
 

 
 

 
Supplementary Materials for 

 
Correlated Gene Expression Supports Synchronous Activity in Brain Networks 

 
Jonas Richiardi*, Andre Altmann, Anna-Clare Milazzo, Catie Chang, M. Mallar Chakravarty, Tobias Banaschewski, 

Gareth J. Barker, Arun L.W. Bokde, Uli Bromberg, Christian Büchel, Patricia Conrod, Mira Fauth-Bühler, Herta 
Flor, Vincent Frouin, Jürgen Gallinat, Hugh Garavan, Penny Gowland, Andreas Heinz, Hervé Lemaître, Karl F. 
Mann, Jean-Luc Martinot, Frauke Nees, Tomáš Paus, Zdenka Pausova, Marcella Rietschel, Trevor W. Robbins,  

Michael N. Smolka, Rainer Spanagel, Andreas Ströhle, Gunter Schumann, Mike Hawrylycz,  Jean-Baptiste Poline, 
Michael D. Greicius*, and the IMAGEN consortium (www.imagen-europe.com) 

 
*Correspondence to: greicius@stanford.edu, jonas.richiardi@unige.ch 

 
 
This PDF file includes: 
 

Materials and Methods 
Supplementary Text 
Figs. S1 to S5 
Tables S1 to S10 
References (29-55) 
IMAGEN consortium author list 

 
Other Supplementary Materials for this manuscript includes the following:  
 

Data Files S1 to S3 as files: AIBS_sample_details.xlsx, AIBS_probe_details.xlsx, 
IMAGEN_subject_identifiers.txt 
 

 



1 Materials and methods 
 

MRI Data overview and acquisition 
The imaging data defining the functional networks used in this work are from a previous 

study in our group(9). We only summarize the most important characteristics here. 
The sample consists of 15 healthy subjects (8 females), all right-handed, median age 25 

(range 18-29). Subjects were asked to lie down in the scanner, close their eyes, and let their mind 
wander without focusing on any one thing in particular, for the duration of 10 minutes. Subjects 
were verified to stay awake. The scanner was a 3T General Electric MR750, with an 8-channel 
head coil. Whole-brain coverage was used, with 3.4 x 3.4 x 4 mm voxel size, spiral acquisition, 
and a TR of 2 s. 

 
MRI Data processing 

Functional images were motion-corrected, normalized to MNI space, interpolated to 2 mm 
isotropic voxels, and smoothed at 6 mm FWHM using SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). 
The data were then high-pass filtered above 0.008 Hz, and physiological noise (heart rate and 
respiration rate) was removed from the data using RETROICOR and RVHRCOR(29). 

 
MRI Data Independent component analysis 

FSL MELODIC (http://www.fmrib.ox.ac.uk/fsl/ melodic/index.html) was applied to the 
data to produce 30 components. Out of these, 14 were selected as being non-artifactual networks 
in accordance with previous studies. The components were each thresholded manually, with a 
more liberal statistical cut-off for subcortical spatial clusters (z=3.80±0.40, minimum number of 
voxels 15) than for cortical spatial clusters (z=7.0±0.47). This resulted in 14 non-overlapping 
networks, which are consistently found in most subjects and studies on resting state(1, 11, 30, 
31), although the nomenclature may vary. These were auditory, basal ganglia, dorsal default-
mode, high visual, language, left and right executive control, posterior salience, precuneus, 
primary visual, salience, sensorimotor, ventral default-mode network, and visuospatial (Figure 
S1). Each network and the rest of the cortex and subcortical areas were then subparcellated into a 
total of 499 regions of interest using a Ward clustering procedure(32). 

 
Mapping Allen Institute biological samples to functional networks 

Functional networks are defined in Montreal Neurological Institute (MNI) space, using the 
ICBM152 template. Allen Institute brains underwent structural MRI before dissection, and were 
normalized to MNI space. Therefore, MNI coordinates are available for all samples.  

The 13 functional networks are non-overlapping, so samples can be mapped unequivocally. 
To account for possible small normalization errors and rounding errors in coordinate 
computations, if no one-to-one match is found, we expand the search to a 26-connected 
neighborhood around the sample's coordinate (i.e., including voxels that are within ± 1 voxel of 
either x, y, or z coordinates). Then, our mask of interest defining functional networks includes all 
Allen Institute samples whose MNI coordinates overlap with any of our 13 functional networks, 
or the 26-connected neighborhood. We excluded all samples that fell within the thalamus, 
midbrain, or pons because fMRI does not have the necessary spatial resolution to distinguish 
nuclei within these structures as defined in the AIBS data. We also excluded samples from the 
cerebellum and deep gray matter, in particular the hippocampus, to avoid biasing the analysis 



due to possible differences in proportion of transcriptionally very diverse tissue in functional 
networks with respect to the rest of the brain. The final count of samples for each functional 
network is: dDMN: 84, Salience: 59, Sensorimotor: 47, Visuospatial: 51. 

We also included AIBS samples that did not overlap with functional networks, again 
excluding thalamus, midbrain, pons, cerebellum, and deep gray matter, resulting in 1276 samples 
outside of functional networks. 

 
Allen Institute data overview 

The Allen Institute human microarray data (10) consists of brains from six subjects(33), of 
which two (brains 1 and 2 in Table S1) are full brains, and four are left hemispheres. The main 
demographic characteristics are summarized in Table S1. 

The data were downloaded from the Allen Institute web site on May 7, 2013, thus 
benefitting from the improved within-batch and cross-batch array normalization procedures put 
in place in March 2013(34). The platform was an Agilent 4x44 Whole Human Genome array 
with an additional 16000 custom probes. 

 
Allen Institute data probe reannotation 

The assignment of probe sequences to genes was reannotated to the reference genome 
assembly hg19 (UCSC Genome Browser) (35), using Re-annotator  
(http://sourceforge.net/projects/reannotator/). If more than 2 mismatches between probe and 
reference sequence were found, the probe was instead matched to the whole genome. The type of 
hit (exonic or intronic) was recorded for further use in probe selection.  

 
Allen Institute data probe normalization 

Using all samples, we normalized each probe's expression level in turn by regressing out 
brain identifier and batch identifier. Due to the small number of subjects, average intensity, sex, 
age at death, and post-mortem interval have a very discrete set of values, and the statistical 
model fit is no better than the one we use here. 

 
Allen Institute data probe selection and collapsing 

We removed genes that do not have an Entrez ID. We also removed probes that are not 
called in any of the samples, where call information is provided in the Allen Institute data. 

If genes were sampled by single probe, this probe was selected as long there was no 
sequence mismatch with the gene sequence, and it was aligned to the gene’s exon sequence. If 
there were several probes sampling the same gene, probe collapsing was conducted as follows: 
the probe with the fewest sequence mismatches was selected, as long as it matched to the exonic 
region, otherwise no probe was selected. Ties between probes having the same number of 
mismatches (or none) were broken by selecting the one with the highest standard deviation over 
samples, as a proxy for maximum information entropy. 

 



Computing correlated gene expression networks 
In mouse brains, correlated gene expression (called correlation mode in the anatomic gene 

expression atlas at http://mouse.brain-map.org/agea) shows that high similarity of gene 
expression is found within brain structures, and low similarity is found across brain 
structures(15). 

In our case of interest, we aimed to measure correlated gene expression across 1777 
samples, each represented by a 16,906-dimensional vector. The data will then be represented as a 
graph with a 1777x1777 adjacency matrix, where nodes correspond to samples, and edges 
encode the strength of the relationship between samples, with larger values corresponding to 
more similar gene expression. Several methods can be used to measure similarity of samples, and 
give a label (weight) to graph edges. Here, we used the Pearson product-moment correlation. 

We also checked results using Spearman rank correlation. The edge weights of the 
correlated gene expression network were highly similar between Pearson and Spearman 
correlations (ρ=0.961, p<10-15; Mantel test p-value=9x10-4 (1000 permutations)). 

 
Test statistic and procedure for the relationship between functional networks and correlated gene 
expression 

The aim of the testing procedure is to find out whether grouping gene expression samples 
according to their spatial overlap with functional networks gives rise to a “module-like” (or 
“community-like”) subgraph in the statistical sense, that is, where the correlated gene expression 
is larger within the functional network, relative to the rest of the brain, than expected by chance. 
Both a test statistic and a testing procedure have to be defined. As explained in the main text, the 
chosen test statistic was the strength fraction. We note that many other metrics could be used, 
such as conductance, normalized cut, or a variant of out-degree fraction. We desired a metric that 
directly represents the ratio between within-network and out-of-network correlated gene 
expression (Figure S2), and that yields a higher number for a more “module-like” subgraph.  
Another approach would have been to use a modularity-based technique. Our rationale for 
avoiding this is twofold. First, results would hinge critically on the choice of a null model. 
Recent work has shown that generic null models (such as the configuration null model) are 
inappropriate for correlation networks(36) (where edges weights are given by Pearson 
correlation). Second, in a large-scale test of subgraph scoring functions(37), it has been found 
that scoring function combining internal and external connectivity, as is the case for the one we 
use here, had excellent performance for a wide variety of datasets. Finally, note that to keep the 
measure as simple as possible, we used the total strength, rather than the average strength, 
meaning that the strength fraction value is not directly comparable between functional networks 
because it depends on the size (number of vertices) of the functional network. However, this 
does not impact the statistical test value. 

The permutation procedure is conducted to test how likely it is to observe a particular 
strength fraction value by chance in a subgraph of the same size. It is performed by permuting 
samples (over the full graph) irrespective of their assignment to a subgraph, to yield a null 
distribution. To account for clustering by subjects, samples are only permuted within subjects, 
not across subjects (clustered permutation). Here, a subgraph corresponded directly to one of the 
four functional networks of interest, and we used 10,000 permutations to assess significance. 

While functional networks are distributed spatially, meaning they cross over different tissue 
types, and that their sample can be spatially distant, it is important to ensure that a high strength 
fraction does not simply reflect the fact that tissues are the same. For example, as noted, gene 



expression in cerebellar samples is remarkably similar. To prevent any biases originating from 
this fact, we grouped samples into 88 tissue classes by their anatomical description, foregoing 
laterality (see Table S4). Then, we removed edges of the correlated gene expression graph 
corresponding to similarities between the same tissue classes (Figure S3 shows the location of 
edges that are removed). 

 
Statistics on agreement of gene rankings between two brain subgroups  

We split brains into two subgroups of three brains. In each subgroup, we multiplied one 
gene’s expression level by 10, keeping all other expression levels at their original values, 
computed the strength fraction, and moved on to the next gene. This yielded two ordered lists of 
genes, after which we computed the probability of obtaining a certain overlap between the two 
ordered lists by chance. Using the list-intersection discovery test(19), we computed the p-value 
for the overlap between the two ranked lists at a False Discovery Rate of 5%. We give an 
example of the computation with the two brain subgroups as ([1 4 6], [2 3 5]). 

Here, the total number of genes T is 16,906. The overlap size s between the two lists at a 
top-rank cutoff r of 370 (corresponding to 5% FDR, see below) is 162. A gene has a probability 
of ranking among the top r of 𝑃! = !

!
≅ 0.02 in any of the two lists. Accordingly, the probability 

that a gene is listed in the top r in 2 or more lists is given by the binomial cumulative distribution 
function 

 𝑃!! = 1− !
!

!
!!! 𝑃!! 1− 𝑃! !!!𝐼 !,! (𝑖) ≅ 5×10!!. 

The number of genes overlapping by chance in 2 or more lists is approximately Poisson 
distributed, with mean 𝐸 = 𝑇𝑃!! ≅ 8. Under the null hypothesis, the probability of observing an 
overlap of size s is given by the Poisson cumulative distribution function 

 𝑝!! = 1− 𝑒!! !!

!!
!!!
!!! < 10!!" 

Lastly, we compute the False Discovery Rate, equal to the expectation on the proportion of 
false hits in all the significant tests, as 

𝑝!"# =
𝐸
𝑠   ≅ 0.05.   

 
Generating the consensus list for all subgroups 

We obtained all possible splits of the division of six brains into two subgroups, while 
keeping a full brain (either brain 1 or brain 2, see Table S1) in each subgroup, in order to balance 
the sample sizes. The six possible grouping permutations are ([1 4 6], [2 3 5]), ([1 3 4], [2 5 6]), 
([1 3 5], [2 4 6]), ([1 3 6], [2 4 5]), ([1 4 5], [2 3 6]), and ([1 5 6], [2 3 4]). In each permutation, 
we applied the same procedure as above and thresholded at an FDR of 0.05. The statistical 
thresholding in each grouping can be seen as setting a regularization parameter controlling the 
number of non-zero components in a 16,906-dimensional vector. This is equivalent to enforcing 
a slightly different L1-norm in each of the permutations. Thus, to obtain a consensus, we used 
stability selection(20) across all six lists, whereby the final consensus list (Table S2) consists of 
genes that appear in the majority of consensus lists (four or more). Results did not vary 
substantially if a more stringent criterion (appearance in five out of six splits) was chosen. 

 

Allen Institute data gene set analysis 
We used DAVID 6.7(24) (http://david.abcc.ncifcrf.gov/) to perform over-representation 

analysis for Gene Ontology (GO) annotations in Biological Processes and Molecular Function, 



using default settings except for selecting the “ALL” versions of the ontologies rather than the 
“FAT” versions (equivalent to the Wolf et al settings(28)). The “ALL” versions comprise all 
terms in the GO hierarchy (across levels), while the “FAT” version removes more general 
(higher level) terms. We supply our custom background set of 16,906 genes, and the software’s 
variant of a one-tailed Fisher exact test(38) is used for enrichment analysis. The reported p-value 
is corrected using Benjamini-Hochberg FDR(39) (FDRBH). The results, shown in Table S5, point 
largely towards cation channels.  

We repeat over-representation analyses using Panther 9.0(40) (http://www.pantherdb.org), 
Overrepresentation Test release 20141219, with the same custom background set, and FDRBH-
adjusted p-values. The results, shown in Table S6, largely agree (however, no GO Cellular 
Component term is significant in this analysis) and again point towards cation channels playing 
an important role. 

We also compare our results with a study of the genetic determinants of axonal connectivity 
in the rodent brain(28). We use the available supplementary “table S5” (obtained by these 
authors using DAVID), and consider only annotation terms with an uncorrected p-value smaller 
than 0.05. We run our DAVID analysis using the same settings as the authors. Using our own 
results thresholded at an uncorrected significance level of 0.05, we compute the overlap in 
annotation terms, disregarding the data source (not provided in that supplementary “table 
S5”(28)). Using their data for “outgoing” axonal connectivity (268 unique annotation terms), we 
obtain an overlap of 50 unique terms with our results. Using their data for “incoming” axonal 
connectivity (194 unique annotation terms), we obtain an overlap of 34 unique terms. The terms 
are reported in Tables S7, S8. 
We also looked for disease associations using Ingenuity Pathway Analysis. Here, a set of 6 genes 
in the list (CALB1, CDK1, NGFR, PTGS1, SCN1B, TSHZ3) is significantly overrepresented for 
Alzheimer’s disease (p<0.04 FDRBH). Another set of 6 genes is overrepresented for 
schizophrenia (p<0.04 FDRBH). The full list of the 9 significant annotations is provided in Table 
S10. 

Finally, we also attempted an initial description of the types of cells that may be driving our 
results. Here, we used the transcriptome database from Cahoy et al.(25) to examine whether 
some genes in our list are significantly overexpressing in some cell types. We converted mouse 
genes to humans orthologs using the HGNC Comparison of Orthology Predictions (HCOP) 
tool(41) (http://www.genenames.org/help/hcop). Then we compared our gene list with the Cahoy 
list, and counted when each gene had a significant overexpression in astrocytes, 
oligendendrocytes, and/or neurons.  

 
IMAGEN data overview 

The data was collected and processed by the IMAGEN consortium(21). Resting-state data 
was acquired at the end of the second MR session, with instructions to keep eyes closed, relax, 
and not sleep. All participants' parents gave written informed consent after information on the 
research procedures, and adolescents gave their assent after written information. INSERM is the 
legal promoter for French participants. 

Here, we used 259 14-year old subjects (133 females) for which all three of functional MRI 
data, a structural T1-weighted image, and genetic data is available. This is a subset of the 385 
IMAGEN subjects for which resting-state data was available: we excluded some subjects due to 
head motion larger than 3 mm in any direction (N = 74), failed co-registration (N = 16), or not 
having genotype data (N = 16), leading to an intermediary sample size of N = 279. The final 



analysis removes a further N = 20 because they are genetically related (see IMAGEN validation 
procedure below). The functional images consist of a 6.5 mins echo-planar imaging resting-state 
scan with TR/TE/Flip Angle = 2200 ms / 30 ms / 75°, 64x64x40 voxels with 2.4 mm slice 
thickness and 1 mm slice gap and a field of view of 218x218mm, yielding isotopic 3.4mm 
voxels. The structural image consists of a T1-weighted MPRAGE image of 256x256x160/166 
voxels (depending on manufacturer), with a 1.1 mm isotropic voxel size. Other parameters were 
based on the ADNI protocol (see http://adni.loni.usc.edu/methods/documents/mri-protocols/); 
full details are provided in the IMAGEN paper(21). 

Genotype is measured from blood samples, using IlluminaQuad660 chip measuring 550K 
single nucleotide polymorphisms (SNPs).  

 
IMAGEN MRI data processing 

Functional and structural images were processed using FSL(42). Registration to MNI 
standard space was accomplished by first aligning functional scans to the structural image, and 
then normalizing them to MNI space using FLIRT(43). A 6mm smoothing kernel and a 6th order 
Butterworth band pass filter (0.01-0.1 Hz) were applied to the fMRI data. Several sources of 
noise were regressed out: six movement parameters estimated by MCFLIRT, global signal, and 
time series from regions-of-interest (ROIs) in the ventricles, the white matter, and outside the 
brain. The same parcellation as for Allen Institute data was used. The mean time series was 
extracted from each of the 499 regions. Pearson correlations were computed between all pairs of 
regions. The matrix was then thresholded at 0, and the diagonal set to 0 to make it a valid 
adjacency matrix for an undirected, weighted graph with no self-loops. Further, connection 
strengths to ROIs not belonging to any of the 14 functional networks (N=357) were set to 0. 

The strength fraction in the four functional networks of interest (dDMN, salience, 
sensorimotor, visuospatial) was computed for each subject, in the same manner as described in 
the section on Allen Institute gene expression data. 

 
IMAGEN genetic data processing 

Data on a total of 557,124 SNPs were provided by IMAGEN. These were filtered for minor 
allele frequency (<5%), genotyping rate (<95%), and Hardy-Weinberg-Equilibrium (P<6e-7), 
resulting in a final set of 492,856 SNPs.  

 



IMAGEN validation procedure  
With PLINK(44), we used strength fraction as a quantitative trait in an additive genetic 

model corrected for sex, scanning site, population structure (5 PCA components), and motion 
covariates (translation: max and mean of x,y,z, as well as RMS; rotation: max and mean of roll, 
pitch, yaw; framewise displacement (FD, defined either by Van Dijk(45) or Power(46)): Van 
Dijk and Power means, percentage Power FD at 0.02 and 0.05, total Power FD, total translations 
in x,y,z, total rotations in pitch, roll, yaw). A genetic relationship matrix (GRM) was computed 
for all 279 subjects using the GCTA software(47). Based on the GRM 20 subjects were removed 
due to relatedness as indicated by a relationship score in the GRM of 0.025 or more, leading to a 
final sample size of 259. The genome-wide association analysis yielded approximately 490K p-
values, one per SNP, on the null hypothesis of no association between genotype and strength 
fraction in functional networks. There was no sign for inflation of p-values as the genomic 
inflation factor was close to 1.0 (λ=1.00803; Figure S5). The most significant SNP was 
rs9870687 with a P-value of 6.57 x 10-6. Thus, no SNP survived the Bonferroni corrected 
threshold of 1.01 x 10-7 (Figure S5). 

Our main interest is to verify the enrichment of statistical association signals in the 
consensus list compared to the list of 16,906 background genes as well as the enrichment in the 
significant GO terms identified by the previous overrepresentation analysis (Table S5). For 
computing the enrichment scores for the 7 GO terms we use recent developments in pathway 
analysis for GWAS data(48), in particular  the z-statistic method(49) implemented in GSA-
SNP(22), where in order to test all 7 GO terms we removed the software’s default limit to test 
only gene sets with sizes 10 to 200 genes. Briefly, every gene’s p-value is taken from its second-
ranked SNP within the region of transcription start site to transcription end including the 10Kb 
upstream and downstream, respectively. This approach has been shown to reduce the impact of 
randomly highly significant top SNPs(50). The z-statistic is then computed on the basis of all p-
values without the requirement to set an arbitrary cut-off. More precisely, p-values are converted 
to scores using the –log10 transformation, µ and σ are the mean and standard deviation, 
respectively, of the gene scores on the set of all genes.  S and n are respectively the mean gene 
score and the size of gene set to be tested. The z-statistic is then computed as Z=(S – µ)/(σ * n-

0.5). All but one GO terms were significantly enriched in this analysis (Z-scores and p-values for 
all 7 GO terms are listed in Table S9). The non-significant term is extracellular region. 

GSA-SNP does not allow for selecting a reduced background set of genes. Therefore, we 
compute the Z-statistic for the consensus list manually using µback and σback (instead of µ and σ) 
corresponding to mean and standard deviation of the gene scores in our background list. The 
consensus list showed significant enrichment (Z = 2.55; P=0.006) with respect to the background 
list and, which was even more pronounced with respect to all genes (Z = 3.76; P = 8.38x10-5).P-
values were confirmed using a non-parametric permutation test with 10,000 permutations by 
selecting random gene sets of equivalent size from either the background set (P = 0.0059) or the 
full list of genes (P < 4x10-4). 

In order to capture the multiallelic effect of the consensus list for visualization purposes 
(Figures 2, S5), we computed an individual post-hoc multilocus genetic score as follows: the 
score is based on 136 SNPs (i.e., one SNP per gene in the list) and represents the sum of the 
number of minor alleles for all those SNPs, weighted by the direction of the effect on the 
strength fraction (SF) phenotype (with ‘1’ in case the minor allele increases the SF and with ’-1’ 
in case the minor allele decreases the SF), and divided by the number of nonmissing SNPs. The 
SNPs used for computing the genetic score were the same ones used for computing the Z-



statistic, i.e., the 2nd most significant SNP per gene was selected. This scoring scheme is similar 
to the one performed by Heck et al(27); the only difference being that we use all SNPs instead of 
only the nominally significant SNPs. 

 
Allen Institute Mouse Gene expression data overview 

Allen Institute Mouse Gene expression data consist of whole-brain In Situ Hybridization 
(ISH) data that have been obtained from 24 µm sections of 56-day old C57BL/6J mice. Two 
section datasets are available: the coronal dataset, which covers 4,376 genes, and the sagittal 
dataset which covers more than 20,000 genes (15, 51). The data from all experiments are 
coregistered to the common Allen Brain Atlas template, and expression values are available in 
200 µm3 voxels. Here, we use the coronal dataset, which has better spatial coverage and 
registration(15), but fewer genes, and corresponds to the sections used for the connectivity data 
and model (see below). We use expression density (sum of expressing pixels / sum of all pixels 
in division). 

We obtained a list of genes and related information using the following API call: 
http://api.brain-

map.org/api/v2/data/Gene/query.json?criteria=products[id$eq1]&only=id,acronym
,entrez_id,homologene_id&num_rows=all&order=id 

 
We obtained a list of meta-data for all 1205 brain structures as follows: 
http://api.brain-

map.org/api/v2/data/Structure/query.json?criteria=[graph_id$eq1]&include=stru
cture_centers&num_rows=all&order=id 

 
We obtained the SectionDatasets (ISH images), omitting failed experiments, as follows: 
http://api.brain-

map.org/api/v2/data/SectionDataSet/query.json?criteria=[failed$eqfalse][expre
ssion$eqtrue],products[id$eq1],plane_of_section[id$eq1]&include=genes&num_row
s=all&order=id 

 
Finally, we mapped the SectionDatasets into brain structures by running the structure 

unionizer over each SectionDataset in turn (example here with dataset 32386, and we only 
included only a few structure_ids for brevity): 
http://api.brain-
map.org/api/v2/data/StructureUnionize/query.json?criteria=[section_data_set_i
d$eq32386][structure_id$in1,2,…,182305713]&only=structure_id,expression_energ
y,expression_density&num_rows=all 
 
 
Allen Institute Mouse Gene expression data processing 

We transformed the dataset into an nStructures x nGenes matrix of expression values, 
excluding structures where no genes are expressed (according to automated expression 
detection), and genes that are not expressed in any structure (likewise), yielding a ‘raw’ 844 x 
3191 matrix. We normalize each gene’s expression value across tissues by fitting a constant 
model (y=βx1), and used the prediction residual as that gene’s normalized expression value. 
 
Allen Institute Mouse connectivity data overview 

The Allen Mouse Brain Connectivity Atlas (AMBCA)(23) is based on viral tracing of 
axonal projections in coronal mouse brain sections. It consists of both an ipsilateral and a 



contralateral connectivity matrix between 295 brain regions. An optimization and regression 
model then yields connection weights between 213 ‘meso-scale’ regions. Here, to help 
correspondence with our human gene expression data where we used only cortical samples, we 
focus on the 38 regions of the mouse isocortex. 

We obtained the model connection weights and their corresponding p-values from 
supplementary table 3 of(23), for both ipsilateral and contralateral connectivity. Note that this 
connectivity matrix M is not symmetric. 
 
Allen Institute Mouse connectivity data processing 

Here, we use the ipsilateral connectivity matrix, but results hold when using the 
contralateral connectivity matrix (see main text). First, we correct the p-values of the 
connectivity model for multiple comparisons using the FDR procedure. Then, for each pair of 
regions, we want to test the hypothesis that either there is a connection between region 1 and 
region 2, or there is a connection between region 2 and region 1. This is to reflect the fact that 
functional connectivity is undirected, and we use axonal connectivity as a ground truth of what 
functional connectivity relies on. In order to combine the two p-values for each edge (1→2 and 
2→1) into a single value, we use the Fisher (chi-square) product combination. We then obtain a 
symmetrized 38x38 adjacency matrix B=(M+MT)/2, which we further normalize as C=S-1/2BS-

1/2, where S is a diagonal matrix containing the strengths of each vertex in B (52, 53). Other 
normalizations, such as used for spectral segmentation (C=S-1B) (54)are also possible and do not 
change the result of the statistical test used in the validation procedure. 
 
Allen Institute Mouse validation procedure 

Here, we wanted to test whether our consensus list of genes, derived in post-mortem 
humans and validated in-vivo in adolescents, was also significantly associated with axonal 
connectivity. We first obtained mouse orthologs for our human list of genes, using the HGNC 
Comparison of Orthology Predictions (HCOP) database (41) downloaded in September 2014. If 
more than one ortholog was found, we selected the one supported by the most databases (15th 
column in the ’15-column’ format of the HCOP bulk downloads tool). There were no ties. Out of 
136 human genes in our list, 125 could be matched to mouse genes. Of these, 57 corresponded to 
non-empty ISH experiments in the Allen Mouse gene expression data. We compute a correlated 
gene expression network between the 38 isocortex regions using values of the 57 non-empty 
orthologs, yielding a 38x38 adjacency matrix T representing transcriptional similarity across the 
isocortex using our list of genes. Then, our test statistic was based on the non-parametric Mantel 
test (55) of association between T and C, which represents matrices as vectors (lexicographical 
rearrangement) and computes their correlation (Spearman in our case, but using Pearson here 
does not change the significance of our results). Because many edges were non-significant in C, 
we thresholded them out of both T and C, and removed these from the vector. Leaving zeros 
instead would yield artificial correlations between T and C. To generate the null distribution of 
the test statistic, instead of permuting rows and columns of one of the matrices, we picked 57 
(non-empty) genes at random 10,000 times. This represents the strength of association between 
transcriptional similarity and axonal connectivity strength using random genes. The p-value is 
then obtained in the usual fashion for permutation tests. 
 



2 Supplementary Text 
 
Rationale for in-vivo validation 

We wanted to validate whether genetic variation in the genes of the consensus list derived 
from post-mortem gene expression data will also show changes of in vivo rs-fMRI connectivity. 
While for the discovery of the genes in the consensus list our hypothesis was that similar gene 
expression levels equate with membership to certain functional networks, the hypothesis for this 
validation step is that genetic variation as measured by single nucleotide polymorphisms (SNPs) 
will alter the in vivo observed strength fraction in functional networks. Here genetic variation 
can act in multiple ways such as (i) presence of expression quantitative trait loci (eQTLs) that 
directly alter abundance of the associated gene’s mRNA, (ii) non-synonymous SNPs that alter 
the amino acid sequence and therefore the resulting protein’s physiochemical properties, (iii) 
variants influencing mRNA splicing, (iv) variants disrupting methylation sites within the gene 
regulatory region. Thus, many genetic variants alter either mRNA transcript abundance or the 
protein’s efficiency, which in turn may be translated into increased or reduced mRNA transcript 
abundance. 
 

 



3 Supplementary Figures 
 
 

 
 

4 Fig S1.  
13 resting-state functional networks. Axial view, normalized to an MNI template. The basal 
ganglia network is excluded from the analysis, and not shown here. Also, note that Allen 
Institute human microarray samples corresponding to parts of functional networks falling in the 
cerebellum are excluded from the analysis (only cortical samples are used). 



 

5 Fig. S2. 
Principle for the strength fraction computation. The functional network of interest is shown 
with grey vertices and its outline by a dashed circle. All Edges labeled '+' go in the numerator of 
the strength fraction (Wi), while all edges labeled '-' go in the denominator (T-W). In this simple 
example, there is only one functional network, so W=Wi. 
 
  



6 
Fig. S3. 
Tissue-tissue adjacency matrix. Edges labeled in white indicate that the corresponding samples 
are of the same tissue class. Sample grouping into 13 functional networks is indicated in the 
leftmost column. To account for correlation bias due to spatial proximity and being in the same 
tissue class, these edges are set to zero. 
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7 Fig. S4.  
Genome-wide association study on IMAGEN data. (A) QQ plot, showing no p-value inflation. 
(B) Manhattan plot, showing no SNP surviving the Bonferroni-corrected level of significance 
(red line). 
 
 
 
 



8 
Fig. S5  
Adjacency matrices for in-vivo functional connectivity differences related to our list of 
genes. (top row) Adjacency matrices of the in-vivo IMAGEN fMRI connectivity graph for 
average of top 20 or bottom 20 subjects, ranked by their multilocus genetic score. (bottom row) 
Difference of adjacency matrices, unthresholded (left) and thresholded (right). The thresholded 
version corresponds to Fig. 3 of the main manuscript. 
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9 Table S1. 
Demographic information about the AIBS human microarray dataset. M: male, F: female, 
L: left, R: right 
 

ID Allen ID Sex Age 
[years] 

Handedness Hemispheres Post-mortem 
interval [hours] 

1 H0351.2001 M 24 left L+R 23 
2 H0351.2002 M 39 left L+R 10 
3 H0351.1009 M 57 mixed L 25.5 
4 H0351.1012 M 31 right L 17.5 
5 H0351.1015 F 49 right L 30 
6 H0351.1016 M 55 right L 18 

 



10 Table S2. 
136 consensus genes linked to functional networks. The genes are grouped by the number of 
splits of AIBS data (into two groups of three subjects each) in which the gene is top-ranked. 
When known, genes related to ion channels are highlighted in bold, and genes related to 
neurotransmitters are highlighted in red (note that there are overlaps in function). 
 
 ADAM23 ANKRD6 ATP6V1C2 BAIAP3 

C3orf55 CARTPT CCDC39 CD70 
CDK1 CNTN6 CRYBA2 CTXN3 
CXXC11 DMRT3 EPN3 FEZF1 FZD7 
GAL GLRA3 GNA14 GNGT2 GRP 
HSD11B1 KANK4 KCNA1 KCNA3 
KCNA5 KCNC1 KCTD15 KRT1 KRT31 
LAIR2 LINC00238 LMOD3 LRRC38 
LYPLA2 MGP MYH7 MYLK3 NEB 
NECAB2 NEFH NEUROD6 NGFR 
NOL4 NOV NRP1 ONECUT2 PCP4 
PIRT PNMT PRR15 PRSS35 PTGS1 
RBP4 RBPMS2 RHOBTB2 RSPH9 
SCARA5 SCN1B SCN4B SEMA7A 
SHD SHISA9 SIX3-AS1 SLC16A6 
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TDO2 TGFBI TINCR TLX2 TNNT2 
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11 Table S3. 
Subset of gene ontology annotations for genes of our consensus lists. CC: cellular component, 
MF: molecular function, ID: numeric identifier in Gene Ontology. Most specific subset of Gene 
ontology CC and MF terms where genes of our consensus list are significantly overrepresented 
(p<0.05 FDRBH) in the DAVID analysis, and corresponding uncorrected p-value of these terms 
on IMAGEN dataset and Wolf et al’s Rodent axonal connectivity data. For consistency, all p-
values shown here are uncorrected. 
 
Type ID Term Allen IMAGEN Rodent(28) 

     afferent efferent 
MF 0022843 Voltage-gated cation channel 

activity 
1.92E-04 1.17E-09 2.0E-03 <10E-15 

CC 

0034702 Ion channel complex 1.32E-04 2.64E-11 n/a n/a 
003470 Potassium channel complex 4.95E-04 2.80E-05 n/a n/a 

0008076 Voltage-gated potassium 
channel complex 

4.95E-04 2.80E-05 5.4E-02 5.5E-02 

0005576 Extracellular region 7.87E-04 3.82E-01 3.6E-02 1.9E-02 
0005886 Plasma membrane 9.98E-04 4.00E-20 n/a n/a 
003470 Cation channel complex 4.61E-04 8.66E-10 n/a n/a 

 



12 Table S4. 
88 tissue classes derived from anatomical labels 
 
Angular	  gyrus,	  inferior	  bank	  of	  gyrus	  
Angular	  gyrus,	  superior	  bank	  of	  gyrus	  
Anterior	  orbital	  gyrus	  
Cingulate	  gyrus,	  frontal	  part,	  inferior	  bank	  of	  gyrus	  
Cingulate	  gyrus,	  frontal	  part,	  superior	  bank	  of	  gyrus	  
Cingulate	  gyrus,	  parietal	  part,	  inferior	  bank	  of	  gyrus	  
Cingulate	  gyrus,	  parietal	  part,	  superior	  bank	  of	  gyrus	  
Cingulate	  gyrus,	  retrosplenial	  part,	  inferior	  bank	  of	  gyrus	  
Cingulate	  gyrus,	  retrosplenial	  part,	  superior	  bank	  of	  gyrus	  
Cuneus,	  peristriate	  
Cuneus,	  striate	  
Frontal	  operculum	  
Frontal	  pole,	  inferior	  aspect	  
Frontal	  pole,	  medial	  aspect	  
Frontal	  pole,	  superior	  aspect	  
Fusiform	  gyrus,	  bank	  of	  cos	  
Fusiform	  gyrus,	  bank	  of	  the	  its	  
Fusiform	  gyrus,	  lateral	  bank	  of	  gyrus	  
Gyrus	  rectus	  
Heschls	  gyrus	  
Inferior	  frontal	  gyrus,	  opercular	  part	  
Inferior	  frontal	  gyrus,	  orbital	  part	  
Inferior	  frontal	  gyrus,	  triangular	  part	  
Inferior	  occipital	  gyrus,	  inferior	  bank	  of	  gyrus	  
Inferior	  occipital	  gyrus,	  superior	  bank	  of	  gyrus	  
Inferior	  rostral	  gyrus	  
Inferior	  temporal	  gyrus,	  bank	  of	  mts	  
Inferior	  temporal	  gyrus,	  bank	  of	  the	  its	  
Inferior	  temporal	  gyrus,	  lateral	  bank	  of	  gyrus	  
Lateral	  orbital	  gyrus	  
Lingual	  gyrus,	  peristriate	  
Lingual	  gyrus,	  striate	  
Long	  Insular	  Gyri	  
Medial	  orbital	  gyrus	  
Middle	  frontal	  gyrus,	  inferior	  bank	  of	  gyrus	  
Middle	  frontal	  gyrus,	  superior	  bank	  of	  gyrus	  
Middle	  temporal	  gyrus,	  inferior	  bank	  of	  gyrus	  
Middle	  temporal	  gyrus,	  superior	  bank	  of	  gyrus	  
Occipital	  pole,	  inferior	  aspect	  
Occipital	  pole,	  lateral	  aspect	  
Occipital	  pole,	  superior	  aspect	  



Occipito-‐temporal	  gyrus,	  inferior	  bank	  of	  gyrus	  
Occipito-‐temporal	  gyrus,	  superior	  bank	  of	  gyrus	  
Paracentral	  lobule,	  anterior	  part	  
Paracentral	  lobule,	  anterior	  part,	  inferior	  bank	  of	  gyrus	  
Paracentral	  lobule,	  anterior	  part,	  superior	  bank	  of	  gyrus	  
Paracentral	  lobule,	  posterior	  part,	  bank	  of	  cingulate	  sulcus	  
Paracentral	  lobule,	  posterior	  part,	  lateral	  bank	  of	  gyrus	  
Parahippocampal	  gyrus,	  bank	  of	  the	  cos	  
Parahippocampal	  gyrus,	  lateral	  bank	  of	  gyrus	  
Paraterminal	  gyrus	  
Parolfactory	  gyri	  
Piriform	  cortex,	  left	  
Planum	  polare	  
Planum	  temporale	  
Postcentral	  gyrus,	  bank	  of	  the	  central	  sulcus	  
Postcentral	  gyrus,	  bank	  of	  the	  posterior	  central	  sulcus	  
Postcentral	  gyrus,	  inferior	  lateral	  aspect	  of	  gyrus	  
Postcentral	  gyrus,	  superior	  lateral	  aspect	  of	  gyrus	  
Posterior	  orbital	  gyrus	  
Precentral	  gyrus,	  bank	  of	  the	  central	  sulcus	  
Precentral	  gyrus,	  bank	  of	  the	  precentral	  sulcus	  
Precentral	  gyrus,	  inferior	  lateral	  aspect	  of	  gyrus	  
Precentral	  gyrus,	  superior	  lateral	  aspect	  of	  gyrus	  
Precuneus,	  	  inferior	  lateral	  bank	  of	  gyrus	  
Precuneus,	  	  superior	  lateral	  bank	  of	  gyrus	  
Precuneus,	  inferior	  lateral	  bank	  of	  gyrus	  
Precuneus,	  superior	  lateral	  bank	  of	  gyrus	  
Putamen	  
Short	  Insular	  Gyri	  
Subcallosal	  gyrus	  
Subcollosal	  gyrus	  
Superior	  frontal	  gyrus	  
Superior	  frontal	  gyrus,	  lateral	  bank	  of	  gyrus	  
Superior	  frontal	  gyrus,	  medial	  bank	  of	  gyrus	  
Superior	  occipital	  gyrus,	  inferior	  bank	  of	  gyrus	  
Superior	  occipital	  gyrus,	  superior	  bank	  of	  gyrus	  
Superior	  rostral	  gyrus	  
Superior	  temporal	  gyrus,	  inferior	  bank	  of	  gyrus	  
Superior	  temporal	  gyrus,	  lateral	  bank	  of	  gyrus	  
Supramarginal	  gyrus,	  inferior	  bank	  of	  gyrus	  
Supramarginal	  gyrus,	  superior	  bank	  of	  gyrus	  
Supraparietal	  lobule,	  inferior	  bank	  of	  gyrus	  
Supraparietal	  lobule,	  superior	  bank	  of	  gyrus	  
Temporal	  pole,	  inferior	  aspect	  
Temporal	  pole,	  medial	  aspect	  



Temporal	  pole,	  superior	  aspect	  
Transverse	  gyri	  
 



13 Table S5:  
Gene Ontology Molecular Function (MF) and Cellular Component (CC) terms for which our 
consensus list of genes is significantly over-represented (p < 0.05 FDRBH), obtained using 
DAVID. 
 
Type ID term p-value FDRBH 
MF 0022843 Voltage-gated cation channel activity 1.92E-04 4.97E-02 

CC 

0034702 Ion channel complex 1.32E-04 2.11E-02 
003470 Potassium channel complex 4.95E-04 2.62E-02 
0008076 Voltage-gated potassium channel complex 4.95E-04 2.62E-02 
0005576 Extracellular region 7.87E-04 3.12E-02 
0005886 Plasma membrane 9.98E-04 3.16E-02 
003470 Cation channel complex 4.61E-04 3.64E-02 

 



14 Table S6: 
Gene Ontology Molecular Function and Biological Processes terms over-representation analysis 
results for our consensus list using Panther, showing terms where our genes are significantly 
over-represented (p < 0.05 FDRBH-adjusted). 
 
Type Term p-value (FDRBH) 

MF 

receptor activity 2.93E-02 
voltage-gated ion channel activity 2.93E-02 
transmembrane transporter activity 2.93E-02 
cation channel activity 2.93E-02 
transporter activity 2.93E-02 
voltage-gated potassium channel activity 2.93E-02 
nucleic acid binding 3.48E-02 

BP 

multicellular organismal process < 10E-15 
single-multicellular organism process < 10E-15 
system process < 10E-15 
cell-cell signaling < 10E-15 
neurological system process < 10E-15 
cell communication < 10E-15 
synaptic transmission 1.30E-03 
cellular process 1.30E-03 
developmental process 5.40E-03 
angiogenesis 5.40E-03 
mesoderm development 5.40E-03 
system development 5.40E-03 
cation transport 6.50E-03 
ion transport 6.60E-03 
transport 7.50E-03 
localization 1.15E-02 
sensory perception 1.17E-02 
muscle organ development 1.49E-02 
immune system process 2.71E-02 
neurotransmitter secretion 2.71E-02 
macrophage activation 2.71E-02 
receptor-mediated endocytosis 2.71E-02 
cell-cell adhesion 2.84E-02 

 



15 Table S7: Overlap between our human microarray consensus gene list annotation 
terms and those for afferent (incoming) rodent neuronal connectivity. Terms listed here have 
uncorrected p-values < 0.05 in both our results and those of (28). 
 
Anatomical structure development Cation channel activity 
Cell fraction Cell part morphogenesis 
Cell projection morphogenesis Cell-cell signaling 
Channel activity Extracellular region 
Gated channel activity Glycoprotein 
Ion channel activity Ion transport 
Ionic channel Metal ion transmembrane transporter 

activity 
Metal ion transport Multicellular organismal development 
Negative regulation of multicellular 
organismal process 

Nervous system development 

Neurogenesis Neuropeptide signaling pathway 
Passive transmembrane transporter activity Potassium channel activity 
Potassium channel, voltage dependent, kv, 
tetramerisation 

Potassium ion transport 

Regulation of multicellular organismal 
process 

Signal 

Substrate specific channel activity Synapse 
Synaptic transmission Transmission of nerve impulse 
Voltage-gated cation channel activity Voltage-gated channel 
Voltage-gated channel activity Voltage-gated ion channel activity 

 



16 Table S8 Overlap between our human microarray consensus gene list annotation 
terms and those for efferent (outgoing) rodent neuronal connectivity. Terms listed here have 
uncorrected p-values < 0.05 in both our results and those of (28) 

 
alkali metal ion binding anatomical structure development 
cation channel activity cation transmembrane transporter activity 
cation transport cell part morphogenesis 
cell projection morphogenesis cell-cell signaling 
channel activity extracellular region 
extracellular region part extracellular space 
gated channel activity glycoprotein 
ion channel activity ion transmembrane transporter activity 
ion transport ionic channel 
metal ion transmembrane transporter 
activity 

metal ion transport 

monovalent inorganic cation transport multicellular organismal development 
negative regulation of multicellular 
organismal process 

nervous system development 

neurogenesis neurotransmitter transport 
organ morphogenesis palmitate 
passive transmembrane transporter activity potassium 
potassium channel activity potassium channel, voltage dependent, kv,  

tetramerisation 
potassium ion binding potassium ion transport 
regulation of multicellular organismal 
process 

signal 

substrate specific channel activity substrate-specific transmembrane 
transporter activity 

substrate-specific transporter activity synapse 
synaptic transmission system development 
transmembrane transporter activity transmission of nerve impulse 
transport voltage-gated cation channel activity 
voltage-gated channel voltage-gated channel activity 
voltage-gated ion channel activity voltage-gated potassium channel activity 

 



17 Table S9 
Z-scores and P-values for Gene Ontology Molecular Function (MF) and Cellular Component 
(CC) terms, which were significant in the AIBS dataset using DAVID and in the independent 
validation on the IMAGEN dataset, obtained using GSA-SNP. 

 
 

Type ID Term Z-score P-value 
     

MF 0022843 Voltage-gated cation channel activity 5.97 1.17E-09 

CC 

0034702 Ion channel complex 6.56 2.64E-11 
003470 Potassium channel complex 4.03 2.80E-05 

0008076 Voltage-gated potassium channel complex 4.03 2.80E-05 
0005576 Extracellular region 0.30 3.82E-01 
0005886 Plasma membrane 9.11 4.00E-20 
003470 Cation channel complex 6.02 8.66E-10 

 

 
  



18 Table S10 
Significant disease annotations for our consensus list using Ingenuity Pathway Analysis (p<0.05 
FDRBH). 
 
Annotation p-value (FDRBH) 
Huntington's Disease 3.10E-02 
Alzheimer's disease 3.10E-02 
Huntington disease grade 1 Huntington's disease 3.10E-02 
Atrophy of motor axons 3.10E-02 
Neurogenesis of neuronal progenitor cells 3.10E-02 
Quantity of neurofilaments 3.10E-02 
Schizophrenia 3.12E-02 
Amyotrophic lateral sclerosis 3.64E-02 
Formation of neurofilament inclusion 4.11E-02 
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