = [240, 240, 240, 240, 100, 60, 20]> and
kd = [20, 20, 20, 20, 12, 10, 6]>.

B. Artificial Force Rendering

We implemented virtual repulsive fields around obstacles to
demonstrate how artificial force rendering can be integrated in
the architecture. The repulsive fields are used to push the robot
end-effector away from obstacles if a certain distance threshold is
breached, and is converted into the resulting joint torques as

τ v = JT
k
∑N
i=1(xr − oi)

||
∑N
i=1(xr − oi)||

if ||(xr − oi)|| < d, (1)

where τ v is the joint torques due to virtual guides, J is the Jacobian
for the current robot joint configuration and the term to the right
of JT acts as a virtual external force acting on the end-effector. In
this external force computation, k stands as the gain, xr and oi are
the 3D Cartesian space position of the slave end-effector and the ith

obstacle respectively.
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Fig. 2. Force feedback architecture based on joint angle coupling. A PD
controller gives the “real” force feedback component (pink) while “virtual”
guidance component is shown in blue.

C. Force Feedback using Joint Angle Coupling

This technique implements bilateral position-position teleoperation
using a PD controller to get the arms to mirror one another’s motion.
Joint torques due to slave dynamics and environmental contact at the
slave side are calculated as seen in Figure 2 in the lower segment
in pink, labelled Real. Artificial forces are generated as shown in
the upper blue segment labelled Virtual. In the figure, fv denotes the
virtual/guidance force to be delivered to the master robot end-effector,
qs and qm are slave and master joint angles respectively and kp, kd
are controller gains. τ cm is the resulting master torque command,
computed as the equally weighted sum of virtual and real torques.

The forward dynamics equation for a robot manipulator is

τ = M(q)q̈ + C(q, q̇)q + g(q) + τ ext, (2)

where M(q) is the mass matrix for joint configuration q, C(q, q̇)
is the Coriolis term and g(q) gives the joint torques due to gravity.

The robot arms used for this project are gravity compensated so
the robot dynamics equation for the control loop does not include
the term g(q). As the teleoperation task involved low velocities, the
Coriolis term C(q, q̇)q also becomes irrelevant and is ignored. A
simple PD controller for force feedback is defined as

τ ext = kp ◦
(
qs(t)− qm(t)

)
− kd ◦ q̇m(t), (3)

where ◦ is the element-wise Hadamard product, τ ext is the
torque control command due to contact forces for the mas-
ter, qm(t) and qs(t) are respectively the master and the slave
joint configurations at time step t, q̇m is the master joint ve-
locity, and kp = [120, 120, 120, 120, 20, 20, 4]> and kd =
[7.5, 7.5, 7.5, 7.5, 2.25, 2.25, 0.75]> are respectively the proportional
and derivative gains, tuned to enable stable teleoperation of the arms.

D. Force Feedback using Joint Torque Coupling

Figure 3 shows the torque based force feedback control architec-
ture, where τ s is the slave joint torque sensor data, g(q) is the gravity
acting on the joints and kτ = [0.9, 0.9, 0.45, 0.9, 0.45, 0.9, 0.9]> is
the feedback scaling factor. The scaling factor is set as the maximum
value for each joint while ensuring stability. Note that this architecture
can only be applied on systems where the master and slave robots
are identical and employed with force/torque sensors at the joints. An
additional step of inverse and forward statics is needed when working
with robots that have different morphology, as shown in Figure 4.

E. Dealing with Backdrivability

Both position-position and force-position control systems, when
implemented naively, produce low torques (< 1 Nm) that oppose

Fig. 3. Force feedback architecture based on joint torque coupling. Slave joint
torque sensors are applied on the master after eliminating gravity-induced
torque.

Fig. 4. Force feedback architecture based on joint torque coupling for
different master/slave morphologies achieved by converting force-feedback
torque (τext) to a task space force (fext).

the free motion of the master robot even without any external forces
on the slave system resulting in a sluggish system that is difficult to
operate. This behavior is generally expected when working with noisy
data from a real sensor. Some of this noise can be eliminated using
specially tuned filters. For eliminating the noise in the torque sensors,
we use a fast and efficient Kalman filter, which works well with
Gaussian noise. In the prediction step, estimates of the current state
are computed as x−t+1 = Fx+

t , where xt is the 14× 1 state vector[
τ> τ̇>

]>
and F is the 14×14 state-transition model

[
I diag(∆t)
0 I

]
(∆t = 0.001). The notation ~x−t and ~x+

t discriminates between prior
and posterior estimates of the mean (the same notation is used for
the covariance). The 14× 14 covariance estimate is computed as

P−t+1 = FP+
t F
>

+ Q, (4)

where Q is the 14×14 process noise covariance, which was estimated
using a short sample of the sensor data.

The update step uses new observations to improve the estimated
state and estimate covariance as

x+
t = x−t + Kt(zt −Hx−t ),

P+
t = P−t −KtStK

>
t

(5)

respectively, where K is the 14×7 Kalman gain, zt is the 7×1 obser-
vation vector and H is the 7×14 observation model. The innovation
covariance St (7 × 7), where innovation denotes the error between
the prediction and observation, is computed as St = HP−t H

>+R.
Here, R is the 7 × 7 observation noise covariance, whereas the
Kalman gain is computed as Kt = P−t HS−1

t .
After Kalman filtering, we still observed some undesirable torque

values e(q), which change depending on the joint configurations.
These may be an artefact of a robust control running on the robot to
correct for an imprecise gravity compensation. Such an error cannot
be reliably eliminated without learning the robot dynamics, which
is beyond the scope of this work. It is therefore desirable to ignore
values below a certain threshold. Yet, a simple step function may
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result in sudden jerks (as the torque value jumps across the threshold
boundary). Hence, we used a continuous conditional cubic function
to squash the values within a threshold, while maintaining a linear
output for everything else, where τm are the measured torques and
τsq are the computed squashed torques

τ sq =

{
τ 3
m, if − 1 < τm < 1

τm, otherwise.
. (6)

V. EXPERIMENTAL STUDY

In order to measure and compare the performance of human
operators, we conducted a user study in a task consisting of gross and
fine manipulation segments as shown in Figure 1(b). We measured
task completion times and physical effort, as well as the perceived
physical and mental workload during the task. We followed the
University of Lincoln ethical guidelines and obtained ethical approval
before the commencement of the studies. The subjects signed an
informed consent form explaining privacy and safety information as
well as risks and benefits during the experiment. They were informed
that they were free to quit the study at any time or retract their data
after the experiment.

At the beginning of the trials, the participants were provided with
an instruction document explaining the details of the experiment and
their role as a robot operator. They were then given a demonstration
of the task and had a practice session to operate the robot before
the experiment. Appropriate automatic and manual safety measures
were in place including physical kill switches moderated by the
experimenter to stop the robots in case of emergency.

In the experiment, the master and the slave system were mounted
in the same room, enabling clear visual observation of the slave robot
and the task environment while manipulating the master. 2-fingered
Franka grippers were attached to both the master and slave arms. A
peg was rigidly gripped by the slave robot, hence the user was not
required to open or close the grippers during the task.

The experimental task is depicted in Figure 5. The task started with
the slave peg inserted into the start hole. The subjects were asked
to remove the peg from the hole and insert it into the puck. Then,
they were asked to slide the pegged puck across the surface while
steering around obstacles. At the end of the task, they were asked to
remove the peg from the puck and insert it into the fixed finish hole.

This manipulation sequence involved two kinds of operational
modes, namely fine and gross manipulation (See Figure 6). The
experimental workspace was divided into two main regions of interest
based on the kind of manipulation skills employed as can be seen
in Figure 6. The fine manipulation regions involved the peg-in-the-
hole operations, which require slow, precise 6 DoF control. The gross

Fig. 5. A bird’s eye view of the experiment task at the slave side.

Fig. 6. The path taken by a subject is plotted with obstacles in red and
the initial and final positions in green. Yellow circles mark the start and end
positions for the puck.

manipulation region required manoeuvring and involved pushing an
object against the surface.

The experiment consisted of three feedback conditions:
1) No Feedback: Unilateral teleoperation is implemented with no

real or virtual haptic feedback at the master side
2) Position: Joint angle coupling and virtual haptic feedback was

displayed at the master side
3) Torque: Joint torque coupling and virtual haptic feedback was

displayed at the master side
We followed a within-subjects design, where subjects experimented

with all three conditions. The experiment took up approximately 30
minutes. Under each condition, subjects completed 3 trials, going
forward and backward in between start and finish holes with the slave
arm using the master interface. At the end of each trial, the subjects
released the master arm, and the robots were reset to a predefined
neutral position. This was done to ensure the same starting joint
configuration for each trial, and in order to avoid the robot joints
to end up in poor configurations or near singularities, which would
affect the manoeuvrability.

In order to avoid ordering and carryover effects, the order of trials
was randomised using a Latin square design. 6 participants (4 female,
2 male) aged between 19 and 26 participated in this study. The
subjects were randomly assigned to groups using a computerised
random number generator. The right or left hand dominance of the
participants was not considered, as the task requires both hands to
simultaneously manipulate the master arm. According to the literature
[36], the grasping and placing behaviour of right and left handed
groups in bi-manual tasks is similar, so it can be safely ignored for
this experiment. It was noted that the sound due to the physical
contact of the slave robot with the environment was audible and
reflected as an acoustic cue, which could affect the experiment results.
To control for possible bias, the participants wore noise-cancelling
head gear.

Throughout the task, timestamped joint configurations q, joint
velocities q̇, joint torques τ , and Cartesian position for the end-
effector p are collected for both robots. Measures used in the study
are as follows:

1) Force feedback realism: The error between the joint torques
on the master and slave robots are used as a measure of haptic
teleoperation quality to enable transparency. Note that an error
also exists in torque coupling due to force scaling, which was
implemented to facilitate stable teleoperation.

2) Task performance: As a primary measure of task performance,
we recorded the task completion time for individual trials.

3) Energy: The total energy spent during a task is computed by
integrating the human exerted power over time as

E =

T∑
t=0

τ (t).q̇(t), (7)

where T is the duration of the trial.
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Fig. 7. The mean difference between the measured torques from slave and
master robot joint sensors. Error bars denote ±2 SE.

4) Task load: At the end of each condition block, the participants
were given the NASA Task Load Index (TLX), consisting of 6
questions on a 21 point scale, to record the perceived physical
and mental workload during the task.

VI. RESULTS AND DISCUSSION

During the experiment, a total of 54 trials were conducted. How-
ever, the logger failed to save the collected data for 2 trials, therefore
the total number of available trials is N = 52. The total number of
questionnaire responses recorded is N = 18 (one per participant per
condition).

Figure 7 shows the mean torque error for different methods. A
two-way ANOVA indicates significant main effects of the feedback
condition (F (2, 98) = 13.865, p < 0.001) and the manipulation type
(fine vs. gross) (F (1, 98) = 19.915, p < 0.001). No significant inter-
action effects are observed. Due to large differences in the variances
of groups, we conducted Games-Howell nonparametric post-hoc tests
to examine the pairwise differences. The tests indicate statistically
significant differences between joint-angle coupling and No Feedback
conditions for gross manipulation (p = 0.268). However, statistically
significant differences between all other pairs of control techniques
are observed. As expected, the highest torque error is observed under
the No Feedback condition, whereas the lowest is observed for joint-
torque coupling. This indicates that more realistic task forces can be
rendered using the joint-torque coupling technique.

Figure 8 shows the mean completion times of each trial and
the standard errors of the means. Two-way ANOVA indicate no
significant main effects of feedback condition (F (2, 98) = 0.748,
p = 0.476) or the manipulation type (F (1, 98) = 2.211, p = 0.140).

Figure 9 shows the mean energy spent across feedback conditions
and manipulation type. Two-way ANOVA indicates a significant
effect of the feedback condition (F (2, 98) = 7.014, p < 0.005). A
significant effect is observed also for manipulation type (F (2, 98) =
208.765, p < 0.001), indicating lower energy expenditure under
fine manipulation. Bonferroni-corrected post-hoc tests indicate that
joint torque coupling requires significantly less energy than both no-
feedback (p < 0.05) and joint angle coupling (p < 0.005).

Fig. 8. The average time taken to complete the tasks by manipulation type
and feedback method. Error bars denote ±2 SE.

Fig. 9. The energy spent to complete the task for each task type and feedback
method. Error bars denote ±2 SE.

Fig. 10. Raw NASA-TLX scores for perceived task workload (lower values
are better, including for performance).

Finally, the participants’ NASA TLX scores are shown in Figure
10. Statistical analysis showed no significant difference between
different feedback methods, indicating that the subjects did not feel
any of the conditions as being more demanding than the others.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we developed two methods for enabling force
feedback when teleoperating a 7-DoF robotic arm using an identical
master interface. Our methods were used to display environmental
forces acting on the slave arm. Task-related forces are integrated
with artificial force cues for guidance. An experimental task was
designed to involve both fine and gross manipulation when comparing
the haptic feedback generation mechanisms.

Experimental analysis of the implemented guidance and force
feedback techniques indicate no significant difference between the
task completion times for the different methods. Similarly, question-
naire results showed no significant differences in terms of mental
or physical task load. However, we observed that the joint torque
coupling method generates more realistic task forces, enabling better
transparency by matching the slave torque readings at the master
side. Also, it requires less energy to complete the task for both fine
and gross manipulation operations. In addition, we observed in the
experiments that joint angle coupling method is more sensitive to
time delays, causing sluggishness and viscosity in motion as the joint
angle differences grows.

This study was completed with a limited number of participants.
However, the existence of statistically significant differences even
with this small population is promising to illustrate the benefit of the
proposed method. We did not observe any differences in subjects’
perception of the task load. We believe this could be due to the
simplicity of the task. Future experiments are planned to make the
task more difficult by separating the slave and master workspace to
avoid direct visibility of the task space. In future work, we will study
more sophisticated haptic guidance cues that allow variable autonomy
and trajectory control.
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In this study, guidance forces were generated around static ob-
stacles, and the implemented technique does not take the shape of
the obstacles into account. In future work, we will explore the use
of computer vision to enable automatic scene understanding and
dynamic object recognition to provide guidance cues accordingly. In
addition, in this study, we used the data coming from slave sensors
to generate environmental forces, and leverage task information to
enable open-loop virtual fixtures for guidance generation. However,
the proposed architecture allows different ways for virtual guidance
forces to be implemented.

This work is an effort to integrate task and guidance forces
over a single master interface. The implemented concept has been
studied in [26] as Gross Assistance. Unfortunately, this mechanism
can encounter situations, in which haptic feedback and guidance
forces annihilate each other creating misleading sensory feedback.
Alternative ways of integrating different forces will be investigated in
future studies. For instance, using the haptic negotiation framework,
we intend to implement spatially and temporally separate guidance
and task forces as well as weighting force channels depending on
task requirements and user needs.
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