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Abstract Naturally log-scaled quantities abound in the nervous system. Distributions of these
quantities have non-intuitive properties, which have implications for data analysis and the under-
standing of neural circuits. Here, we review the log-scaled statistics of neuronal spiking and the
relevant analytical probability distributions. Recent work using log-scaling revealed that inter-
spike intervals of forebrain neurons segregate into discrete modes reflecting spiking at different
timescales and are each well-approximated by a gamma distribution. Each neuron spends most
of the time in an irregular spiking ‘ground state’ with the longest intervals, which determines the
mean firing rate of the neuron. Across the entire neuronal population, firing rates are log-scaled
and well approximated by the gamma distribution, with a small number of highly active neurons
and an overabundance of low rate neurons (the ‘dark matter’). These results are intricately linked
to a heterogeneous balanced operating regime, which confers upon neuronal circuits multiple
computational advantages and has evolutionarily ancient origins.
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Introduction

Somatic spiking is the currency of neuronal
communication. Athough spikes used to be recorded
from one cell at a time, continuously improving methods
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now allow simultaneous recording from hundreds to
thousands of neurons over multiple hours (Fig. 1A). It has
been repeatedly pointed out that essential quantities in
these data are logarithmically scaled. Key examples
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include firing rates across neurons that have been
described as log-normal (Fig. 1B) (Buzsaki & Mizuseki,
2014; Hromadka et al., 2008), interspike intervals (ISIs)
that span five orders of magnitude (Fig. 1C) (Chung
et al., 1970), the spectrum of firing rate and field potential
fluctuations that follow power law statistics (Buzsaki &
Draguhn, 2004; He, 2014; Okun et al., 2019; Teich et al.,
1997) and others (Loewenstein et al., 2011; Song et al.,
2005). However, this widely observed fact is sometimes
underappreciated and has important non-intuitive
consequences for both data analysis and interpretation.
Here, we review the log-scaled statistics of spiking in

single neurons and neuronal populations. We outline the
importance of log-scaling and the empirically observed
statistics of ISI and firing rate distributions. We then
review the utility of the gamma distribution in describing
these empirical data. Although the distribution of ISIs
within single neurons and of mean firing rates across
neurons are seemingly two disparate phenomena, we
argue that, in both cases, the log-scaling is a consequence
of a fundamental feature of the nervous system: the need
to balance the opposing effects of separate depolarising
(excitatory) and hyperpolarising (inhibitory) synaptic
currents from distinct groups of presynaptic cells.

Log-transform

Assumptions of normality abound in data analysis and
statistical methods. The normal (Gaussian) distribution
has an instantly recognisable bell-shaped probability
density function (PDF), with intuitive properties that
are often taken for granted. For example, the mean,
median and mode of a normal distribution are equal,
and most of the data fall close to this value. Thus, when
visually examining the PDF, the values of the mean or,
for example, the 25th or 90th percentiles are apparent.

Normal distributions are ubiquitous in experimental data
as a consequence of the central limit theorem, which
roughly states that when the effects of many random,
independent processes are combined additively, the result
is normally distributed.
However, the distributions of many important

quantities are not even approximately bell-shaped.
PDFs of such distributions are often less visually
informative than their normal counterparts, and they
can have counterintuitive properties when approached
from a ‘bell-shaped distribution’ mindset. For example,
consider the PDFs in Fig. 2A. By visual inspection, it
is difficult to answer even basic questions, such as the
approximate values of the mean, median and SD of each
distribution (mode is not even defined because the PDFs
are unbounded for x → 0) or how the distributions
compare. One might assume that one reason for such
difficulty is the heavy right tail, which is poorly visualised
on a linear scale. Although log-scaling the x-axis might
help, this is not guaranteed (Fig. 2B). On the other hand,
if the PDFs of the logarithms of the original values
are considered, the picture becomes clear (Fig. 2C). In
our example, the log-transform makes the distributions
bell-shaped (albeit left-skewed) and reveals intuitive
differences between the two PDFs. This simple illustration
hopefully goes some way towards convincing the reader
of the importance of appropriately transforming the
quantitative variables under consideration.
For an intuitive understanding of the log-transform,

consider that it is equivalent to a histogram in which
the size of the bins scales exponentially with x. (An
illustration using datapoints drawn from the example
PDFs and its MATLAB code is provided in the
statistical summary document, included as Supporting
information). For example, if x is duration, the size
of bins for datapoints in the millisecond range has a

A B

C

Figure 1. Spiking activity in a neuronal population
A, activity of 201 neurons in primary visual cortex of a mouse, during 20 s of spontaneous activity. Neurons were
ordered by their mean firing rate. B, distribution of the log-transformed mean firing rates of the neurons in (A).
C, distribution of log-transformed ISIs (we use base 10 logarithms, unless explicitly stating otherwise) of the three
indicated example neurons in (A). Based on publicly available multi-hour recording data of Siegle, Jia et al. (2021).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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millisecond order of magnitude, whereas, for datapoints
in the range of seconds, the bins are also on the scale of
a second. Accoridngly, log-transformed data comprise
a scale-agnostic representation; for a similar reason, log
values are dimensionless (Matta et al., 2011).

Single neuron spiking

The log-transform is required for basic quantitative
spike train analysis, such as the analysis of ISIs. ISIs
of a typical neuron in vivo can easily range over five
orders of magnitude, from milliseconds to minutes. For
a distribution spanning many orders of magnitude, the
log-transform is necessary, if only to visualise the full
range of the data (Fig. 1C). On a more conceptual level,
as we discuss next, the fact that ISIs are log-scaled reflects
two fundamental features of neuronal spiking in vivo:
irregularity resulting fromfluctuating input and the super-
position of spiking patterns at multiple timescales.

Irregular spiking produces log-scaled ISIs. Although iso-
lated neurons respond to constant current injection with
regular spiking (i.e. all ISIs are approximately similar),
neurons in vivo spike in a highly irregular manner (Burns
& Webb, 1976; Compte et al., 2003; Softky & Koch,
1993). The relationship between irregular spiking and
log-scaling is already seen in the simplest analytical model
of irregular spiking: the homogeneous Poisson process.
The inter-event intervals of a Poisson process with rate
r are exponentially-distributed, with a mean of 1/r and
a heavy right tail of long intervals (Fig. 3A). The SD of
the exponential distribution is also 1/r, producing inter-
vals that, regardless of rate, have a coefficient of variation
of one. Exponential distributions with distinct rates differ
in their shape on the linear scale, whereas, upon log
transformation, a change in rate corresponds to a trans-
lation of the distribution (we omit the formal proof,
which is mathematically straightforward) (Fig. 3A). Thus,
intervals from a Poisson process are naturally log-scaled
and such scaling facilitates comparison between processes
with different rates.

The Poisson process, however, is only a crude
approximation of empirical spike trains. Even under
constant input conditions, the probability of a neuron
spiking depends on its recent spike history. Such history
effects are minimal after long spike-free intervals (the
cell has effectively ‘forgotten’ its last spike time), whereas
they are especially prominent in the ∼20 ms following
a spike. The relationship between neuronal inputs,
refractory effects and the properties of their spiking
output is well-captured by the canonical integrate and
fire models (Burkitt, 2006). Although these models are
highly idealised, they capture the key biophysics of spikes
as all-or-none events followed by a quasi-resetting of
neuronal state (Hodgkin & Huxley, 1952). For constant
inputs, integrate and fire models show a sharp transition
from silence to regular spiking at threshold levels of input
(Fig. 3B), which is comparable to the response properties
of many cells in vitro. However, when the input includes
fluctuations around a constant subthreshold mean,
integrate and fire models can produce irregular spiking
at in vivo-like rates for a wide range of input magnitudes
(Fig. 3B) (Feng & Brown, 1999; Gerstein & Mandelbrot,
1964; Holt et al., 1996). Spiking in this ‘fluctuation-driven’
regime is primarily caused by occasional threshold cross-
ings and occurs at a rate determined by the mean and
variance of the resulting voltage, relative to the spike
threshold.
Fluctuation-driven spiking in integrate and fire models

results in ISIs that are well-approximated by a gamma
distribution (Fig. 3C) (Miura et al., 2007; Ostojic, 2011).
Similar to Poisson ISIs, the right tail of gamma-distributed
ISIs is exponential, reflecting the steady-state rate set
by the input statistics and loss of dependence on spike
history at longer timescales. By contrast, the left tail can
be supra- or sub-Poisson, reflecting either an increased
or decreased probability to spike after the previous
spike. Approximately gamma-distributed ISIs are a very
general feature of integrate and fire-like systems, and
extend to more realistic neuron models, input structure
and membrane voltage statistics, including conductance
changes caused by presynaptic spikes and input structure
other than white noise (Ostojic, 2011).

A B C

Figure 2. Example of the
log-transformation
A and B, two gamma PDFs plotted on linear
and log-scale. C, PDFs of the two
distributions upon log-transformation.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3058 D. Levenstein and M. Okun J Physiol 601.15

Table 1. Definitions of log-normal and log-gamma distributions

Log-normal X∼Normal(μ,σ ) ⇒ exp(X)∼Log-normal(μ,σ ) Y∼Log-normal(μ,σ ) ⇒ ln(Y)∼Normal(μ,σ )
Log-gamma X∼Gamma(α,θ ) ⇒ ln(X)∼Log-gamma(α,θ ) Y∼Log-gamma(α,θ ) ⇒ exp(Y)∼Gamma(α,θ )

Similar to the normal distribution, the gamma
distribution has two parameters (α and θ) (Table 1),
which can be directly related to the rate of spiking and
its irregularity, via the coefficient of variation of the
ISIs (rate = 1/αθ , CV = 1/

√
α ). On a log scale,

gamma-distributed ISIs have many of the intuitive
properties that normal distributions have on linear
scale: varying rate corresponds to a translation of the
distribution, whereas the shape parameter scales the
width of distribution. Thus, the statistics of single-cell
spiking under stationary input conditions is especially
well visualized and compared across conditions on
log-scale, in which a gamma distribution of ISIs turns
into a log-gamma distribution of log-intervals (Table 1).
The distribution of log-scaled ISIs provides an intuitive
picture of the relationship between neuronal input and
spike output (or transfer function) of the integrate and
fire neuron on a log-scale, in which the subthreshold

regime has a linear response at low input magnitudes
that saturates at suprathreshold spiking with a narrower
ISI distribution (Fig. 3D). The shape of the log-ISI
distribution of the Poisson neuron is constant, whereas
the shape of the log-ISI distribution from the integrate
and fire neuron varies with the mean and variance of its
input. With higher mean input, the distribution narrows
(Fig. 3C).

Single neuron spiking as a mixture of gamma PDFs.
Mirroring the integrate and fire models, the ISI statistics
of biological neurons under fixed conditions have been
well fit by a gamma distribution. In vitro, cortical
neurons receiving fluctuating current input have ISIs
for which the distribution is closely matched by a
gamma PDF (Miura et al., 2007). This is also the case
in vivo, over short windows of spontaneous activity

A

C D

B

Figure 3. Log-scaled ISIs of integrate and fire neurons
A, ISI distributions from homogeneous Poisson processes with rate = 30, 10 and 3 spikes s–1. On a linear scale, the
ISI distributions change shape whereas on a logarithmic scale, different rates correspond to a translation of the
distribution. B, input/output relationship (transfer function) of a simulated linear integrate and fire neuron with
constant and fluctuating inputs. Fluctuation-driven subthreshold spiking regime region is shaded. C, integrate
and fire model with fluctuating input produces log-scaled spiking statistics. ISI distributions from neurons with
different levels of input are readily compared upon log-transformation, but not on a linear scale, and are well-fit
by a log-gamma distribution (solid lines, bottom right). D, input/output transfer function of an integrate and fire
neuron on a log-scale. Heatmap shows the log-ISI distribution as a function of input, with reverse orientation to
match rate. Triangles indicate the input values for the integrate and fire models in (C).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

 14697793, 2023, 15, D
ow

nloaded from
 https://physoc.onlinelibrary.w

iley.com
/doi/10.1113/JP282758 by T

est, W
iley O

nline L
ibrary on [04/10/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



J Physiol 601.15 Logarithmically scaled, gamma distributed neuronal spiking 3059

Normal, gamma, log-normal and
log-gamma distributions

Both gamma and log-normal distributions are
naturally log-scaled because their PDFs become
bell-shaped upon log-transformation. Therefore, these
analytical distributions allow us to translate many of
our intuitions from a normally-distributed mindset to
analysis of log-scaled spiking data.

Normal and gamma distributions are specified by
two parameters. The normal PDF is always bell-shaped
and symmetric, with the centre of the bell and its width
specified by μ (mean) and σ > 0 (standard deviation).
Gamma PDF is specified by the shape (α > 0) and
scale (θ > 0) parameters. The shape of gamma PDF
is versatile: for low values of α, it looks as illustrated
in Fig. 2A; for higher values of α, it progressively
becomes bell-shaped albeit with right (positive) skew.
The exponential distribution is a special case of gamma
PDF with α = 1.

Log-normal and log-gamma distributions involve
the normal and gamma distributions and the
log-transform. The naming, however, is confusing
because the two cases use different nomenclatures.
Specifically, log-gamma is the distribution one gets
after passing a gamma-distributed random variable
through the log-transform. On the other hand,
distribution is said to be log-normal if, upon being
log-transformed, it has a normal distribution (Table 1).

(Mochizuki et al., 2016) or when the data consist of
rate-matched trials of a behavioural task (Maimon &
Assad, 2009).

However, a gamma distribution does not provide a
good fit to the ISI statistics of most neurons when
recorded over long durations and in changing contexts
(Fig. 1C). This is not unexpected, given the prominence
of temporal variation in neuronal firing rate, which is
one of the most pervasive and longstanding observations
of in vivo neurophysiology. For example, accounting
for ISIs over long durations in the early visual system
requires a non-stationary gamma PDF with a fluctuating,
time-dependent rate (Miura et al., 2007; Teich et al., 1997).
Such fluctuations in rate also explain the supra-Poisson
variability of spiking observed in the cortex (Churchland
et al., 2010; Goris et al., 2014) and can be captured by
generalized linear models (Gerstner et al., 2014) that
combine external sources modulating the probability (or
rate) of spikingwith spike history effects. Rate-modulating
factors can include information from a relevant sensory
modality (Pillow et al., 2008; Truccolo et al., 2005) or inter-
nal network factors, such as activity of the rest of the local
population (Goris et al., 2014; Harris et al., 2003; Lin et al.,

2015; Okun et al., 2015) and oscillations (Hardcastle et al.,
2017; McClain et al., 2019).
The regularity of spiking is influenced by multiple

factors, the most obvious of which is the discharge rate
(Ponce-Alvarez et al., 2010). For example, ISIs fromhigher
rate trials in parietal neurons were on average fit by
a gamma PDF with a larger α parameter, indicating
more regular spiking (Maimon & Assad, 2009). In other
cases, such as thalamic head direction cells, spiking
variability was found to be modulated by the animal’s
head direction in a manner that was not correlated with
firing rate (Liu & Lengyel, 2021). Furthermore, neurons
often discharge with specific regularity when spiking at
different timescales. For example, hippocampal pyramidal
cells with highly diversemean firing rates have notoriously
fixed burst ISIs of∼5ms (Harris et al., 2001; Ranck, 1973).
Recent work analysing recordings from multiple rodent
forebrain regions has found that ISI distributions over
long duration recordings in freely-behaving animals are
well-captured by a mixture model consisting of a small
number of gamma PDFs (Fig. 4) (Levenstein et al., 2021).
The specific mixture forms a fingerprint of the activity of
each neuron, in which each gamma component captures
the contribution of a single spiking ‘mode’ with intervals
at a particular timescale and level of variability (Fig. 4A).
The mixture of gammas fit reveals that each neuron

spends most of the time in a single low rate mode of
irregular spiking: the ground state (GS). The increased
firing rate during responses to place or head direction
in CA1 and thalamic neurons could be attributed to the
increased occupancy of specific, discrete activated state
(AS) modes with more regular and higher rate spiking,
rather than continuously varying rate (Fig. 4B). Similar
observations have been made in the dimming fibres of
the frog’s optic nerve in response to specific stimulus
features (Chung et al., 1970), as well as in the auditory
cortex where ISI distributions show stimulus-evoked
changes that are not apparent in firing rate, when AS
modes overlap (Insanally et al., 2019). AS modes were
seen throughout spontaneous activity (albeit with lower
occupancy) and were composed of spike intervals at
characteristic timescales similar across neurons (Fig. 4C),
ranging from very regular (e.g. in bursts with ISIs <10 ms
and theta-related spiking with ISIs of ∼100 ms) to more
irregular (but still sub-Poisson, e.g. at gamma-oscillation
timescales of 30−100 ms). By contrast, the rate of spiking
in the GS mode was heterogeneous between neurons
(Fig. 4C). TheGS rate, rather than the propensity of cells to
enter activated states, was the main determinant of a cell’s
mean rate (Fig. 4D).

Population spiking

The previous section discussed the structure of spike
trains of single neurons and the origin of the mean firing

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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3060 D. Levenstein and M. Okun J Physiol 601.15

rate in the ground state mode of their ISI distribution.
In this section, we move to review how this mean rate is
distributed in space, that is, across neurons of a brain area
of interest. We will see that log-scaling and gamma PDF
feature prominently in answering this question as well.

‘Dark matter’ in the cortex and the gamma-distribution
of firing rates. Until the last 10−15 years, the most
widespread approach for recording spiking activity in vivo
(and in the cortex in particular) utilised single metal
microelectrodes. With this method, an experimenter
would slowly advance an electrode through the cortex
searching for spiking activity. By selecting for neurons
exhibiting vigorous spiking, this process produced data
biased towards fast-firing neurons. However, the need
to search for such neurons at all, given the hundreds
of neurons within the ∼50 μm detection radius of the
electrode tip (Neto et al., 2016), indicates that fast-firing
neurons are not very common. These considerations led
to an appreciation that the cortex is significantly more
silent than suggested by microelectrode data (Humphries,
2021). It was even suggested that over 90% of all cortical
neurons are silent, hence presenting an unobservable ‘dark
matter’ problem in neuroscience (Shoham et al., 2006).
In a seminal study, Hromadka et al. (2008) performed a

series of juxtacellular recordings in primary auditory
cortex of awake rats with glass recording pipettes,
confirming that the majority of neurons had low firing
rates, and crucially that the distribution of log-scaled
firing rates was approximately Gaussian (i.e. the
distribution of firing rates was approximately log-normal)
(Fig. 1B). This was confirmed by additional juxtacellular
and whole-cell recording datasets from multiple cortical
areas, as reviewed by Barth & Poulet (2012). Juxtacellular

recordings simultaneously removed the selection bias for
fast-firing neurons and failed to find a prevalence of silent
neurons. For example, O’Connor et al. (2010) reported
that only ∼13% of the neurons in barrel cortex (14/106)
were categorised as silent (firing rate <0.01 spikes s–1)
(Fig. 5A). Although these recordings are as close as we
now have to ‘ground truth’ of neuronal spike rates, they
are both technically challenging and highly limited in
their yield, especially in freely behaving animals.
Over the last decade, microelectrodes have been almost

completely superseded by multi-electrode and silicon
probes. These devices are inserted ‘blindly’ into the target
brain region, and thus represent a major improvement in
terms of selection bias in addition to the higher yield of
simultaneously recorded neurons. Firing rates of neuro-
nal populations recorded by such devices were also found
to have log-scaled distributions (Buzsaki & Mizuseki,
2014; Mizuseki & Buzsaki, 2013). Directly comparing the
distributions of firing rates between silicon probe and
juxtacellular data, Fig. 5B shows the so-called Lorenz
curves for a large dataset of Neuropixels recordings
(Siegle, Jia et al., 2021) and for the aforementioned juxta-
cellular dataset. The Lorenz curves show how the total
spike ‘budget’ is distributed across a neuronal population
and visualises the degree of neuronal ‘inequality’ as
the distance of the curve from the diagonal. Although
our comparison is not fully like-to-like (the Neuropixels
recordings are from visual rather than somatosensory
cortex, and the behaviours ofmice are distinct), the Lorenz
curves demonstrate that both datasets have a highly
non-uniform distribution of firing rates, with a majority
of spikes produced by a small subset of neurons. However,
similar to the microelectrode data, the silicon probe data
have fewer slow-firing neurons compared to juxtacellular
recordings. Specifically, the slow-firing half of neurons

A B C D

Figure 4. ISI distribution as a mixture of gamma distributions
A, decomposition of an ISI distribution of an example CA1 neuron. The empirical ISI distribution is decomposed
into a mixture of six gamma distributions (GS mode and five AS modes), each with specific shape, scale and
weight (proportion of ISIs, indicated by the size of the corresponding circle). B, ISI distribution conditioned on
position relative to place field peak, averaged over place cells recorded from CA1 area. C, ISI distribution of 562
CA1 neurons and its gamma decomposition (neurons are sorted by their GS rate). D, rate of the GS mode is highly
correlated with mean rate. Points reflect neurons across multiple brain areas, including thalamus, cortex, amygdala
and hippocampus. Adapted from Levenstein et al. (2021).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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accounts for 8.7% of all the spikes in Neuropixels data,
but only for 4.1% in the juxtacellular data (Fig. 5B). The
bias towards fast-spiking neurons in silicon probe data
is significantly less severe than for microelectrodes, but
stems from the same factors: completely silent neurons are
not detected, and neurons that only fire a small number
of spikes are challenging to isolate with spike-sorting
software. The existence of a bias towards fast-spiking
neurons is supported by an anatomical estimate of the
number of neurons within the detection radius of the
probe, which suggests that ∼2-fold more neurons should
have been recorded (Siegle, Ledochowitsch et al., 2021).
These extra neurons, however, are not completely missing
from silicon probe data. In addition to spikes of the
well isolated neurons, such recordings contain a hash
of spikes for which waveforms cannot be isolated into
clearly distinct clusters (Rossant et al., 2016; Trautmann
et al., 2019). This so-calledmulti-unit activity typically has
∼20–50%of the amount of single neuron spikes. Thus, the
fact that anatomically there are twice as many neurons as
are isolated electrophysiologically can be easily accounted
for by multi-unit activity spikes, if it is presumed that the
non-isolated neurons have lowfiring rates (e.g. on parwith
the slow-spiking half of the well-isolated neurons).

How can we describe the population-wide distribution
of neuronal mean firing rates? A decade ago, the fit
quality of log-normal and gamma PDFs was compared
in eight datasets of mainly tetrode recordings, finding an
almost equal split (5/8 vs. 3/8) between the two (Wohrer
et al., 2013). Here, we revisited this question using juxta-
cellular and Neuropixels recordings. For the juxtacellular
recordings, we examined how gamma and log-normal
distributions are able to fit the Lorenz curve plot for
non-silent neurons in Fig. 5B. As shown in Fig. 6A
and B, the gamma distribution provides a close fit to the
empirical curve, whereas the log-normal distribution does

not. In agreement, the gamma PDF provides a better fit
than the log-normal one for the Neuropixels recordings of
the multiple brain areas examined, as detailed in Dearnley
et al. (2021). It is worth noting that we do not claim that
gamma is ‘the right’ analytical distribution to use, but
rather that it is relatively accurate and convenient to fit.
It is possible that other analytical PDFs could provide an
even better fit, particularly if specified by >2 parameters
(e.g. the generalised gamma distribution). A concise
description afforded by a closely fitting analytical PDF
allows easy quantitative comparisons of the distribution
between brain areas or states, and could provide important
insights into the operational regime of the neuro-
nal network and the computation and communication
strategies it implements.
To understand why a gamma PDF performs better than

a log-normal PDF, log-transforming the data proves to be
useful again. We find that the log-gamma PDF accurately
captures the left-skewness of the empirical log-rate data,
whereas a Gaussian cannot (Fig. 6C and D). The left skew
indicates a prevalence of slow-firing neurons beyond what
is captured by a log-normal distribution. The better fit to
the empirical data provided by the gamma distribution
also underscores the importance of log-transforming
the firing rates. For the log-normal distribution, simple
logarithmic rescaling of the x-axis is sufficient to attain
a bell-shaped PDF, but, as mentioned above, this is not
the case for the gamma distribution (Fig. 2B; see also
Supporting Information). Therefore, the transformation
to log-rates cannot be avoided if the aim is to examine the
population firing rates on their natural scale.
These results suggest that the ‘dark matter’ problem

is a non-problem. The majority of the neurons simply
have low firing rates as a result of the overall log-scaled
distribution with a heavy left tail, and the previous
inability to identify their spikes was a consequence of

A B

Figure 5. Distribution of firing rates
across cortical neuronal population
A, summary of the juxtacellular dataset
showing the cortical depth and firing rate
of each cell. Silent neurons (firing
rate <0.01 spikes s–1) are shown in purple.
B, cumulative fraction of neurons (ordered
from lowest to highest firing rate) vs.
cumulative fraction of spikes, for three
datasets; purple, black: juxtacellular dataset
of (O’Connor et al., 2010) with all the
neurons (purple) or with non-silent neurons
only (black); blue: Neuropixels Allen
Institute dataset (from 22 recordings in the
primary visual cortex, similar to the one
illustrated in Fig. 1A). Adapted from
O’Connor et al. (2010).

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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this. The results presented by O’Connor et al. (2010),
which, based on the above arguments, appear to provide
a good estimate of cortical firing rates, together with the
fit of the non-silent subset by gamma PDF (α ≈ 0.38 and
θ ≈ 22.3, θ was inferred from the median firing rate)
(Fig. 6A), lead to the following estimate of firing rates
in a column of the mouse sensory cortex: ∼15% of the
neurons are silent, that is, fire at <0.01 spikes s–1, ∼25%
fire at 0.01–1 spikes s–1 and∼25% are fast-firing cells with
rates>10 spikes s–1. Imagingmethods hold the promise to

corroborate this estimate in an unbiased manner because
each neuron can be seen irrespective of its level of
activity. Although presently used calcium indicators do
not provide a single spike resolution, the distribution
of calcium transients in neuronal populations is also
log-scaled (Margolis et al., 2012; Yang et al., 2019; Zarhin
et al., 2022). With ongoing improvements of calcium and
voltage indicators, it is probable that optical methods will
shed definitive light on the ‘darkmatter’ issue over the next
decade.

A

C

E F

D

B

Figure 6. Empirically observed firing
rate distributions and their analytical
fitting
A, empirical Lorenz curve (replotted from
Fig. 5B) is well fit by the gamma distribution
(dashed line). B, log-normal PDFs do not
provide a good fit to this empirical data:
dashed lines show the Lorenz curves for
several σ values within the optimal range,
none of them closely fit the empirical
Lorenz curve. C, log firing rate distribution
from Neuropixels recordings in the primary
visual cortex is left-skewed and hence
better fit by the log-gamma PDF. D, across
multiple recordings and brain areas, the
population log-rate mean is lower than the
median, indicating that the log-rate is
left-skewed. E, different brain areas have
distinct Lorenz curves. Colours as in (D). F,
gamma fit to individual recordings shows
that the shape of the firing rate distribution
is distinct across brain areas (all the
differences are statistically significant at P <

0.001 using a rank sum test, except VISp vs.
CA1 and CA3 vs. DG). (C) to (F) are based
on the Neuropixels Allen Institute dataset.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Population rate distribution across distinct brain areas
and brain states. The distribution of mean firing rates
differs across brain areas (Mizuseki & Buzsaki, 2013).
The difference is not only in the average firing rate,
which, for example, is higher in sensory thalamus than
in the cortex (Fig. 6D), but also in the way the over-
all spike ‘budget’ is spread across neurons. When we
compare the Lorenz curves of the different brain areas
(Fig. 6E), we find that the firing rate distribution is most
uniform in the thalamus and most unequal in the dentate
gyrus and CA3 hippocampal areas. Conveniently, for
gamma-distributed data, the Lorenz curve is controlled by
the α shape parameter alone. Therefore, the differences
in inequality of firing rate distribution across areas can
be easily verified by fitting gamma PDF to individual
recordings and comparing the α parameter (Fig. 6F).

Recent evidence demonstrates that the population-wide
distribution of firing rates is not fixed. Changes in firing
rate on timescales of tens of seconds and minutes are
partially explained by transitions between different brain
states. Often brain state transitions involve changes in the
shape of the firing log-rate distribution, which can get
translated and squeezed or stretched. For example, the
log-rate distribution gets stretched upon transitions from
non-REM to REM sleep (Miyawaki et al., 2019; Mizuseki
& Buzsaki, 2013; Watson et al., 2016) or from low to
high level of arousal in the awake condition (Dearnley
et al., 2021). Although the overall distribution of firing
rates across the entire population changes across brain
state transitions, the rank of individual neurons in the
firing rate distribution remains (relatively) conserved,
such that fast (slow) firing neurons in one state (e.g.
sleep) tend to maintain a high (low) rate in another (e.g.
wakefulness) (Buzsaki & Mizuseki, 2014; Dearnley et al.,
2021; Hengen et al., 2016; Watson et al., 2016). This is
primarily attributed to stable GS rate across brain states,
rather than the propensity of cells to enter AS modes
(Levenstein et al., 2021). Fitting of an analytical PDF such
as gamma can be applied to firing rates of specific neuro-
nal subsets, such as neurons forming a particular cell-type
or sharing a response property. Such decomposition of
the distribution of firing rates across the entire population
into a mixture model (an approach we have already
encountered for ISIs) can help elucidate the way that
neuronal firing rates change across brain states (Dearnley
et al., 2021).

Visualisation and understanding of changes in
population firing rates are assisted by the log-transform
and by an accurate fit of empirical data. In the example
shown in Fig. 2, we see two PDFs with equal means, and
the difference between them only became apparent upon
log-transformation. This was not merely a hypothetical
example using two arbitrary distributions, but comprised
the firing rate distributions that we have experimentally
observed in prefrontal cortex in two different brain

states (Dearnley et al., 2021). This example therefore
demonstrates that log-transforming the firing rate data
might be crucial for its proper interpretation.

Log-scaled ISIs and firing rates from balanced input

In the previous sections, we have seen that both ISIs
and firing rates are accurately captured as logarithmically
scaled, gamma distributed quantities or mixtures thereof.
What properties of neurons and neuronal circuits might
result in these log-scaled distributions, and what can
they tell us about the operating regime of neuronal
populations?
Neuronal circuits almost universally follow Dale’s

principle, according to which depolarizing and hyper-
polarizing synaptic currents originate in non-overlapping
populations of excitatory (E) and inhibitory (I) cells. In
such circuits, the fluctuation-driven regime necessary to
produce irregular spiking at the experimentally observed
low rates requires that neurons’ E and I inputs are,
on average, ‘balanced’ in magnitude (Bell et al., 1995;
Brunel & Hakim, 1999; Gerstein & Mandelbrot, 1964;
Holt et al., 1996; Shadlen & Newsome, 1994, 1998;
Stein, 1965; Tiesinga et al., 2000). Highly correlated E
and I inputs are widely observed in vivo, during both
spontaneous and sensory-evoked conditions (Arroyo
et al., 2018; Okun & Lampl, 2009). Balanced inputs
emerge naturally in recurrent networks of E and I
neurons with a self-sustaining ‘balanced state’ in which
neurons fire asynchronously and irregularly at low rates
(Brunel, 2000; Kumar et al., 2008). Conditions for the
balanced state are minimal: I synapses need to be
sufficiently strong to counteract the positive feedback
from self-excitation (Brunel, 2000) and synaptic weights
should scale with the number of inputs to a neuron such
that fluctuations are sufficiently large to bring neurons
across threshold (Kadmon & Sompolinsky, 2015; van
Vreeswijk & Sompolinsky, 1996). Experimental evidence
suggests that both of these conditions are met, and may
even be homeostatically maintained in neuronal circuits
on a cell-by-cell basis (Barral & Reyes, 2016; Froemke
et al., 2007; Xue et al., 2014). Even non-recurrent inputs
can be balanced as a result of the ubiquitous effects of feed-
forward inhibition (Bhatia et al., 2019; Buzsaki, 1984).
Log-scaled distributions of ISIs and mean firing rates

emerge naturally in networks of balanced neurons.
Where ISIs are log-scaled because of the irregular
fluctuation-driven spiking, firing rates are naturally
log-scaled because fluctuation-driven neurons have a
supralinear relationship between mean input and firing
rate output (I/O transfer function) (Hansel & Vreeswijk,
2002; Miller & Troyer, 2002; Priebe & Ferster, 2008).
A supralinear I/O transfer function turns a normally
distributed variation in membrane potential across

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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neurons (e.g. via central limit addition of many sources of
input) into a distribution ofmean firing rates over neurons
with a heavy right tail (Roxin et al., 2011). Thismechanism
was validated experimentally (Petersen & Berg, 2016)
and even captures the fact that the log-transformed
distribution is left-skewed (Roxin et al., 2011).
The fact that mean firing rate is primarily determined

by the GS rate suggests that GS mode is attributable to
a stable balanced state of neuronal inputs (Hennequin
et al., 2018) and that cell-to-cell variation in GS rate
reflects underlying heterogeneity in the subthreshold
voltage at which cells balance relative to spike threshold
(or ‘balance point’) (Fig. 7). Such heterogeneity could have
multiple sources, such as variation in the influence of local
connectivity (or in-degree) (Landau et al., 2016; Okun
et al., 2015; Trojanowski et al., 2021), excitability (Sweeney
et al., 2015; Trojanowski et al., 2021), or relative strength of
inhibitory and excitatory synapses (Vegué & Roxin, 2019;
Yassin et al., 2010).
On relaxing the mathematically convenient

assumptions of an infinite number of basic integrate
and fire neurons with uniform random connectivity
receiving a homogeneous input, deviations from constant
rate irregular spiking are quickly found that reproduce
a variety of AS mode spiking patterns observed in
vivo. Balanced networks can show a heterogeneous mix
of subthreshold and suprathreshold spiking (Bi et al.,
2021), which can propagate internally through strong
recurrent connections (Omura et al., 2015; Ostojic, 2014)
or be evoked by upstream inputs (Vogels & Abbott,
2009). In addition to asynchronous irregular activity, the
interaction between excitatory and inhibitory cells can
produce coherent (E/I gamma) oscillations (Brunel, 2000;

Buzsaki & Wang, 2012) that constrain spiking statistics
of individual neurons. Intrinsic neuronal currents also
shape spiking at a wide range of timescales, affecting
the temporal properties of coherent network activity
(Lundstrom et al., 2008; Stark et al., 2013), as well as the
timing of responses of single neurons (Larkum et al.,
1999; Robinson & Siegelbaum, 2003). Together, these
results suggest that, although the irregular spiking GS
mode results from balanced input, the repertoire of AS
modes results from a variety of cellular and network
activity patterns that arise from deviations from the
idealised balanced integrate and fire state (Fig. 7). Where
GS rate reflects cell steady-state subthreshold membrane
potential, the particular temporal properties of different
AS modes are determined by network-specific activity
regimes and perturbations, which can produce spiking at
a range of timescales and ranging from regular (Ranck,
1973) to irregular (Compte et al., 2003). Because the
timescales of these activity patterns themselves tend to be
distributed over a logarithmic scale (Buzsaki & Draguhn,
2004), this variation in spiking patterns, over time and
between cells, can only be compared on a log-scale.

Computational advantages of log-scaled spiking
statistics

What are the benefits of an operational regime in which
log-scaled ISIs and firing rates emerge from the need
to maintain, on average, low-rate activity in a neuronal
network with separate E and I inputs? One obvious benefit
of this regime is energy conservation through low spike
rates. Additional computational benefits are discussed
next.

Figure 7. Log-scaled spiking in E–I
networks
The irregular spiking GS mode results from
a steady state of fluctuation-driven spiking
at heterogeneous rates, which are gamma
distributed as a result of normally
distributed subthreshold balance points and
the supralinear I/O transfer function of
balanced fluctuation-driven neurons. The
repertoire of AS modes results from a
variety of cellular and network activity
patterns that produce spiking at particular
timescales; for example, dendritic burst
spiking that produces ∼5-ms ISIs, E–I
‘gamma’ oscillations that produce
∼10–30-ms ISIs and theta oscillations that
produce ∼120-ms ISIs. Multiple other
mechanisms are not illustrated.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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On the single-cell level, it is traditionally assumed
that an irregular Poisson spike train has the highest
information rate per spike at a given firing rate (Tiesinga
et al., 2000) and balanced inputmay improve the efficiency
of neural coding by maintaining the firing irregularity of
cortical neurons (Miura et al., 2007). However, although
the GS mode is universally irregular, AS spiking modes
tend to be more regular, and are heterogeneous across
regions (Levenstein et al., 2021). This regional diversity
of firing patterns is conserved across mammalian species
(Mochizuki et al., 2016) and relates to the functional
category of the cortical area; from more regular spiking
in motor areas in comparison to sensory areas, and
bursty in the prefrontal andhippocampal areas, suggesting
that spiking at specific timescales might play a role in
distinct neural computations in each functional sub-
division (Mochizuki et al., 2016; Shinomoto et al.,
2009). Activity at multiple distinct timescales can support
functional multiplexing of signal propagation between
brain regions (Tingley et al., 2018), and can engage
functionally distinct synaptic (Bienenstock et al., 1982)
and intracellular (Payeur et al., 2021) processes.

On the population level, networks with log-scaled
firing rates are assumed to support a balance of network
stability and flexibility. In plastic networks, even a small
variability in neuronal parameters can result in a neuro-
nal oligarchy where a small group of interconnected
neurons has an exceptionally strong impact on the
network dynamics (Kleberg & Triesch, 2018). High rate
hubs in these networks can support local signal trans-
mission along sequences of specific subnetworks (Jahnke
et al., 2014), and they can sustain a large-amplitude
response to transient stimuli, which does not occur in
more homogeneous networks (Vegué & Roxin, 2019).
Heterogeneous networks with log-scaled firing rates are
relatively insensitive to changes in properties of the many
low firing rate neurons, which allows them to be plastic
without having large effects on the stability of overall
network behaviour (Panas et al., 2015). This can support
functional segregation by mean firing rate in memory
representations (Gava et al., 2021; Grosmark & Buzsaki,
2016) and tuning properties (Lee et al., 2020) that optimize
storage (Pereira & Brunel, 2018) and coding capacity
(Padmanabhan & Urban, 2010).

Evolutionary perspective. Of course, eventually, any
appeal to normative properties of biological systems is
an appeal to evolution. Although this review primarily
focused on the firing rates of neo- and archicortical
neurons and neuronal populations, the origins of the
phenomena described here appear to be significantlymore
evolutionarily ancient and widespread.

Several years ago, Berg and colleagues investigated how
spikes and membrane potentials are distributed within
and across a neuronal population using intracellular

and silicon probe recordings (Berg et al., 2007; Lindén
& Berg, 2021; Petersen & Berg, 2016). The recordings
in these studies were made not in the mammalian
cortex but in isolated turtle spinal cord sections, and
examined activity that, in the intact animal, would have
generated a scratching movement by the hindlimbs.
These investigations revealed that the activity of the
spinal cord neuronal network exhibits all the key features
reviewed in the present review, namely log-scaled firing
rates, irregular spiking activity of individual neurons and
E/I balance.
The spinal cord circuitry is highly evolutionarily

conserved. Its comparison across different vertebrate
phyla suggests that the neuronal circuits studied by Berg
and colleagues are ∼420 million years old (Grillner &
El Manira, 2020). This is a time when sharks separated
from the line leading to mammals and long before the
evolutionary appearance of the mammalian cortex, which
is further underscored by the fact that in this network
the primary inhibitory neurotransmitter is glycine rather
than GABA. This evolutionary perspective, along with
the computational considerations outlined in the pre-
vious section, indicate that the properties reviewed here
are significantly older and more basic than one might
infer from the cortex-focused literature that presently
dominates the field.
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