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Abstract. Working in univalent foundations, we investigate the symmetries of spheres, i.e., the
types of the form Sn = Sn. The case of the circle has a slick answer: the symmetries of the circle

form two copies of the circle. For higher-dimensional spheres, the type of symmetries has again
two connected components, namely the components of the maps of degree plus or minus one. Each
of the two components has Z/2Z as fundamental group. For the latter result, we develop an EHP

long exact sequence.

1. Introduction

Martin-Löf’s dependent type theory [22] can serve as a basis for proof assistants and dependently
typed programming languages. As pioneered by Voevodsky [32] as well as by Awodey and Warren [2],
it allows for homotopy-theoretic semantics. Concretely, types can be interpreted as ∞-groupoids [18],
and more generally, as objects in any Grothendieck (∞, 1)-topos [25]. These models justify Voevod-
sky’s univalence axiom and admit a range of higher inductive types. The field that embraces the view
of types as spaces qua homotopy types is known as homotopy type theory (HoTT) and the setting as
univalent foundations (UF) [30].

It turns out that various results that hold for spaces in standard homotopy theory can be stated
and proved for types in homotopy type theory. The framework enforces all arguments to be purely
axiomatic in nature, and the resulting subfield of homotopy type theory is sometimes called synthetic
homotopy theory. Examples of results are the type-theoretic Seifert–van Kampen theorem [17], the
Blakers–Massey connectivity theorem [16], and the construction of the Hopf fibration [30, Ch. 8.5].

A central type of study in synthetic homotopy theory is the n-dimensional sphere type Sn. The
calculation of the fundamental group of the circle S1 was among the first results in the area [21],
and the result was quickly extended to the nth homotopy group of Sn, i.e., to πn(Sn) [20]. Further
homotopy groups of higher spheres have been studied by Brunerie, showing that πn+1(Sn) = Z/2Z
for n ≥ 3 [4].

In this paper, we are interested in the type of symmetries, or self-equivalences, of the spheres Sn.
By univalence, this type can be written simply as Sn = Sn. Trivial cases occur for n = −1, where
S−1 = ∅, the empty type, so (S−1 = S−1) = 1, and for n = 0, where S0 = 2, the type of booleans, so
(S0 = S0) = 2 = (1+ 1). For n = 1, a relatively simple calculation shows that (S1 = S1) = (S1 + S1).
For n ≥ 2, a similarly elegant answer does not seem to be possible. Our main result for this case is
that the type (Sn = Sn) has two equivalent connected components, each with fundamental group
Z/2Z. Perhaps surprisingly, this turns out to be easier to prove for n ≥ 3 than for n = 2.

Our study is closely related to the calculation of homotopy groups mentioned above. Recall that
the nth homotopy group of Sn is, by definition, the set-truncation of the iterated loop space Ωn(Sn).
The latter type is equivalent to Sn →∗ Sn, the type of pointed endofunctions on Sn. In contrast,
we study the types of self-equivalences of Sn, not the pointed ones. Many of our arguments use
techniques similar to the ones used in the calculation of higher homotopy groups, such as the Hopf
fibration [30, Sec. 8.5], or Freudenthal’s suspension theorem [30, Thm. 8.6.4]. For the characterisation
of the fundamental group of the components of S2 = S2, Brunerie’s [4] calculation of π4(S3) is of
great use.

The type Sn = Sn is the type of elements of a (higher) group, viz., the automorphism group of the
n-sphere, traditionally denoted G(n+1). The classifying space BG(n+1) classifies spherical fibrations
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Figure 1. Relating pointed endomaps, endomaps, and self-identifications of spheres.
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with fiber Sn, and these play an important role in the branch of geometric topology that deals with
the homotopy theory of manifolds via surgery theory (see, e.g., Sullivan [28]). The homotopy type of
the symmetries of the 2-sphere in classical topology has been determined by Hansen [15], and we
discuss this in our conclusions. We refer to Smith [26] for a general survey of the homotopy theory of
function types in classical topology.
Setting and assumptions. To be precise and to fix notations, we work inside a version of intuition-
istic Martin-Löf type theory with Σ-, Π- and Id-types and with a cumulative hierarchy of universes,
simply written U , for which Voevodsky’s univalence axiom holds. Our type theory corresponds to the
one developed in the HoTT book [30], although we only assume the higher inductive types specified
below. The basic concepts introduced in the first four chapters of [30] will mostly be used without
further explanation.

We use the same notations as in [30], with the following exceptions. If p : x = y and q : y = z are
paths, then we denote their composition by qp, or by q · p. The (dependent) application of a function
f :

∏
x:X Y (x) on paths is denoted by [f ].

We assume a type N of natural numbers with its inductive property (cf. [30, Ch. 1.9]), from which
is crafted a type Z of integers as in [5, core/lib/types/Int.agda]. One important property of Z is
that it has decidable equality, as proved in the cited file.

A pointed type is a type A with an implicitly or explicitly given point a0 : A. Given such a pointed
type, we write Ω(A) :≡ (a0 = a0) for the loop space, which is itself pointed at refla0 . The iterated
loop space is given by Ω0(A) :≡ A and Ωn+1 :≡ Ωn(Ω(A)). Note that Ω, and hence Ωn, will be given
the structure of wild endofunctors (see Example B.6), which means in particular that they can be
applied to functions between pointed types. The universe of pointed types is denoted by U∗, and the
forgetful map U∗ → U is a silent coercion: given a pointed type A, its underlying unpointed type is
still written A. To avoid confusion, throughout this paper, the type A = B will always denote the
type of paths from A to B in U (that is when A and B are considered as unpointed types), while
A =∗ B will denote the type of paths from A to B in U∗ (that is, when A and B are considered as
pointed types).

We further assume the following higher inductive types, referring to [30, Ch. 6] for the details: the
circle (denoted by S1); propositional truncation (denoted by ∥A∥); set truncation (denoted by ∥A∥0);
suspension (denoted by ΣA); join (denoted by A ∗B); wedge sum (denoted by A ∨B). The latter
three are defined as certain pushouts. For the circle we assume the usual definition with a base point
• and a loop ⟲, although it can equivalently be described as the suspension of 2. (In fact, all the
above higher inductive types can be constructed from pushouts alone, see [24].)

The spheres Sn are then defined by induction on n : N by Sn :≡ Σ(Sn−1) for all n ≥ 2. We also set
S−1 :≡ ∅ and S0 :≡ 2 :≡ 1+1. Then we have Sn = Σ(Sn−1) for all n ≥ 0 (for n = 1 this follows from
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[30, Lem. 6.5.1]). Another basic fact about spheres is that Sn is (n−1)-connected, for all n ≥ −1,
[30, Cor. 8.2.2]. This implies that S1 is connected and that S2 is simply connected, i.e., S2 and all its
path types are connected.

For pointed types we adopt the following conventions. Suspensions are pointed at N. If A and B
are pointed types, then A+B is pointed at inl(a0), with a0 the point of A. A similar convention is
followed for pushouts, wedges and joins.

A fiber sequence (cf. [30, Def. 8.4.3]) is a sequence F
ι→∗ X

p→∗ Y where F is the fiber of p at
the point y0 of Y and ι is the first projection. The connected component of type A at point a : A is
A(a) :≡

∑
x:A∥a = x∥.

Throughout this paper we treat univalence as transparent, in the sense that equivalences f : A ≃ B
will be treated as paths of type A = B without any warning, and vice versa. (Possible universe
level issues can be solved by cumulativity and will be disregarded.) We adopt a similar attitude
towards function extensionality. We treat a homotopy h :

∏
x:A(f(x) = g(x)) as a path of type f = g.

Conversely, any p : f = g is treated as the induced homotopy, with p(x) (or px) denoting the induced
path of type f(x) = g(x).
Contributions and overview of the paper. In Section 2 we show that the type S1 = S1 is
equivalent to S1 + S1. To do so, we take a detour to univalent group theory and establish a far more
general result: Gottlieb’s theorem (new in UF). We get (S1 = S1) ≃ (S1 + S1) by applying Gottlieb’s
theorem to the group of integers Z. In Section 3 we deal with S2 = S2. This case is much more
difficult than the previous. Using the Hopf fibration as defined in UF in [4], and two definitions of
the degree function (a variation of [10]), we prove that the type S2 = S2 has exactly two connected
components, equivalent to one another. In Section 4 we prove by induction on n ≥ 2 that the type
Sn = Sn has exactly two connected components, equivalent to one another. Each induction step
relies on Freudenthal’s suspension theorem and on the result that suspension and negation commute
(new in UF in 2020). In Section 5 we explain the 3-dimensional Fig. 1, the inventory of the types
and maps between them studied so far, and discuss comparisons with other approaches. In Section 6
we prepare the study of the structure of the connected components of S2 = S2 by some results on the
generalized Whitehead product (new in UF). We partly develop an EHP long exact sequence (new
in UF). In Section 7 we show that the fundamental group of each component of Sn = Sn is Z/2Z
for n ≥ 2. Final remarks are made in Section 8. Appendix A contains proofs that are left out or
only sketched. Appendix B provides the basics of wild categories (including U and U∗), wild functors
(including Ω and Σ), wild adjunctions (Σ ⊣ Ω), and wild monoids.

2. Symmetries of the circle

In this section, we will prove the following result.

Theorem 2.1. There is an equivalence

(S1 = S1) ≃ (S1 + S1).
We will obtain the result as a consequence of Theorem 2.2. In order to state the theorem and

prove it, we need a bit of group theory in univalent foundations. For any group G, a delooping
of G is a connected pointed 1-type (groupoid) A such that G = ΩA as groups. Such a delooping
always exist, and two deloopings are always equal as pointed types [6]. We usually write BG for
such a delooping, with the point denoted by sG. Given groups G and H, the function Ω is an
equivalence from BG →∗ BH to the type of group homomorphisms from G to H. Moreover, this
equivalence retricts to an equivalence between BG ≃∗ BH and the type of group isomorphisms
from G to H. Recall that for a group G, there is a homomorphism G → Aut(G) from G to the
group of group automorphisms of G, that sends an element g : G to the conjugation x 7→ gxg−1.
The kernel of this homomorphism is called the center of G and is written Z(G). The image of this
homomorphism is called the group of inner automorphisms of G and is written Inn(G). The quotient
Out(G) :≡ Aut(G)/ Inn(G) is a set whose elements are called the outer automorphisms of G. It is
naturally pointed at the class of the identity automorphism.



4 PIERRE CAGNE, ULRIK BUCHHOLTZ, NICOLAI KRAUS, AND MARC BEZEM

Theorem 2.2. Let G be a group. There is a fiber sequence of the form:

BZ(G)
ι→∗ (BG = BG)

p→∗ Out(G)

where BG = BG is pointed at reflBG.

This theorem is known in classical homotopy theory, and is attributed to Gottlieb [14].

Proof of Theorem 2.2. For any type A, by pointing (A = A) at reflA and ∥A = A∥0 at |reflA|0, there
is, by definition of the connected component (A = A)(reflA), a fiber sequence

(A = A)(reflA)
ι→∗ (A = A)

| |0→∗ ∥A = A∥0.

When G is a group, we can apply this fact to the (unpointed) type BG. We will get the result stated
in Theorem 2.2 if we can exhibit pointed equivalences BZ(G) ≃∗ (BG = BG)(reflBG) and ∥BG =

BG∥0 ≃∗ OutG. The former is the content of Lemma 2.3, and the latter that of Lemma 2.4. □

Lemma 2.3. For any group G there is a pointed equivalence BZ(G) ≃∗ (BG = BG)(reflBG).

Sketch of proof. Define zG : (BG = BG)(reflBG) →∗ BG as the restriction of the evaluation (BG =

BG) → BG that maps x : BG = BG to x(sG) : BG. The associated group homomorphism Ω (zG) is
injective and has image Z(G). □

To prove the next lemma, we need to make observations about subgroups and quotients in univalent
foundations. The curious reader can refer to [3, Sec. 5.2 and 5.3]. Given a group G and a subgroup
H, the inclusion H ⊆ G corresponds to a pointed map iH : BH →∗ BG (pointed by a path (iH)0)
whose fibers are all sets. The fiber i−1

H (sG) can be identified with the set G/H of H-cosets, in such a
way that the element (sH , (iH)0) corresponds to the class of the neutral element of G. Subsequently,
every fiber is merely equivalent to G/H. Moreover, the pointed map aH : BG→∗ U(G/H) mapping

y : BG to i−1
H (y) is such that the homorphism Ω(aH) is precisely the action of G on G/H by

multiplication. Now, when f : G→ G′ is any group homomorphism, with corresponding pointed map
Bf : BG→∗ BG

′, we point (Bf)−1(sG′) at (sG, (Bf)0), where (Bf)0 is the path pointing Bf . One
can then prove that B im(f) is equivalent to

∑
y′:BG′∥(Bf)−1(y′)∥0, pointed at (sG′ , |(sG, (Bf)0)|0),

under which iim(f) identifies with the first projection. In particular, there is a pointed equivalence

G′/ im(f) ≃∗ ∥(Bf)−1(sG′)∥0.

Lemma 2.4. For any group G there is a pointed equivalence ∥BG = BG∥0 ≃∗ Out(G).

Sketch of proof. Recall that Out(G) ≡ Aut(G)/ im(inn) for the morphism of groups inn : G →
Aut(G) that maps an element g ∈ G to the inner automorphism x 7→ gxg−1. Apply the observation
above to inn and recognize that the fiber of Binn is equivalent to BG = BG. □

Theorem 2.2 has a simpler statement whenever there is a section (right inverse) of p : (BG =
BG) →∗ Out(G).

Corollary 2.5. If we have a section s : Out(G) →∗ (BG = BG) of the map p : (BG = BG) →∗
Out(G) in Theorem 2.2, then

(BG = BG) ≃ (BZ(G)×Out(G)).

Proof. We know that (BG = BG) ≃
∑
φ:Out(G) p

−1(φ). From Theorem 2.2, we know that the fiber

p−1(φ) is equivalent to BZ(G) when φ is the class of idG : Aut(G). So it suffices to prove that all
fibers are equivalent to each other. However, since p is a set-truncation and we have a section s of
it, the fiber p−1(φ) is simply the connected component of BG = BG at s(φ). There is an obvious
equivalence from (BG = BG)(reflG) to (BG = BG)(s(φ)), namely ψ 7→ ψ ◦ s(φ). □
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Let us come back to the study of (S1 = S1), and define an element of it that is not in the connected
component of reflS1 . Under univalence, this is equivalent to defining an equivalence S1 ≃ S1 that
is not merely equal to idS1 . Let −idS1 : S1 → S1 be the function defined by circle induction as
−idS1 :≡ ind(•,⟲−1). In other words, −idS1 is the (propositionally) unique function S1 → S1 such
that −idS1(•) ≡ • and [−idS1 ](⟲) = ⟲−1. It is an equivalence because it is its own inverse. Indeed,
we can construct a proof of −idS1 ◦ −idS1 = idS1 by function extensionality and S1-induction: since
refl• is an element of (−idS1 ◦ −idS1)(•) = •, we only need to provide an element of refl• =T

⟲ refl•
where T is the type family x 7→ (−idS1 ◦ −idS1) (x) = x. But the transport in the type family T over
⟲ is given by p 7→ ⟲ · p · [−idS1 ◦ −idS1 ](⟲)−1. Expanding the expression as ⟲ · p ·⟲−1, we find that
trpT⟲(refl•) = refl• by simple path algebra, as we wanted.

Now, we shall prove that:

(1) idS1 ̸= −idS1 .

In order to do so, consider the evaluation fiber sequence:

(2) (S1 →∗ S1) → (S1 → S1)
ev•−−→ S1

Here, all the fibers can be identified via a function

(3) f :
∏
x:S1

(• = •) ≃ (x = x)

with f(•) ≡ id•=• and [f ](⟲) : (⟲−⟲−1 = id•=•) is the reflexivity path of id•=• transported using
commutativity in • = • and path algebra. Because (• = •) is equivalent to Z, it follows that the
sequence gives an equivalence

(4) (S1 → S1) ≃
(∑
x:S1

x = x

)
≃

(∑
x:S1

Z
)

≃
(
S1 × Z

)
,

where idS1 is sent to (•, 1) while −idS1 is sent to (•,−1). These elements of S1 ×Z belong to different
connected components, so idS1 and −idS1 as well.

We can finally prove Theorem 2.1.

Proof of Theorem 2.1. The classifying type BZ of the group Z of integers is equivalent to the circle
S1. Because Z is abelian, BZ(Z) is equivalent to S1 itself, and Inn(Z) is trivial. In particular,
Out(Z) is the set underlying the group Aut(Z). But Z has exactly two automorphisms, namely the
identity and k 7→ −k. To apply Corollary 2.5 for the desired result, we give a section of the map
p : (S1 ≃ S1) →∗ Out(Z). Because we want the section to be pointed, we need to send the identity
to idS1 and k 7→ −k to −idS1 .

1 □

Note that Theorem 2.1 also gives that the equivalence (4) restricts to the equivalence (S1 ≃ S1) ≃
(S1 × {±1}) of the corresponding subtypes.

Remark 2.6. Although we used Theorem 2.2 only to prove Theorem 2.1 here, Gottlieb’s result has
other consequences in univalent group theory, which are worth mentioning. For example, we can
apply Corollary 2.5 to the group Sn of permutations of n elements. By definition, its classifying
type BSn is equivalent to the connected component U(n) of the standard set n with n elements
in the universe U . A surprising fact of group theory is that Out(Sn) is always a singleton except
for n = 6 for which it is a 2-element set. For n ≥ 3, n ̸= 6, both the center of Sn and the set of
outer automorphisms are trivial, so we get that U(n) = U(n) is contractible. For n = 6, we get that
U(6) = U(6) is a set with two elements. In layman’s terms, there is an invertible uniform way to
associate to each 6-elements set another 6-elements set, and this mapping is drastically different from
the identity. This mapping can actually be described in more details in terms of graph factorizations:

1To obtain a section from this reasoning, we need first an actual bijection between Aut(Z) and a set with two
elements. To construct such a bijection, the decidability of equality on Z is crucial: For any automorphism, we need to

decide if its image on 1 is 1 or −1.
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for a 6-element set X, consider the complete graph on X and then craft the set of sets of perfect
matchings not sharing any edge; it just happens that this resulting set also has 6-elements.

3. Symmetries of the 2-sphere

In this section, we will prove that the canonical inclusion(
S2 = S2

)
(idS2)

+
(
S2 = S2

)
(−idS2)

→
(
S2 = S2

)
is an equivalence, i.e., S2 = S2 has exactly two components, one containing the identity, and one
corresponding to the equivalence −idS2 : S2 → S2, which is defined by S2-induction as the function
such that −idS2(N) ≡ S, and −idS2(S) ≡ N and [−idS2 ](mrd(x)) = (mrd(x))−1 for all x : S1.

Lemma 3.1. The function −idS2 is self-inverse and thus an equivalence.

Sketch of proof. More generally, the same holds for the reflection −idΣX : ΣX → ΣX on any
suspension, and an element of the type

∏
z:ΣX

(
z = (−idΣX ◦ −idΣX)(z)

)
is easily constructed by

induction. □

The plan now is as follows:

• First, we give a direct proof that idS2 and −idS2 are not in the same connected component;
• then, we give two definitions of the degree of a self-map S2 → S2, from which it follows

that every self-equivalence is either in the connected component of idS2 or in the connected
component of −idS2 ;

• finally, we prove that the connected components of idS2 and −idS2 are equivalent to each
other.

Notice that the last step is less ambitious than in the case of S1, where the two connected components
were proven equivalent to each other but also each equivalent to S1 itself. We shall see in Section 7
that the connected components of idS2 and −idS2 are not equivalent to S2 itself. And indeed, the
proof in the case of S1 relied heavily on two facts: S1 is 1-truncated and S1 is the classifying type of
an abelian group. In other words, the homotopy structure of S1 is very well understood. This is not
the case for S2: for example, it is certainly not 2-truncated ([4]), and is expected to be provably not
n-truncated for any n.

The main tool for this section is the Hopf family, as defined by Brunerie in [4], to get an analogue
in HoTT of the Hopf fibration in topology. We define, uniformly in x : S1, the function ιx : S1 → S1
by S1-induction (giving the usual H-space structure on S1), putting ιx(•) ≡ x and [ιx](⟲) = fx(⟲).
Here, f :

∏
x:S1(• = •) ≃ (x = x) is the dependent function defined in (3). Clearly, ι• = idS1 and

hence, since S1 is connected, every ιx is merely equal to idS1 and thus an equivalence. Recalling
the transparency of univalence, we view ιx : S1 = S1 as a path. Note also that ιx is the element
of (S1 = S1)(idS1)

that corresponds to x : S1 under the evaluation equivalence (S1 = S1)(idS1)
≃ S1

exhibited in Section 2. Now define the type family H : S2 → U by S2-induction as the family:

H(N) ≡ S1, H(S) ≡ S1, and [H](mrd(x)) = ιx for all x : S1

Following Brunerie’s exposition, we consider the map

(5) τ : Ω S2 →∗ S1, p 7→ [H](p)(•), pointed by refl• : τ(reflN) = •.

This map is the key to getting the second homotopy group of the sphere (cf. [30, Sec. 8.4 and 8.5]).
For now, recall from Example B.6 that there is a pointed map

ηS1 : S1 →∗ Ω S2, x 7→ mrd(•)−1 ·mrd(x)

where the pointing path η0 : ηS1(•) = reflN is given by path algebra.

Lemma 3.2. The map τ is a retraction of ηS1 , meaning that there is an element of τ ◦ ηS1 = idS1 as
pointed functions.
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We remark that this is also an instance of a general fact about left-invertible H-spaces [9, Prop. 2.19].
The following is proved by circle induction.

Lemma 3.3. There is an element of the type ηS1(−)−1 = ηS1 ◦ −idS1 .

Lemma 3.4. The proposition idS2 ̸= −idS2 holds.

Proof. Suppose p : idS2 = −idS2 and derive a contradiction. Through function extensionality, it
produces paths

p(N) : N = S and p(S) : S = N,

and for all x : S1 a path over, [p](mrd(x)) : p(N) =T
mrd(x) p(S), where T : S2 → U is the type family

T (a) :≡ (idS2(a) = −idS2(a)). Because S2 is simply connected and we are targeting the empty type ∅,
which is a proposition, we might as well assume paths of types p(N) = mrd(•) and p(S) = mrd(•)−1.
Transporting [p](mrd(x)) over these two paths, we get a path of type mrd(•) =T

mrd(x) mrd(•)−1.

Transport over mrd(x) in the type family T is the function q 7→ mrd(x)−1qmrd(x)−1, so we get a
path

mrd(x)−1 mrd(•)mrd(x)−1 = mrd(•)−1 for all x : S1

Equivalently, this is a path ηS1(−)−1 = ηS1 . Compose with the path from Lemma 3.3 to get a path
ηS1 ◦−idS1 = ηS1 . Using Lemma 3.2, we conclude that −idS1 = τ ◦ ηS1 ◦−idS1 = τ ◦ ηS1 = idS1 , which
we already know to be absurd. □

This proves that idS2 and −idS2 belong to different connected components. We proceed to the
second step of the road map: every equivalence in S2 ≃ S2 is either in the component of idS2
or in the component of −idS2 . To this end we construct two, ultimately equal, degree functions
d, d′ : (S2 → S2) → Z:

(i) The first, d, is directly seen to be a morphism of wild monoids, where the operations are
given by composition and multiplication, respectively. In particular, it maps equivalences to
invertible elements in Z, that is 1 or −1.

(ii) The second, d′, is more easily seen to be ‘weakly injective’, i.e., d(f) = d(g) implies ∥f = g∥.
From Lemma 3.4 we then get that the degree of −idS2 is −1, and the degree induces
equivalences ∥S2 → S2∥0 ≃ Z and ∥S2 = S2∥0 ≃ {±1}.

To define the degree, we recall from [30, Cor. 8.5.2] that the second homotopy group of S2 is Z.
Indeed, the second homotopy group π2(S2) is defined as the set-truncation ∥Ω2 S2∥0, and [30, Sect. 8.4
and 8.5] proves that the map Ω τ : Ω2 S2 → Ω S1 induces an isomorphism ∥Ω τ∥0 : π2(S2) → π1(S1)
on the set-truncations, with ∥Ω η∥0 as the inverse. Indeed, by the Freudenthal suspension theorem [30,
Thm. 8.6.4], η is 0-connected, but it has a retraction, so it (and τ) are 1-equivalences. (A 1-equivalence
is a map that induces an equivalence on 1-truncations.) Composing with the isomorphism π1(S1) ≃ Z
[30, Cor. 8.1.11], we get a group isomorphism ζ : π2(S2) → Z. Our first definition of the degree of
a pointed map is then as the image of 1 through the induced homomorphism on second homotopy
groups, transported back and forth by ζ:

d(f) :≡
(
ζ ◦ π2(f) ◦ ζ−1

)
(1) : Z for any f : S2 →∗ S2.

Note that the degree of a map is a priori defined only when the map is pointed. However, the
following lemma shows that the degree is independent of the choice of such a path.

Lemma 3.5. Let X and Y be types, and x : X and y : Y be points. If Y is n-connected, then the
map which forgets the pointing paths, pr1 : ((X,x) →∗ (Y, y)) → (X → Y ), is (n−1)-connected.

Proof. Let f : X → Y . The fiber pr−1
1 (f) is equivalent to f(x) = y. Now apply [30, Thm. 7.3.12]

and use the assumption. □

In particular, if we have two paths f0, f
′
0 : f(N) = N pointing the map f : S2 → S2, then the

proposition d(f, f0) = d(f, f ′0) holds, since d(f,−) : (f(N) = N) → Z is a map from a connected type
to a set, hence constant.
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Proposition 3.6. The degree function d is a morphism of wild monoids from S2 → S2 (Remark B.13)
to the multiplicative monoid Z.

Sketch of proof. Clearly, d(idS2) = 1. From Lemma 3.5 we may assume f, g : S2 → S2 are pointed.
By functoriality of the second fundamental group we have π2(g ◦ f) = π2(g) ◦ π2(f), from which we
readily conclude d(g ◦ f) = d(g)d(f). □

Remark 3.7. As in [10], one can also put a group structure on S2 →∗ S2 such that the degree function
becomes a group morphism onto Z with its additive structure. Together with Proposition 3.6, the
degree function on pointed maps then becomes a wild ring morphism. In general, pointed self-maps
ΣX →∗ ΣX only form a wild near-ring.

Corollary 3.8. The degree of a self-equivalence of the sphere S2 is either 1 or −1.

Sketch of proof. For a self-equivalence f : S2 ≃ S2 we have 1 = d(idS2) = d(f ◦ f−1) = d(f)d(f−1),
so d(f) and d(f−1) are multiplicatively inverse integers, hence ±1. □

To prove that the degree map is an injection on connected components, we will define another
map d̄ : (S2 →∗ S2) → Z, which is easily proven an injection on connected components, and then we
will prove that d = d̄.

Recall from Example B.6 that for each pointed type A, there is a map ηA : A→∗ Ω ΣA. These
maps are such that the following function is an equivalence for each A,B : U∗ (see Remark B.8):

(6) ΦA,B :≡ Ω− ◦ ηA : (ΣA→∗ B) ≃ (A→∗ ΩB)

There is now an equivalence γ : (S2 →∗ S2) ≃ Ω2 S2 defined as the composition:

(S2 →∗ S2)
ΦS1,S2≃ (S1 →∗ Ω S2)

Φ2,Ω S2≃ (2 →∗ Ω2 S2)
ev1≃ Ω2 S2,

using that S1 ≃ Σ2, and with ev1 evaluating its argument at the non-base point of 2. We now define
d̄ as the composition

(S2 →∗ S2) γ→ Ω2 S2 |−|0→ π2(S2)
ζ→ Z.

We now show that d and d̄ coincide, allowing us to compute the degree through d̄ when necessary.

Proposition 3.9. The equation d = d̄ holds.

Proof. Taking the definitions of d and d̄ into account, we have to prove π2(f)(ζ
−1(1)) = |γ(f)|0 for

all f . Unfolding definitions, we have to prove that the outer diagram commutes in the following:

(S2 →∗ S2)

(Ω S2 →∗ Ω S2)

(Ω2 S2 →∗ Ω2 S2)

(π2(S2) → π2(S2))

(Ω S1 →∗ Ω2 S2)

π2(S2)

(S1 →∗ Ω S2)

(2 →∗ Ω2 S2)

Ω2 S2

Ω

Ω

∥−∥0

ΦS1,S2

− ◦ ηS1 Ω Φ2,Ω S2

ev1

evζ−1(1) |−|0

− ◦ Ω(ηS1) − ◦ η2

evℓ

1

2
3

4

5

We will do that by proving that each of the small inner diagrams denoted 1○, . . . , 5○ commute, for
elementary reasons. Triangles 1○ and 3○ commute as instances of (6). The commutativity of square
2○ simply expresses the functoriality of Ω. In order to prove that 4○ and 5○ commute, we first need
to define ℓ in evℓ: we set ℓ :≡ Ω(ηS1)(⟲). Then it is almost immediate that 4○ commutes because
under the equivalence S1 = Σ2, we have ⟲ = η2(1). Now the commutativity of 5○ will follow from
the functoriality of ∥−∥0 once we have shown |ℓ|0 = ζ−1(1). By definition of ζ, this is equivalent to
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showing that Ω(τ)(ℓ) = ⟲ in Ω S1. However, we have seen in Lemma 3.2 that τ is a retraction of ηS1 .
Hence it follows that:

Ω(τ)(ℓ) = Ω(τ)(Ω(ηS1)(⟲)) = ⟲. □

Corollary 3.10. The degree map d : (S2 → S2) → Z is 0-connected. Hence any self-equivalence of
S2 is in the connected component of either idS2 or −idS2 , and the canonical inclusion

(S2 = S2)(idS2)
+ (S2 = S2)(−idS2)

→ (S2 = S2)

is an equivalence.

Proof. The previous result shows that d(f) = d̄(f) ≡ ζ(|γ(f)|0) with γ, ζ equivalences. As |−|0 is
0-connected, so is d. From Corollary 3.8 we know any self-equivalence has degree ±1, and since −idS2
is in a different component than idS2 by Lemma 3.4, we get that d(−idS2) = −1. □

Next, we show that the two components (S2 = S2)(idS2)
and (S2 = S2)(−idS2)

are equivalent. In

fact, this has little to do with S2 itself, and one can state a more general result.

Proposition 3.11. Let A be a type with a point a : A and a loop p : a = a. Then:

(a = a)(refla)
≃ (a = a)(p)

Proof. Define f : (a = a) → (a = a) by mapping q to qp. Then f is an equivalence with pseudo-inverse
given by mapping r to rp−1. Moreover, we have f(refla) = p.

The equivalence f then restricts to an equivalence between the connected component of refla and
the connected component of p. □

Remark 3.12. Another way to state this result is that for any ∞-group G with an element g, we
get an equivalence G(e) ≃ G(g) by mapping h to hg. Indeed, the point a in A has an ∞-group of
symmetries, whose elements form the type a = a.

Of course, a similar result holds generally for wild groups.

We shall show in 7 that π1(S2 = S2, idS2) ≃ Z/2Z. From Proposition 3.11 we then also get
π1(S2 = S2,−idS2) ≃ Z/2Z.

4. Symmetries of the n-sphere

Having discussed the cases n = 1 and n = 2 in some detail, we finally wish to establish the result
that Sn = Sn has two connected components, for all n ≥ 1. The main ideas for the proof are already
contained in the result that πn(Sn) = Z [20] and the definition of degrees by Buchholtz and Favonia
[10], but the argument that we need does not seem to have been written out informally in detail so
far, though it has been formalized.

An important tool in this section is the wild adjunction Σ ⊣ Ω from Proposition B.9. We recall
that the suspension Σ acts like a wild functor, see Example B.6(ii), on morphisms: For f : A→ B,
define Σ(f) : Σ(A) → Σ(B) by NΣ(A) 7→ NΣ(B), SΣ(A) 7→ SΣ(B), and mrdΣ(A)(a) 7→ mrdΣ(B)(f(a)).
The map Σ(f) is pointed by the reflexivity path.

A core result is the following, to be proved in Section 4.1:

Theorem 4.1. For all natural numbers n ≥ 1, the wild monoid morphism,

(Sn →∗ Sn) Σ−→ (Sn+1 →∗ Sn+1)

is a 0-equivalence.

Recall that an n-equivalence is a map that becomes an equivalence after n-truncation, cf. [13,
Sec. 2]. In Section 4.2 we shall see how Theorem 4.1 implies that Σ induces an isomorphism
∥Sn → Sn∥0 → ∥Sn+1 → Sn+1∥0 of monoids. Hence, by induction, ∥Sn → Sn∥0 and (Z,×) are
isomorphic as monoids, and so Sn = Sn has two connected components. In Section 4.3 we give one
concrete symmetry in each of the components.
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4.1. The suspension morphism is 0-connected. Recall the equivalence ΦA,B and the unit ηA in
Section 3, (6) and Proposition B.9. Taking ΣB for B in (6) we get:

ΦA,ΣB :≡ Ω− ◦ ηA : (ΣA→∗ ΣB) ≃ (A→∗ Ω ΣB)

We will use the following naturality properties.

Lemma 4.2. For any pointed map f : A→∗ B we have:

(ΦA,ΣB ◦ Σ)(f) ≡ Ω(Σ(f)) ◦ ηA = ηB ◦ f

Proof. By the naturality witness natη from Remark B.8. □

Lemma 4.3. Let X be a pointed type and f : A→∗ B a pointed function. Then for any g : ΣX →∗ A
we have:

ΦX,B(f ◦ g) = Ω(f) ◦ ΦX,A(g)

Proof. This is the last part of Remark B.8. □

Definition 4.4. Let A be a pointed type. Recall that S0 :≡ 2 is pointed at inl(∗) and that
(S0 →∗ A) ≃ A by the equivalence ϕ0A(f : S0 →∗ A) :≡ f(inr(∗)). For n ≥ 1, define equivalences

ϕnA : (ΣSn−1 →∗ A) → ΩnA by induction: ϕnA :≡ ϕn−1
Ω A ◦ ΦSn−1,A.

Lemma 4.5. For all n ≥ 0 and f : A→∗ B and g : Sn →∗ A we have:

ϕnB(f ◦ g) = Ωn(f)(ϕnA(g))

Proof. By induction on n : N. The base case n ≡ 0 is trivial. The step from n to n + 1 is an
application of Lemma 4.3, using that Sn+1 ≡ ΣSn and Ωn+1(f) ≡ Ωn(Ω(f)). □

The above lemmas allow us to formulate a connection between the maps Σ in Theorem 4.1 and
the unit ηSn from Proposition B.9. The following diagram commutes by Lemma 4.2 (top triangle)
and Lemma 4.5 (bottom quadrangle). This proves Corollary 4.6.

(Sn →∗ Sn)

Ωn(Sn) Ωn+1(Sn+1)

(Sn →∗ ΩΣSn)

(Sn+1 →∗ Sn+1)

ϕnSn

Ωn(ηSn)

ΦSn,Sn+1

ϕnΩSn+1

Σ

ηSn ◦ −

Corollary 4.6. ϕn+1
Sn+1 ◦ Σ ≡ ϕnΩSn+1 ◦ ΦSn,Sn+1 ◦ Σ = Ωn(ηSn) ◦ ϕnSn

Since the ϕ’s in Corollary 4.6 are equivalences we can transport knowledge about Ωn(ηSn) to Σ,
using the following result:

Theorem 4.7 (Freudenthal suspension theorem [30, Thm. 8.6.4]). If X is n-connected and pointed,
with n ≥ 0, then the map ηX : X →∗ Ω ΣX is 2n-connected. (Note ηX ≡ σX in [30].)

Taking X ≡ Sn and using that Sn is (n−1)-connected [30, Cor. 8.2.2], we get in particular the
following instantiation:

Corollary 4.8. The map ηSn : Sn → Ω(Sn+1) is a 2(n− 1)-connected for all n ≥ 1,

To make use of this, we show how connectedness of functions interacts with loop spaces (proof in
appendix):

Lemma 4.9. Let A and B be types and f : A → B be a k-connected function (k ≥ −1). For all
a1, a2 : A, the function [f ] : a1 = a2 → f(a1) = f(a2) is (k−1)-connected.

Iterating this n times combined with Corollary 4.8 we get:
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Corollary 4.10. The map

Ωn(ηSn) : Ω
n(Sn) → Ωn+1(Sn+1)

is (n−2)-connected for all n ≥ 1.

We are now ready to make good on our promise made above.

Proof of Theorem 4.1. Let n ≥ 1. We have to prove that Σ : (Sn →∗ Sn) → (Sn+1 →∗ Sn+1) is
a 0-equivalence. It is a wild monoid morphism by functoriality of Σ, see Example B.6(ii), since
identity and composition of the monoid structures are just given by the identity function and function
composition.

We now show that Σ above is a 0-equivalence. By Corollary 4.10 we have that Ωn(ηSn) is (n− 2)-
connected. For n ≥ 2, it is then directly a 0-equivalence. For n = 1, only have that ηS1 is 0-connected,
so induces a surjection on fundamental groups. But ηS1 has a retraction τ by Lemma 3.2, so it also
induces an injection, hence a bijection, on fundamental groups, so Ω(ηS1) is also a 0-equivalence.

It follows by Corollary 4.6 that also Σ is a 0-equivalence, since the ϕ’s there are equivalences. □

4.2. Connected components of Sn = Sn. Theorem 4.1 implies that, for all n ≥ 1, the map
∥Σ∥0 : ∥Sn →∗ Sn∥0 → ∥Sn+1 →∗ Sn+1∥0 is an isomorphism of monoids. Two more, smaller steps
are needed to be able to determine the number of components of Sn ≃ Sn. One is to remove the
base points of this monoid morphism. The other is to consider equivalences rather than just maps
Sn → Sn.

Lemma 3.5 allows us to remove the point in the (co)domain of Σ:

Lemma 4.11. For all natural numbers n ≥ 1, the wild monoid morphism Σ : (Sn → Sn) → (Sn+1 →
Sn+1) is a 0-equivalence.

Proof. We have pr1 ◦Σ∗ = Σ ◦ pr1, with Σ∗ the suspension morphism for pointed maps. Since every
Sn (for n ≥ 1) is 0-connected, we get that pr1 is 0-connected by Lemma 3.5. It follows that Σ is a
0-equivalence. □

Corollary 4.12. For all natural numbers n ≥ 1, the map

(7) ∥Σ∥0 : ∥Sn → Sn∥0 → ∥Sn+1 → Sn+1∥0

is an isomorphism of monoids.

The second step is to consider equivalences rather than just maps Sn → Sn. The following result
implies that ∥Sn = Sn∥0 is the group of invertible elements of the monoid ∥Sn → Sn∥0. The proof is
in the appendix.

Lemma 4.13. Let A be a type. Then ∥A ≃ A∥0 is equivalent to the set of invertible elements in the
monoid ∥A→ A∥0.

We now see that there are two connected components of symmetries of spheres:

Theorem 4.14. For any n ≥ 1, we have an equivalence of types

∥Sn = Sn∥0 ≃ 2

Proof. For n = 1 and n = 2, we have established this result in the previous sections (see Theorem 2.1
and Corollary 3.10). For higher n, it follows by induction on n with the help of Corollary 4.12 that
the monoids ∥Sn → Sn∥0 have exactly two invertible elements. Then, Lemma 4.13 allows us to
conclude. □



12 PIERRE CAGNE, ULRIK BUCHHOLTZ, NICOLAI KRAUS, AND MARC BEZEM

4.3. Concrete symmetries of Sn. As in the cases of S1 and S2, we want to construct one concrete
element for each of the two connected components of symmetries of Sn that were established in
Theorem 4.14. As before, we take idSn in one component. For any type A, define −idΣ(A) by

NΣ(A) 7→ SΣ(A), SΣ(A) 7→ NΣ(A), and mrdΣ(A)(a) 7→ mrdΣ(A)(a)
−1. Clearly, being self-inverse,

−idΣ(A) is a symmetry of Σ(A). What is less obvious is that −idSn is indeed in the other component
of Sn = Sn. Preparing for a proof of idSn ̸= −idSn by induction on n ≥ 1, we show that suspension
and “negation” commute.

Lemma 4.15. For any type A, the two functions Σ(−idΣ(A)) and −idΣ(Σ(A)) of type Σ(Σ(A)) →
Σ(Σ(A)) are equal.

Proof. For brevity we abbreviate N :≡ NΣΣA and S :≡ SΣΣA. We construct h(x) of type T (x) :≡
(Σ(−idΣA)(x) = −idΣΣA(x)) by induction on x : ΣΣA setting h(N) :≡ mrd(NΣA) : (N = S) and
h(S) :≡ (mrd(SΣA))

−1 : (S = N). To complete the definition of h (and the proof of the lemma) we
need to define, for all y : ΣA, a higher path [h](mrd(y)) whose type is h(N) =T

mrd(y) h(S). By [30,

Lem. 2.11.3], and using abbreviations mN :≡ mrd(NΣA) and mS :≡ mrd(SΣA), the latter type is
equivalent to

U(y) :≡ (m−1
S ·mrd(−idΣA(y)) = mrd(y)−1 ·mN ).

We construct g(y) of type U(y) by induction on y : ΣA. The type U(NΣA) is, after simplification
(normalising), m−1

S ·mS = m−1
N ·mN . For g(NΣA) we take the path c(mS ,mN ), where c is defined by

double path induction, setting c(refl, refl) ≡ reflrefl . Similarly, U(SΣA) :≡ (m−1
S ·mN = m−1

S ·mN ),
and we take g(SΣA) :≡ reflm−1

S ·mN
. To complete the definition of g we need to define, for all z : A,

a higher path [g](mrd(z)) whose type is c(mS ,mN ) =
U
mrd(z) reflm−1

S ·mN
. In general, transport of an

arbitrary c : U(y) along p : y = y′ in ΣA yields a c′ : U(y′) given by

[− ·mN ](
[−1 ◦mrd

]
(p)) · c ·

([
m−1
S · −

]
([mrd ◦ − idΣA](p))

)−1

This follows again from [30, Lem. 2.11.3], or by path induction on p.
We now instantiate this transport with p ≡ mrd(z) for z : A, and abbreviate β :≡ [mrd](mrd(z)) :

mN = mS . By unfolding the definition of −idΣA and path algebra we get [mrd]([−idΣA](mrd(z))) =
β−1. Here [mrd] ≡ [mrdΣΣA] and mrd(z) ≡ mrdΣA(z). Further calculations show that to define
[g](mrd(z)) it suffices to find an element of[

(− ·mN ) ◦ −1
]
(β) · c(mS ,mN ) ·

[
m−1
S · −

]
(β) = reflm−1

S ·mN

of type m−1
S ·mN = m−1

S ·mN . In other words, we should fill the following diagram of 2-paths:

m−1
N ·mN m−1

S ·mS

m−1
S ·mN m−1

S ·mN

[
(− ·mN )◦−1

]
(β)

c(mS ,mN )

[
m−1
S · −

]
(β)

reflm−1
S ·mN

The easiest way to fill the above diagram is to abstract completely from suspension types to a type T
with points N,S : T , paths mN ,mS : N = S, and a 2-path β : mN = mS . One starts by doing path
induction on mN , reducing the task to the case S ≡ N and mN ≡ reflN , and arbitrary mS : N = N
and β : mN = mS . One can then do path induction on β, reducing the task to the case mS ≡ mN

and β ≡ reflmN
. But now, as mN ≡ reflN , all paths appearing in the diagram, including c(mS ,mN ),

are reflexivity paths. Hence we can conclude by simple path algebra. □

A formal proof of this lemma is available in cubical Agda [7].

Corollary 4.16. For any n ≥ 1, we have idSn ̸= −idSn , and any symmetry of Sn is merely equal to
either idSn or −idSn .



ON SYMMETRIES OF SPHERES IN UNIVALENT FOUNDATIONS 13

Proof. We know the statement for n ≡ 1 (Eq. (1)) and n ≡ 2 (Lemma 3.4) from the previous
sections. The rest is done by induction on n, so we assume idSn ̸= −idSn . By Corollary 4.12, we have
Σ(idSn) ̸= Σ(−idSn). As idSn+1 = Σ(idSn) trivially holds and we further have −idSn+1 = Σ(−idSn) by
Lemma 4.15, the claimed inequality follows. Therefore, the two symmetries lie in different components,
and any symmetry lies in one of the two components given by Theorem 4.14. □

5. Summary and comparison

In Fig. 1 we depict some relationships between the types studied so far. In the back, we see the
types of pointed maps Sn →∗ Sn on the top, the types of maps Sn → Sn in the middle, and the
types of identifications Sn = Sn on the bottom, each related by suspension as we go left-to-right.
In the front, we see the set truncations thereof, with the set truncation maps going back-to-front.
Additionally, we see on the front left concrete monoids that are equivalent to the types involving the
0-sphere. (The map −0 : S0 → S0 is the constant map at the non-base point; this becomes identified
with 0 after one suspension.)

On the right, we see the sequential colimits. (Sequential colimits can be defined using pushouts
and coproducts over N or as a HIT as in [27, Sec. 3].) The dotted arrows are lifts of the top back
squares since we form the suspension of a pointed map by first forgetting the pointedness. The top
two sequences in the back thus sit cofinally inside the zigzagging sequence, and hence they have
the same colimit, which we identify with the elements of the sphere spectrum, Ω∞ S. (The sphere
spectrum S is the spectrification of the prespectrum of spheres, i.e., Σ∞S0, where Σ∞ maps a pointed
type to the corresponding suspension spectrum, and Ω∞ is the right adjoint thereof, which maps a
spectrum to its underlying infinite loop type. See [31, Sec. 5.3] for more on spectra in HoTT.) The
sequential colimit of the self-identification groups G(n+ 1) ≡ (Sn = Sn) is the group of units of the
sphere spectrum, G ≡ GL1(S) = (S = S).

The diagram commutes, with the exception of the dashed arrow. This takes a pointed map
f : S2 →∗ S2 to the composite τ ◦ Ω(f) ◦ ηS1 : S1 →∗ S1, where τ : Ω S2 →∗ S1 comes from the
H-space structure on the circle, cf. Eq. (5). This is a retraction of the suspension operation, because
if f ≡ Σ(g), then

τ ◦ Ω Σ(g) ◦ ηS1 = τ ◦ ηS1 ◦ g = g

by naturality of η and Lemma 3.2. Relative to the equivalences (S1 →∗ S1) ≃ Ω S1 and (S2 →∗ S2) ≃
Ω2 S2, the dashed map can be identified with Ω(τ) : Ω2 S2 →∗ Ω S1, which is a 0-equivalence.

The homotopy groups of Ω∞ S are of course the stable homotopy groups of the spheres, πs
k. Since

the type of units G embeds into Ω∞ S, it has the same homotopy groups, except for the connected
components:

πk(G) =

{
Z/2Z, for k = 0,

πs
k, otherwise.

Though not shown in Fig. 1, the types of pointed identifications Sn =∗ Sn are equivalent to
pullbacks of the vertical cospans in the back. We have embeddings (Sn =∗ Sn) ↪→ Ωn Sn onto the
subtypes Ωn±1Sn corresponding to the generators {±1} in πnSn ≃ Z. Hence the homotopy groups of
Sn =∗ Sn are the usual (unstable) homotopy groups of spheres, except at degree 0:

πk(Sn =∗ Sn,±id) =

{
Z/2Z, for k = 0,

πn+kSn, otherwise.

Our construction of degree functions establishing the above picture follows in most respects the
approach outlined in [10, Sec. 5] and formalized in [5]. The difference is that we focus on the
(wild) monoid structures given by composition instead of the group structures given either by the
cogroup structures on the spheres or by transport from the wild groups Ωn Sn. We thus give a direct
proof of Corollary 4.16 that is interesting its own right, even though one could also conclude that
d(−idSn) = −1 from the facts that −idSn is the additive inverse of idSn and that the degree is a
0-equivalence sending idSn to 1.
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6. Interlude on Whitehead products

Before focusing on the components of Sn = Sn, we need a few general results on Whitehead
products. Recall from [30, Chapter 6.8] the join ∗ and the wedge ∨, higher inductive operations on
types that can be constructed using pushouts. The proof of the following lemma is in the appendix.

Lemma 6.1. Let A, B, and X be pointed types. We have the following equivalence: (A→∗ (B →∗
ΩX)) ≃ (A ∗B →∗ X).

For the rest of this section we fix two pointed types A and B, and we denote a0 and b0 the base
points of A and B. We repeat here the definition of the generalized Whitehead product from [4,
Sec. 3.3].

Definition 6.2. Define the map W = WA,B : A ∗ B → ΣA ∨ ΣB by W (inl(a)) :≡ inr(NΣB),
W (inr(b)) :≡ inl(NΣA), and

[W ](glue(a, b)) := [inl](ηA(a)) · (glue(∗))−1 · [inr](ηB(b))

(η from B.9, glue(∗) : inl(NΣA) = inr(NΣB)). The map WA,B is pointed by the path (glue(∗))−1 :
W (inl(a0)) ≡ inr(N) = inl(N).

The map W makes a pushout square with the wedge inclusion i:

(8)

A ∗B ΣA ∨ ΣB

1 ΣA× ΣB

W

⌜
i

The fact that (8) is a pushout square is deduced using the 3×3-lemma in [4, Prop. 3.3.2], but plays
no role in our arguments below.

We now also fix another pointed type (X,x0).

Definition 6.3. The generalized Whitehead product of α : ΣA →∗ X and β : ΣB →∗ X is the
composition

[α, β] :≡ (α ∨ β) ◦WA,B : A ∗B →∗ X.

Here α∨ β :≡ ind(α, β, β−1
0 α0) by ∨-induction, with α0, β0 the pointing paths, so β−1

0 α0 : α(NΣA) =
β(NΣB).

Remark 6.4. If A ≡ Sp and B ≡ Sq, then A ∗B ≃ Sp+q+1 [4, Prop. 1.8.8], so one can obtain a map
(using the same denotation)

[−,−] : πp+1(X)× πq+1(X) → πp+q+1(X),

which is the usual Whitehead product on homotopy groups. Explicitly, given a : πp+1(X) and
b : πq+1(X), one wants to define the element [a, b] of the set πp+q+1(X). As we are targeting a
set, one can as well assume a ≡ |α|0 and b ≡ |β|0 for α : Ωp+1(X) and β : Ωq+1(X). Using the
equivalences

ϕp+1
X : (ΣSp →∗ X) ≃ Ωp+1(X), ϕq+1

X : (ΣSq →∗ X) ≃ Ωq+1(X),

one gets pointed maps (ϕp+1
X )−1(α) : Σ Sp →∗ X and (ϕq+1

X )−1(β) : Σ Sq →∗ X. The element [a, b] :

πp+q+1(X) is then defined as |[(ϕp+1
X )−1(α), (ϕq+1

X )−1(β)]|0 (where the bracket follows Definition 6.3).

Fix now a pointed map β : ΣB →∗ X with pointing path β0 : β(N) = x0, and consider the fiber
sequence of evaluation at β:

(ΣB →∗ X)(β)
ι−→∗ (ΣB → X)(β)

evβ−→∗ X.
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Figure 2. Long fiber sequence of evaluation.

· · · Ωn+1
(
(ΣB → X)(β)

)
Ωn+1X

Ωn
(
(ΣB → X)(β)

)
Ωn

(
(ΣB → X)(β)

)
· · ·

∗ ∗

(−1)n+1 Ωn+1(evβ)

(−1)n Ωn (κβ)

∗ ∗
(−1)n Ωn(ι)

∗

(Taking connected components is not necessary, but allows us to emphasize the base points of the
various function types.) This fiber sequence induces a long exact sequence:

· · · πn+1(ΣB → X,β) πn+1(X)

πn(ΣB →∗ X,β) πn(ΣB → X,β) · · ·

πn+1(evβ)

∂nβ

πn(ι)

The construction presented in [30, Ch. 8.4] of this exact sequence is as follows. Consider the map
κβ : ΩX → (ΣB →∗ X)(β) that associates to a loop α the function β pointed by the path α · β0.
Then the long fiber sequence is shown equivalent to the one in Fig. 2. It is then shown that the
set-truncation of this sequence is a long exact sequence of sets, and the very last paragraph of the
proof of [30, Thm. 8.4.6] proceeds to replace the truncations of the form ∥−Ωn(h)∥0 (which are
group antimorphisms) by πn(h) (which are actual group morphisms) for n ≥ 1. In particular, the
boundary map ∂nβ in that long exact sequence can be taken to be πn(κβ).

However, we wish to express ∂nβ at n ≥ 0 in terms of the Whitehead product. In order to do so, we

use the equivalences ϕnA from Definition 4.4 and reason about the map δnβ : (Σ Sn →∗ X) → (Sn →∗
(ΣB →∗ X)(β)) defined by

δnβ :≡
(
ϕn(ΣB→∗X)(β)

)−1

◦ Ωn(κβ) ◦ ϕn+1
X

so that in particular ∂nβ = ∥ϕn(ΣB→∗X)(β)
◦ δnβ ◦ (ϕn+1

X )−1∥0. Notice that this function δnβ has a simple

expression through the use of Lemma 4.5:

δnβ ≡
(
ϕn(ΣB→∗X)(β)

)−1

◦ Ωn(κβ) ◦ ϕn+1
X

=
(
ϕn(ΣB→∗X)(β)

)−1

◦ Ωn(κβ) ◦ ϕnX ◦ ΦSn,X

= κβ ◦ (ΦSn,X(−))

In other words, for every α : Σ Sn →∗ X and x : Sn, the pointed map δnβ (α)(x) is just β as an
unpointed function, but is pointed by the path:

(Ω(α) ◦ ηSn)(x) · β0 : β(N) = x0

To express δnβ in terms of generalized Whitehead products, we are going to construct a commuting
square of the following form:

(ΣSn →∗ X) (Sn →∗ (ΣB →∗ X)(β))

(Sn ∗B →∗ X) (Sn →∗ (ΣB →∗ X)(0))

δnβ

ρnβ ξnβ◦−∼

φn

∼
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where the maps ξnβ , ρ
n
β and φn are to be defined, and the element of ΣB →∗ X denoted 0 is the

constant map at x0.
Since nothing hinges on having a sphere Sn, let us generalize and construct a commuting diagram

for any pointed connected type A:

(9)

(ΣA→∗ X) (A→∗ (ΣB →∗ X)(β))

(A ∗B →∗ X) (A→∗ (ΣB →∗ X)(0))

δβ

ρβ ξβ◦−∼

∼
φ

where δβ is defined on α as follows: for a : A, δβ(α)(a) ≡ β as an unpointed function, pointed by the
path:

(δβ(α)(a))0 :≡ (Ω(α) ◦ ηA)(a) · β0 = α0 · [α](ηA(a)) · να,β : β(N) = x0

Here we write να,β :≡ α−1
0 · β0 : β(N) = α(N) for short, where α0 : α(N) = x0 is the path pointing α.

Notice that the map δβ(α) is indeed a pointed map: the element δβ(α)(a0) is the map β pointed by
the path α0 · [α](ηA(a0)) · να,β ; using the fact that ηA(a0) = reflN, one finds a path (δβ(α)(a0))0 = β0,
providing an element of δβ(α)(a0) = β as pointed functions.

Next define ρβ :≡ [−, β] as the Whitehead product, or explicitly:

ρβ(α) (inl(a)) ≡ β(N)

ρβ(α) (inr(b)) ≡ α(N)

[ρβ(α)](glue(a, b)) = [α](ηA(a)) · να,β · [β](ηB(b))

The map ρβ(α) is pointed by the path β0 : ρβ(α)(inl(a)) ≡ β(N) = x0.
Let us now describe ξβ . Since ΣB →∗ X is equivalent to B →∗ ΩX, and because ΩX is a wild

group, so is ΣB →∗ X. Its unit is the map 0 ≡ (− 7→ x0) already described. The multiplication of
two elements γ and γ′ is defined by induction:

(γ′+γ)(N) :≡ γ(N)

(γ′+γ)(S) :≡ γ′(S)

[γ′+γ](mrd(b)) := [γ′](mrd(b)) · νγ′,γ · [γ](ηB(b))

The map γ′+γ is pointed by the path γ0 : γ(N) = x0 pointing γ itself. The inverse −γ of an element
γ is given by γ ◦ (−idΣB) (where −idΣB is pointed by mrd(b0)

−1). Then, there is an equivalence
(ΣB →∗ X) ≃ (ΣB →∗ X) that maps γ to −β+γ, cf. Proposition 3.11. This equivalence sends the
connected component at β to the connected component at 0, hence providing the pointed equivalence
ξβ . Explicitly:

ξβ(γ)(N) ≡ γ(N)

ξβ(γ)(S) ≡ β(N)

[ξβ(γ)](mrd b) = [β](ηB(b))
−1 · νβ,γ · [γ](ηB(b))

Notice that ξβ(γ) is pointed by the path γ0 that points γ.
Let us now define φ from diagram (9). Since A is connected, the inclusion of A→∗ (ΣB →∗ X)(0)

in A→∗ (ΣB →∗ X) is an equivalence. Now, use the equivalence between ΣB →∗ X and B → ΩX
before simply applying Lemma 6.1. Unfolding definition, we see that the composition of equivalences

(A→∗ (ΣB →∗ X)(0)) (A→∗ (ΣB →∗ X))

(A→∗ (B →∗ ΩX)) (A ∗B →∗ X)

ΦB,X ◦ −

f 7→f̄
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can be identified with the function φ defined by induction as follows:

φ(h)(inl(a)) :≡ x0

φ(h)(inr(b)) :≡ x0

[φ(h)](glue(a, b)) := (h(a))0 · [h(a)](ηB(b)) · (h(a))−1
0

The map φ(h) is pointed by the reflexivity path at x0.
With the preliminaries out of the way, let us show that ρβ can be identified with ψβ :≡ φ◦(ξβ◦−)◦δβ .

Let α : ΣA →∗ X. Unfolding the above definitions, let us first examine h :≡ ξβ ◦ (δβ(α)) : A →∗
(ΣB →∗ X)(0):

h(a)(N) ≡ h(a)(S) ≡ β(N)

[h(a)](mrd(b)) = [β](ηB(b))
−1 · β−1

0 · (δβ(α)(a))0 · [β](ηB(b))
= [β](ηB(b))

−1 · νβ,α · [α](ηA(a)) · να,β · [β](ηB(b))
(h(a))0 = (δβ(α)(a))0

= α0 · [α](ηA(a)) · να,β

Finally, we can insert this into the definition of φ to obtain the function g :≡ ψβ(α) = φ(h) : A∗B →∗
X:

g(inl(a)) ≡ x0

g(inr(b)) ≡ x0

[g](glue(a, b)) = (h(a))0 · [h(a)](ηB(b)) · (h(a))−1
0

= (h(a))0 · [h(a)](mrd(b0)
−1 ·mrd b) · (h(a))−1

0

= (h(a))0 · [h(a)](mrd b0)
−1 · [h(a)](mrd(b))

· (h(a))−1
0

=
(
α0 · [α](ηA(a)) · να,β

)
·
(
νβ,α · [α](ηA(a)) · να,β

)−1

·
(
[β](ηB(b))

−1 · νβ,α · [α](ηA(a)) · να,β

· [β](ηB(b))
)
·
(
α0 · [α](ηA(a)) · να,β

)−1

= β0 · [β](ηB(b))−1 · νβ,α · [α](ηA(a)) · να,β
· [β](ηB(b)) · νβ,α · [α](ηA(a))−1 · α−1

0

The path g0 pointing g is, by definition of φ, the reflexivity path at x0. It only remains to construct
a path H : ρβ(α) = g as mere functions such that the type H(inl(a0)) = β0 has an element. We
proceed by induction on an element of the join:

H(inl(a)) :≡ α0 · [α](ηA(a)) · να,β : β(N) = x0

H(inr(b)) :≡ β0 · [β](ηB(b))−1 · νβ,α : α(N) = x0

Finally, we must produce an element of

(10)
∏
a:A

∏
b:B

(
H(inl(a)) =

z 7→ρβ(α)(z)=g(z)

glue(a,b) H(inr(b))
)

which corresponds to filling the square in Fig. 3. We fill this as indicated. This proves that ρβ(α)
and g are equal as mere functions. We must still check that H(inl(a0)) = β0. This follows directly
from [α](ηA(a0)) = refl.

Specializing again to the case where B ≡ Sq is a sphere, we have proved the following:
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β(N) α(N) α(N) x0

α(N)

α(N)

β(N) β(N)

β(N)

α(N)

α(N) α(N)

β(N)

β(N)

α(N) β(N) β(N) x0

να,β

[β](ηB(b))

[α](ηA(a)) α0

α−1
0

[α](ηA(a))−1

νβ,α

να,β

[β](ηB(b))

να,β

[α](ηA(a))

[α](ηA(a))

νβ,α

[β](ηB(b))−1

β0

νβ,α [β](ηB(b))−1 β0

Figure 3. The square corresponding to (10).

Theorem 6.5. For any β : Sq+1 →∗ X, there is a long exact sequence

· · · πn+1(Sq+1 → X,β) πn+1(X)

πn+q+1(X) πn(Sq+1 → X,β) · · ·

∂n,q
β

where the connecting homomorphisms are Whitehead products ∂n,qβ = [−, |ϕq+1
X (β)|0] (where the

bracket refers to the one defined in Remark 6.4).

7. Exploring the components of Sn = Sn

Having established that there are exactly two connected components of (Sn = Sn), we want to
examine the structure of each of these components. The first observation we make is simple:

Proposition 7.1. For all n ≥ 1, the two connected components of (Sn = Sn) are equivalent.

Proof. For n = 1 and n = 2, this statement is given by the main result of Section 2 and by
Proposition 3.11, respectively. For n ≥ 3, it follows from Proposition 3.11 and Corollary 4.16. □

Proposition 7.1 means that we can restrict ourselves to the connected component of id (or refl)
in (Sn = Sn). From now on, we use id as the implicit base point of (Sn = Sn). The rest of this
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subsection is devoted to calculating the fundamental group of this type, which also allows us to see
that the equivalence (S1 = S1) = (S1 + S1) does not generalize for n > 1.

The proof of the following lemma is in the appendix.

Lemma 7.2. For any n ≥ 1, there is a group isomorphism:

ξn : π1(Sn →∗ Sn, id) ≃ πn+1(Sn)

Remark 7.3. More generally, since Sn →∗ Sn is a wild group, given any α, β : Sn →∗ Sn, there is
an equivalence between the corresponding components

(Sn →∗ Sn)(α) ≃ (Sn →∗ Sn)(β).

This is given by γ 7→ γ−α+β, where we write the group operation additively, cf. Proposition 3.11.
This induces, for any k ≥ 1, particular group isomorphisms of types

πk(Sn →∗ Sn, α) ≃ πk(Sn →∗ Sn, β).

We have now every tool needed to prove the result we alluded to in Section 3.

Theorem 7.4. The fundamental group of the type of symmetries of S2 is the cyclic group of order 2.
That is, the following type has an element:

π1(S2 = S2, id) = Z/2Z

where both sides of the equality are considered as groups.

Sketch of proof. Using the long exact sequence of Theorem 6.5 with X ≡ S2, n = q = 1 and β ≡ idS2
, we get in particular an exact sequence:

π2(S2)
[−,i2]→ π3(S2)

κ→ π1(S2 → S2, idS2) → 0

where i2 generates the group π2(S2) (equivalent to Z). This shows that:

π1(S2 = S2, id) ≃ π1(S2 → S2, idS2) ≃ π3(S2)/⟨[i2, i2]⟩

The element [i2, i2] is precisely that studied by Brunerie in its thesis: It generates a subgroup of
index 2 in the infinite cyclic group π3(S2). □

The result generalizes to higher spheres. However, as it can be expected from the use of Brunerie’s
number in the case of the sphere S2, the results goes through for n ≥ 3 for different and actually
simpler reasons, as shown now.

Theorem 7.5. For n ≥ 3, and any function f : Sn → Sn, the fundamental group of the connected
component of f in the type Sn → Sn is the cyclic group of order 2:

π1(Sn → Sn, f) = Z/2Z

as groups.

Sketch of proof. Because π1(Sn → Sn, f) = Z/2Z is a proposition and Sn is connected, we can consider
f to be pointed. By considering the fiber sequence associated with the evaluation ev∗ : Sn → Sn →∗ Sn
at the north pole, we get a long exact sequence that allows to establish π1(Sn → Sn, f) ≃ π1(Sn →∗
Sn, f). By Remark 7.3 and the wild adjunction Σ ⊣ Ω , the latter is equivalent to πn+1(Sn), that is
known to be Z/2Z. □

Theorem 7.6. For n ≥ 3, the fundamental group of the type of symmetries of Sn is the cyclic group
of order 2:

π1(Sn = Sn, id) = Z/2Z
as groups.

Proof. This is a direct corollary of Theorem 7.5, applied with f :≡ idSn . □
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Let us summarize the results of the current section, putting Theorems 4.14, 7.4 and 7.6 and Propo-
sition 7.1 together:

Theorem 7.7. For n ≥ 2, the type of symmetries of Sn has two connected components. The two
components are equivalent and both have fundamental group Z/2Z. □

Remark 7.8. By Theorems 7.4 and 7.6, for n ≥ 2, the group π1(Sn = Sn, id) is non-trivial. At the
same time, π1(Sn) is trivial by [30], and by 0-connectedness of Sn, the group π1(Sn + Sn, x) is trivial
for any x. Therefore, in contrast to the result for the case n ≡ 1 in Section 2, we have

(Sn = Sn) ̸= (Sn + Sn).

8. Conclusion

We have shown that the two connected components of (Sn = Sn) are equivalent and have
fundamental group Z/2Z for n ≥ 2. The only result the authors are aware of that gives the complete
homotopy type of these components is a result proved in classical topology about the topological
2-sphere in [15, Sec. 5]. Write S2 for the topological 2-sphere, and M(S2, S2) for the space of
continuous maps from S2 to S2 with the uniform topology:

Theorem 8.1. The connected component of the identity map in M(S2, S2) is homotopy equivalent
to SO(3)× Ω, where Ω is the universal covering space of the connected component of the constant
loop in Ω2(S2).

This result can be stated as well in homotopy type theory, since SO(3) ≃ RP3, and the real
projective 3-space RP3 can be defined as in [11]. To prove the result, however, it might be necessary
to define the classifying type BSO(3), which is itself another open problem. (This problem is closely
related to that of defining the classifying type BSU(2), where SU(2) ≃ S3.) We leave the further
investigations for future work.

Our proof of Theorem 6.5 was inspired by the similar result [19, Thm. 2.7], the λ-component EHP
sequence. As shown there, if we take β ≡ idSq+1 , we obtain an approximation to the classical EHP
sequence [34], valid in the range n ≤ 3q+1. It would be interesting to construct this in homotopy type
theory, as well as, of course, more modern refinements such as the various EHP spectral sequences
for each prime p, see [23, Sec. 1.5] for a discussion in the classical setting. For p = 2, this is very
much in reach using the James construction, while for odd p, it would need Toda’s fibrations [29].

Something special happens for the spheres that happen to be H-spaces, namely S0, S1, S3, and S7.
Indeed, if X is an H-space such that, say, left-multiplication is invertible, meaning µ(x,−) : X → X
is invertible for all x : X, then we get an equivalence

(X → X) ≃ (X →∗ X)×X.

This equivalence uses left-multiplication to adjust any function f to a pointed function x 7→
µ(f(x0),−)−1(f(x)), together with the image of the base point, f(x0). Since this equivalence
maps equivalences to pointed equivalences and vice versa, it restricts to an equivalence (X = X) ≃
(X ≃∗ X)×X. Since (S0 ≃∗ S0) ≃ 1 and (S1 ≃∗ S1) ≃ Z/2, we recover the equivalences

(S0 = S0) ≃ S0, (S1 = S1) ≃ Z/2× S1.
From [12] we know that also S3 is an H-space, and further, that once we know that it’s a loop space,
then also S7 is an H-space. It also follows from our calculations that S2 is not an H-space, since all
the components of (S2 →∗ S2) × S2 are equivalent, but that’s not the case for the components of
(S2 → S2).

We have focused on the self-identification types Sn = Sn, but we could of course also look at the
other components of the function type Sn → Sn. For n ≥ 3, we don’t get anything new by the proof
of Theorem 7.6, i.e., π1(Sn → Sn, f) ≃ π1(Sn → Sn, id) ≃ Z/2Z, for any f . However, for n = 2,
from the proof of Theorem 7.4, the fundamental group of a component of S2 → S2 depends on the
corresponding degree. Once we know that the Whitehead product is bilinear (possibly up to a sign),
as in [1, Prop. 3.4], we can conclude that π1(S2 → S2, f) = Z/2d(f)Z.
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[22] Per Martin-Löf. An intuitionistic theory of types. In Giovanni Sambin and Jan M. Smith, editors, Twenty-five
years of constructive type theory (Venice, 1995), volume 36 of Oxford Logic Guides, pages 127–172. Oxford

University Press, 1998.
[23] Douglas C. Ravenel. Complex cobordism and stable homotopy groups of spheres, volume 121 of Pure and Applied

Mathematics. Academic Press, Inc., Orlando, FL, 1986.
[24] Egbert Rijke. The join construction, 2017.

[25] Michael Shulman. All (∞, 1)-toposes have strict univalent universes, 2019.
[26] Samuel Bruce Smith. The homotopy theory of function spaces: a survey. In Homotopy theory of function spaces

and related topics, volume 519 of Contemp. Math., pages 3–39. Amer. Math. Soc., Providence, RI, 2010.
[27] Kristina Sojakova, Floris van Doorn, and Egbert Rijke. Sequential colimits in homotopy type theory. In Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. ACM, July 2020.
[28] Dennis P. Sullivan. Geometric topology: localization, periodicity and Galois symmetry, volume 8 of K-Monographs

in Mathematics. Springer, Dordrecht, 2005. The 1970 MIT notes, edited and with a preface by Andrew Ranicki.

[29] Hirosi Toda. Composition methods in homotopy groups of spheres. Annals of Mathematics Studies, No. 49.
Princeton University Press, Princeton, N.J., 1962.

[30] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. https:

//homotopytypetheory.org/book, Institute for Advanced Study, 2013.

https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book


22 PIERRE CAGNE, ULRIK BUCHHOLTZ, NICOLAI KRAUS, AND MARC BEZEM

[31] Floris van Doorn. On the Formalization of Higher Inductive Types and Synthetic Homotopy Theory. PhD thesis,
Carnegie Mellon University, 2018.

[32] Vladimir Voevodsky. Univalent Foundations Project (a modified version of an NSF grant application), 2010.

[33] George W. Whitehead. On products in homotopy groups. Ann. of Math (2), 47:460–475, 1946.
[34] George W. Whitehead. On the Freudenthal theorems. Ann. of Math. (2), 57:209–228, 1953.

Appendix A. Proofs

Lemma 2.3. For any group G there is a pointed equivalence BZ(G) ≃∗ (BG = BG)(reflBG).

Proof. Notice that (BG = BG)(reflBG) is a connected groupoid, pointed at (reflBG, |reflreflBG
|). So,

to exhibit a pointed equivalence as in the statement, we construct a pointed map

zG : (BG = BG)(reflBG) →∗ BG

such that Ω (zG) is injective and has image Z(G). Write s : BG for the distinguished point of the
delooping BG. The map zG is defined to be the restriction to the connected component at reflBG of
the evaluation evs : (BG = BG) → BG that sends an equality x : BG = BG to the point x(s) : BG
(where x is seen as an equivalence BG ≃ BG). Note that zG is pointed, trivially, by the path
refls : s = evs(reflBG).

Note that evy : (BG = BG) → BG can be defined in the same way for any y : BG instead of s.
Then we can prove, by double path-inductions,

[x](q) · [evs](p) = [evy](p) · q
for all x : (BG = BG), all p : reflBG = x, all y : BG, and all q : s = y. (Indeed, the equation
holds for p ≡ reflreflBG

and q ≡ refls). In particular, the equation holds when x ≡ reflBG and
y ≡ s, so that we have: for all p : reflBG = reflBG and all g : s = s, g · [evs](p) = [evs](p) · g. By
restriction to the subtype (BG = BG)(reflBG), we get: for all h : Ω (BG = BG)(reflBG), and all g : G,

g · [zG](h) = [zG](h) ·g. Because zG is pointed by refls, path algebra shows that Ω (zG) = [zG]. Hence,
for any h : Ω (BG = BG)(reflBG), Ω (zG)(h) lies in the center of G.

Conversely, we must show that any element of the center is in the image of by Ω (zG). Take g in the
center of G, and construct an element of Ω (BG = BG)(reflBG) as follows. Define ĝ : reflBG = reflBG
through univalence by giving an equality of type idBG = idBG, that is, under function extensionality,
by giving a homotopy of type

∏
y:BG y = y. We will obtain such a homotopy by taking, for all y : BG,

the first component of a center of contraction of
∑
q:y=y

∏
q′:s=y(q

′g = qq′). The contractibility of∑
q:y=y

∏
q′:s=y(q

′g = qq′) is a proposition, so we can use the connectedness of BG and only prove it
for y ≡ s. But because g commutes with all elements of G,∑

q:G

∏
h:G

(hg = qh) ≃
∑
q:G

G→ (g = q) ≃
∑
q:G

(g = q) ≃ 1.

We obtain in that way ĝ : reflBG = reflBG and we consider the element (ĝ, !) : Ω (BG = BG)(reflBG).

Its image though Ω (zG) is ĝ(s) when ĝ is seen as an homotopy
∏
y:BG y = y. And by definition,

ĝ(s) is the first component of the center of contraction of
∑
q:G

∏
h:G(hg = qh). Tracking back the

equivalences above, that is exactly g. We thus have proven that Ω (zG) has image Z(G).
Lastly, we have to show that Ω (zG) is injective. Equivalently, we want to prove that all fibers of

zG are sets. This is a proposition, so it boils down to proving that the fiber at s is a set. This fiber
is the type of elements x : BG = BG, merely equal to reflBG, together with an equality from s to
[evs](x). Through univalence, this is thus the type of pointed equivalences from BG to itself. But
this is equivalent to the type of group automorphisms of G, which is a set. □

Lemma 2.4. For any group G there is a pointed equivalence ∥BG = BG∥0 ≃∗ Out(G).

Proof. Recall the morphism of groups inn : G → Aut(G) that maps an element g ∈ G to the
inner automorphism x 7→ gxg−1. By univalence, the delooping of Aut(G) can be described as the
connected component of BG in U∗. In particular, under this identification, inn is simply Ω(Binn)
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where Binn : BG→∗ U∗(BG) is the function mapping each y : BG to the type BG itself but pointed at
y instead of the distinguished point s of BG. The path pointing Binn is simply reflBG. Using the fact
stated above the lemma, we find a pointed equivalence ∥Binn−1(BG)∥0 ≃ Out(G) by pointing the
type on the left at |(s, reflBG)|0. But the fiber Binn−1(BG) is by definition

∑
y:BG(BG, y) =∗ BG,

which is equivalent to BG = BG. Moreover, through this last equivalence, reflBG : BG = BG
corresponds to (s, reflBG) : Binn−1(BG). Truncating the equivalence, we get a pointed equivalence
∥BG = BG∥0 ≃∗ ∥Binn−1(BG)∥0, and thus by composing with the first pointed equivalence, we get
∥BG = BG∥0 ≃∗ Out(G) as wanted. □

Lemma 3.1. The function −idS2 is self-inverse and thus an equivalence.

Proof. More generally, the same holds for the reflection −idΣX : ΣX → ΣX on any suspension, so
we prove it in this generality. We produce by induction an element of the type

∏
z:ΣX T (z), where

T (z) :≡ (z = (−idΣX ◦−idΣX)(z)). By definition of −idΣX , T (N) ≡ (N = N) and T (S) ≡ (S = S), so
we take reflN : T (N) and reflS : T (S). To complete the induction, we need to provide an element of type∏
x:X reflN =Tmrd x reflS. Transporting over a meridian in the family T is conjugation by the meridian:

indeed, the transport over any path p : x = x′ in T is given by q 7→ [−idΣX ◦ −idΣX ](p) · q · p−1, and

[−idΣX ◦ −idΣX ](mrd(x)) = [−idΣX ](mrd(x)−1)

=
(
[−idΣX ](mrd(x))

)−1

=
(
mrd(x)−1

)−1

= mrd(x).

Hence reflN =T
mrd(x) reflS is equivalent to mrd(x) reflN mrd(x)−1 = reflS, which is indeed inhabited

for any x : S1 by simple path algebra. □

Lemma 3.2. The map τ is a retraction of ηS1 , meaning that there is an element of τ ◦ ηS1 = idS1 as
pointed functions.

Proof. For all z ∈ S1, we can calculate:

τ(ηS1(z)) = [H](mrd(•)−1 ·mrd(z))(•)

= (ι−1
• ◦ ιz)(•) = id−1

S1 (ιz(•)) = z

It remains to verify that [τ ](η0) coincides with the path above instantiated at z ≡ •. In fact, τ factors
through an adjoint equivalence τ̄ : ∥Ω S2∥1 ≃∗ S1, with inverse η̄S1 = |−|1 ◦ ηS1 . The identification
η̄S1 ◦ τ̄ = id∥Ω S2∥1

defined by the encode-decode method is more easily seen to be pointed, but then
the identification τ̄ ◦ η̄S1 = τ ◦ ηS1 = idS1 is pointed as well. The full details of this argument are
formalized in [5]. □

Lemma 3.3. There is an element of the type ηS1(−)−1 = ηS1 ◦ −idS1 .

Proof. We construct the element κ by induction on S1 by first defining

κ• : (mrd(•)−1 ·mrd(•))−1 = mrd(•)−1 ·mrd(•)

by simple path algebra.
It remains to find an element κ⟲ : κ• =⟲ κ• , which amounts to an element of

[ηS1 ](⟲)
−1 · κ• = κ• ·

[
−−1

]
([ηS1 ](⟲))

Consider the following paths given by path algebra for each x : S1:

λx : (mrd(x)−1 ·mrd(•))−1 = ηS1(x)

µx : ηS1(x)
−1 = mrd(x)−1 mrd(•)
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In particular, the types λ• = κ• , µ• = κ• , and λ• = µ• have elements. Moreover, by path induction
on p : • = x, one can construct an element

ξp : [ηS1 ](p)
−1 · λx = µx ·

[
−−1

]
([ηS1 ](p))

The element ξ⟲ gives the wanted κ⟲ by transport. □

Proposition 3.6. The degree function d is a morphism of wild monoids from S2 → S2 (Remark B.13)
to the multiplicative monoid Z.

Proof. First, let us prove that idS2 , pointed by reflN, has degree 1. This is easy because π2(idS2) =
idπ2(S2) so that d(idS2) = ζ(ζ−1(1)) = 1.

Now, let us prove that d(g ◦ f) = d(g) × d(f) for any f, g : S2 →∗ S2. This again comes
mainly from the functoriality of π2 ([30, after Lem. 7.3.3 and before Def. 8.4.2]), meaning that
π2(g ◦ f) = π2(g) ◦ π2(f) holds. Hence:

d(g ◦ f) = ζ
(
π2(g ◦ f)

(
ζ−1(1)

))
= ζ

(
π2(g)

(
π2(f)

(
ζ−1(1)

)))
= ζ

(
π2(g)

(
ζ−1

(
ζ
(
π2(f)

(
ζ−1(1)

)))))
= ζ

(
π2(g)

(
ζ−1 (d(f))

))
Here, we can use the fact that ζ is not just any equivalence but actually a group isomorphism.
Because π2(g) is a homomorphism of groups, the composition ζ ◦ π2(g) ◦ ζ−1 : Z → Z also is. Hence,
for any n : Z, one gets (ζ ◦ π2(g) ◦ ζ−1)(n) = (ζ ◦ π2(g) ◦ ζ−1)(1)× n. We can then conclude:

d(g ◦ f) = ζ
(
π2(g)

(
ζ−1(1)

))
× d(f) = d(g)× d(f) □

Corollary 3.8. The degree of a self-equivalence of the sphere S2 is either 1 or −1.

Proof. Given an equivalence φ : S2 → S2, pointed by p : φ(N) = N, any inverse ψ of φ is also pointed
by the following path q:

ψ(N)
[ψ](p−1)

= ψφ(N)
αN= N

where α : ψφ = id is a witness of ψ being a left inverse for φ. In particular, (ψ, q) ◦ (φ, p) is an
equivalence whose first component is equal to idS2 . In determining the degree of this composite
equivalence, Lemma 3.5 ensures that the path is irrelevant, and because d(idS2 , reflN) = 1, we can
conclude that d((ψ, q) ◦ (φ, p)) = 1 also holds. The previous result then proves that d(φ, p) is a
divisor of 1 in Z, which is either 1 or −1 by decidability of the equality in Z. □

Lemma 4.9. Let A and B be types and f : A → B be a k-connected function (k ≥ −1). For all
a1, a2 : A, the function [f ] : a1 = a2 → f(a1) = f(a2) is (k−1)-connected.

Proof. Let a1, a2 : A, and p : f(a1) = f(a2). We have to prove that ∥[f ]−1
(p)∥k−1 is contractible.

From [30, proof of Lem. 7.6.2] we get that the fiber [f ]
−1

(p) is equivalent to the path type (a1, p) =
(a2, reflf(a2)) in the fiber f−1(f(a2)). Moreover, by [30, Thm. 7.3.12], ∥(a1, p) = (a2, reflf(a2))∥k−1 ≃
|(a1, p)|k = |(a2, reflf(a2))|k. The latter path type is contractible if ∥f−1(f(a2))∥k is contractible,
which follows from the assumption of the lemma. □

Lemma 4.13. Let A be a type. Then ∥A ≃ A∥0 is equivalent to the set of invertible elements in the
monoid ∥A→ A∥0.

Proof. For giving maps in both directions we use set truncation elimination. Being an equivalence
and being invertible are propositions and we denote proofs if they exist simply by !. For each
(f, !) : A ≃ A we map |(f, !)|0 to (|f |0, !); obviously, |f |0 is invertible with inverse |f−1|0 if f is an
equivalence. For the converse, if x : ∥A→ A∥0 is invertible, then we have the unique inverse x−1. We
may assume that x ≡ |f |0 for some function f : A → A and x−1 ≡ |g|0 for some g : A → A. From
the inverse law in the monoid ∥A→ A∥0, using [30, Thm. 7.3.12], one derives that both fg and gf
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are merely equal to idA. To prove the proposition that f is an equivalence, one can then assume
actual witnesses of fg = idA and gf = idA. Then g is a pseudo-inverse for f . Hence the map in the
other direction is (|f |0, !) 7→ |(f, !)|0. Clearly the maps in both directions are pseudo-inverses. □

Lemma 6.1. Let A, B, and X be pointed types. We have the following equivalence: (A→∗ (B →∗
ΩX)) ≃ (A ∗B →∗ X).

Proof. Let x0 be the base point of X. Given f : A →∗ (B →∗ ΩX), construct f̄ : A ∗ B →∗ X by
induction:

f̄(inl(a)) :≡ x0 for a : A

f̄(inr(b)) :≡ x0 for b : B[
f̄
]
(glue(a, b)) := f(a)(b) for a : A, b : B

The map f̄ is trivially pointed.
This construction f 7→ f̄ admits an inverse. Let a0 and b0 be the base points of A and B,

respectively. Now, for any a : A and b : B, one has an element τa,b of Ω(A ∗B) constructed as the
following composition of paths:

(11) inl(a0) inr(b0) inl(a) inr(b)
glue(a0,b0) glue(a,b0)

−1 glue(a,b)

glue(a0,b)
−1

Then, to any g : A ∗B →∗ X, one can map the function ĝ : a 7→ (b 7→ Ω(g)(τa,b)). The map ĝ is a
pointed, as τa0,b = τa,b0 = reflinl(a0) for all a : A and b : B by path algebra. The construction g 7→ ĝ

provides an inverse to f 7→ f̄ . A proof of this has been formalized in cubical Agda [8]. There, it’s
also checked that this equivalence arises from a wild adjunction, cf. Proposition B.10. □

Lemma 7.2. For any n ≥ 1, there is a group isomorphism:

ξn : π1(Sn →∗ Sn, id) ≃ πn+1(Sn)

Proof. Recall the equivalence ϕnSn : (Sn →∗ Sn) → Ωn(Sn), defined in Definition 4.4. Note that this
is not a pointed equivalence. Indeed, ϕ1S1 maps (idS1 , refl•) to ⟲ : Ω(S1) and from there, one can
prove by induction that ϕnSn maps (idSn , reflN) to a point in Ωn(Sn) which is mapped to ±1 : Z by
the set truncation Ωn(Sn) → πn(Sn) ≃ Z. However, the distinguished point of Ωn(Sn) is the iterated
refl, which is sent to 0 : Z by this set truncation.

Fortunately, there is an equivalence ψn : Ωn(Sn) ≃ Ωn(Sn) defined as follows:

ψn(α) :≡ ϕnSn(idSn , reflN)
−1 · α

This makes the composite ψn ◦ ϕnSn pointed by path algebra. The wanted equivalence is then:

ξn :≡ π1(ψn ◦ ϕnSn) : π1(Sn →∗ Sn) ≃ πn+1(Sn)

once we identify πn+1(Sn) with ∥Ω(Ωn(Sn))∥0. □

Theorem 7.4. The fundamental group of the type of symmetries of S2 is the cyclic group of order 2.
That is, the following type has an element:

π1(S2 = S2, id) = Z/2Z

where both sides of the equality are considered as groups.

Proof. We follow the proof (in classical topology) of [33]. Let us consider the long exact sequence
given by Theorem 6.5 when specialized to X ≡ S2, n = q = 1 and β ≡ (idS2 , reflN) : S2 →∗ S2. Using
ϕ2S2 from Definition 4.4, the element in π2(S2) represented by (idS2 , reflN) is:

(12) i2 :≡ |Ω(ηS1)(⟲)|0
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Recall that this element i2 generates the group π2(S2), which is isomorphic to Z.
We then have an exact sequence:

(13) π2(S2)
[−,i2]→ π3(S2)

κ→ π1(S2 → S2, idS2) → π1(S2)

We consider the type S2 → S2 as pointed at the element idS2 . Hence, we write only π1(S2 → S2)
instead of π1(S2 → S2, idS2). The sphere S2 is simply connected, that is π1(S2) = 0. By exactness, it
means that:

(14) π1(S2 → S2) ≃ im(κ) ≃ π3(S2)/ ker(κ) ≃ π3(S2)/⟨[i2, i2]⟩

Recall from Lemma 7.2 that there is a group isomorphism ξ2 : π3(S2) ≃ Z. Hence, one has:

(15) π1(S2 = S2) ≃ π1(S2 → S2) ≃ Z/ξ2([i2, i2])Z

We now invoke the main result from [4] to conclude that π1(S2 = S2) = Z/2Z (as groups). □

Theorem 7.5. For n ≥ 3, and any function f : Sn → Sn, the fundamental group of the connected
component of f in the type Sn → Sn is the cyclic group of order 2:

π1(Sn → Sn, f) = Z/2Z

as groups.

Proof. As the group Z/2Z has no non-trivial symmetries, the target type π1(Sn → Sn, f) = Z/2Z is
a proposition. So, as the sphere Sn is connected, we can suppose without loss of generality that f is
pointed by a path f0 : f(N) = N . In the rest of the proof, we make the abuse of writing f for both
the pointed and unpointed map as the context allows to differentiate.

Consider the following fiber sequence:

(Sn →∗ Sn, f) ι−→∗ (Sn → Sn, f) ev∗−→∗ Sn

where (Sn →∗ Sn, f) is the type Sn →∗ Sn pointed at f , (Sn → Sn, f) is the type Sn → Sn pointed
at f , ι is the map forgetting the pointing path, and ev∗ is the evaluation at the point N of Sn. By
[30, Thm. 8.4.6], this induces a long exact sequence of groups:

· · · → πk+1(Sn) → πk(Sn →∗ Sn, f) → πk(Sn → Sn, f) → πk(Sn) → . . .

Hence for every 1 ≤ k < n− 1, this long sequence contains the following short exact sequence:

0 = πk+1(Sn) → πk(Sn →∗ Sn, f) → πk(Sn → Sn, f) → πk(Sn) = 0

In other words, for every 1 ≤ k < n− 1, one has

πk(Sn → Sn, f) ≃ πk(Sn →∗ Sn, f) ≃ πk(Ω
n Sn) ≃ πn+k(Sn)

The group isomorphism in the middle is given by Remark 7.3 as follows: if we write rn for the
chosen point of Ωn Sn (that is the iterated refl on the north pole N of Sn), then the remark

allows to derive an isomorphism πk(Sn →∗ Sn, f) ≃ πk(Sn →∗ Sn, (ϕnSn)
−1

(rn)), that can be

composed with the isomorphism πk(Sn →∗ Sn, (ϕnSn)
−1

(rn)) ≃ πk(Ω
n Sn) induced by the equivalence

ϕnSn : (Sn →∗ Sn) ≃ Ωn Sn.
In particular for n ≥ 3, k :≡ 1 enters the condition, and one gets:

π1(Sn → Sn, f) ≃ πn+1(Sn) ≃ Z/2Z □

Appendix B. Wild categories

The types U∗ and U certainly do not form categories in the usual sense (the intended types of
morphisms A →∗ B and A → B between two objects A,B are not necessarily sets), but some
constructions on U∗ and U are reminiscent of functors. This motivates the few following definitions.
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Definition B.1. A wild category in U is a dependent tuple (C,⇝, ◦, id, α, ι) where:

C : U
⇝ : C× C → U

◦ :
∏

a,b,c:C

b⇝ c× a⇝ b→ a⇝ c (notation g ◦ f :≡ ◦(a, b, c)(g, f))

id :
∏
a:C

a⇝ a (notation ida :≡ id(a))

α :
∏

a,b,c,d:C

∏
f :a⇝b

∏
g:b⇝c

∏
h:c⇝d

h ◦ (g ◦ f) = (h ◦ g) ◦ f

ι :
∏
a,b:C

∏
f :a⇝b

(f ◦ ida = f)× (f = idb ◦ f)

One makes the abuse to denote a wild category by only its carrier type C when all the remaining
data are clear from context.

Remark B.2. To be fully rigorous, one must say a word about the levels of universe one allows in
the definition of wild categories. Assuming we have a cumulative hierarchy of universes U0 : U1 : . . .,
we choose to consider locally small wild categories, by which are meant wild categories such that
C : Ui+1 and ⇝: C× C → Ui for some i ≥ 0.

Example B.3. The type Ui together with function types, identity functions and the usual composition,
is a wild category in Ui+1, for any i. (We will henceforth ignore universe levels and just write U .)
The elements α and ι are given by function extensionality.

Similarly, the type U∗ together with→∗, identity functions pointed by refl paths, and composition of
pointed functions, is a wild category. Again, the elements α and ι are given by function extensionality,
completed by path algebra.

Definition B.4. Let C,D be two wild categories. A wild functor from C to D is a dependent 4-tuple
(F0, F1, c, u) where:

F0 : C → D,

F1 :
∏
a,b:C

a⇝ b→ F0(a)⇝ F0(b)

c :
∏

a,b,c:C

∏
f :a⇝b

∏
g:b⇝c

F1(g ◦ f) = F1(g) ◦ F1(f)

u :
∏
a:C

F1(ida) = idF0(a)

As for non-wild functors, we usually write both F0 and F1 only as F . The only relevant fact about
c and u is that they exist, even though their types are not propositions. Therefore, we will often
(abusively) denote a wild functor by its first two components only.

Proposition B.5. Given wild functors F : C → D and G : D → E, there is a composite wild functor
G ◦ F : C → E with first components:

(G ◦ F )0 :≡ G0 ◦ F0,

(G ◦ F )1 :≡ (a, b) 7→ G1(F0(a), F0(b)) ◦ F1(a, b)
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Proof. Denote cF , uF and cG, uG the witnesses of functoriality for F and G respectively. Then one
gets:

cG◦F (a, b, c)(f, g) :≡ cG(F0(a), F0(b), F0(c), F1(f), F1(g))

· [G1](cF (a, b, c, f, g))

uG◦F (a) :≡ uG(F0(a)) · [G1](uF (a)) □

Example B.6.

(i) There is a wild functor Ω from U∗ to itself which maps a pointed type A (pointed at a) to
ΩA :≡ (a = a) (pointed at refla), and maps a pointed function f : A→∗ B to the pointed
function Ω(f) : ΩA→∗ ΩB defined as follows:

Ω(f)(p) :≡ f0 · [f ](p) · f−1
0

where f0 : f(a) = b is the path pointing f . The map Ω(f) is itself pointed by a path obtained
by using path algebra as follows:

Ω(f)(refla) ≡ f0 · [f ](refla) · f−1
0 = f0 · reflf(a) ·f−1

0 = reflb .

A careful exposition of the witness created this way can be found in [5, core/lib/types/LoopSpace.agda].
It can also be found the witnesses c and u justifying that Ω is a wild functor.

(ii) There is a wild functor Σ from U to U∗ which maps a type A to ΣA (pointed at the pole
N), and maps a function f : A→ B to the pointed function Σ(f) : ΣA→∗ ΣB defined by
induction as follows:

Σ(f)(N) :≡ N, Σ(f)(S) :≡ N, [Σ(f)] ◦mrd := mrd ◦f.

Note that Σ(f) is pointed by reflN as it maps N to N by definition. The witnesses u and
c of Definition B.4 are defined through easy inductions on the suspension, and a careful
exposition can be found in [5, core/lib/types/Suspension.agda].

(iii) The join operation − ∗B from U∗ to itself, defined in Section 6, has the structure of a wild
functor, mapping f : A →∗ A

′ to the pointed function f ∗ B : A ∗ B →∗ A
′ ∗ B defined by

induction as follows:

(f ∗B)(inl(a)) :≡ inl(f(a)), (f ∗B)(inr(b)) :≡ inr(b),

[f ∗B](glue(a, b)) := glue(f(a), b).

Note that f ∗ B is pointed by [inl] f0 : inl(f(a0)) = inl(a′0), where a0 and a′0 are the base
points of A and A′, and f0 : f(a0) = a′0 witnesses that f is pointed.

A formalization of u and c of Definition B.4 in cubical Agda is in [8].
(iv) There is a wild functor U : U∗ → U that maps a pointed type (A, a0) to A and a pointed

maps (f, f0) to f . The witnesses c and u are both given by reflexivity. In practice, the
application of U is left implicit: we write for example Σ(X) for Σ(U(X)) when X is a pointed
type. In particular, depending on the context, the wild functor Σ can be considered to have
domain U∗.

(v) There is a wild functor ∥−∥0 from U∗ to U which maps a pointed type (A, a0) to ∥A∥0 and a
pointed map (f, f0) to the map ∥f∥0 defined by induction as |x|0 7→ |f(x)|0. The witnesses c
and u are defined by using well-known inhabitants of the following two types, respectively:

∥g∥0 ◦ ∥f∥0 ◦ |−|0 = |−|0 ◦ (g ◦ f),
∥id∥0 ◦ |−|0 = |−|0 ◦ id

(vi) Building on the previous examples and Proposition B.5, there is for each n : N, a wild functor
πn from U∗ to U which acts on objects and maps as ∥Ωn(−)∥0. The witnesses c and u are
given by successive transport and composition of the same witnesses for Ω and ∥−∥0, as
explained in Proposition B.5.
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Definition B.7. Let be given a wild functor L from C to D, and a wild functor R from D to C.
A wild adjunction of type L ⊣ R consists of the data of two dependent functions, the unit and the
counit:

η :
∏
a:C

a⇝ R ◦ L(a), ϵ :
∏
b:D

L ◦R(b)⇝ b,

together with elements witnessing the naturality of the unit and the counit

natη :
∏
a,a′:C

∏
f :a⇝a′

(R ◦ L)(f) ◦ η(a) = η(a′) ◦ f,

natϵ :
∏
b,b′:D

∏
f :b⇝b′

f ◦ ϵ(b) = ϵ(b′) ◦ (L ◦R)(f),

and elements witnessing the triangle identities

ltrϵ,η :
∏
a:C

ϵ(L(a)) ◦ L(η(a)) = idL(a),

rtrη,ϵ :
∏
b:D

R(ϵ(b)) ◦ η(R(b)) = idR(b).

Here again, even though the types of natη, natϵ, ltrη,ϵ and rtrη,ϵ are not propositions, one only
cares about their existence, and therefore one usually omits them when denoting a wild adjunctions.

Remark B.8. As carefully proven and formalized in Agda [5, theorems/homotopy/PtdAdjoint.agda],
any such wild adjunction induces a dependent function Φ that maps elements a : C and b : D to an
equivalence

Φa,b : (L(a)⇝ b) ≃ (a⇝ R(b))

given by f 7→ R(f) ◦ η(a), with inverse the function given by g 7→ ϵ(b) ◦ L(g).
This dependent function is natural in the following sense: for any a, a′ : C and b, b′ : D, there are

elements of Φa,b(−) ◦ f = Φa′,b(− ◦ L(f)) for any f : a′ ⇝ a and Φa,b′(g ◦ −) = R(g) ◦ Φa,b(−) for
any g : b⇝ b′.

(To be precise, this is proven in [5] only for wild functors L and R from U∗ to U∗. This is the only
case we need for this paper, hence we rely on this proof.)

Proposition B.9. There is a wild adjunction Σ ⊣ Ω.

Proof. We refer to [5, theorems/homotopy/SuspAdjointLoop.agda] for a proper proof. However, we
give the unit η and counit ϵ for convenience.

Let A be a pointed type with distinguished point a0 : A. Then define

ηA :≡ η(A) : A→∗ Ω ΣA, a 7→ mrd(a0)
−1 ·mrd(a)

which is pointed by path algebra. And define ϵ(A) : ΣΩA→∗ A by induction by setting

ϵ(A)(N) :≡ a0, ϵ(A)(S) :≡ a0, [ϵ(A)] ◦mrd := idΩ A. □

Proposition B.10. Given any pointed type B, there is a wild adjunction − ∗B ⊣ (B →∗ Ω−).

Here, the right adjoint is the composition of the loop functor Ω with the covariant hom-functor from
U∗ to itself.

Proof. We refer to [8] for a formalization in cubical Agda. Here we just give the unit η and the
counit ϵ.

Let A be a pointed type with base point a0. Then define

η(A) : A→∗ (B →∗ Ω(A ∗B)), a 7→ (b 7→ τa,b),

where τa,b is defined in (11). And if X is a pointed type with base point x0, we define ϵ(X) : (B →∗
ΩX) ∗B →∗ X by induction by setting,

ϵ(X)(inl(f)) :≡ x0, ϵ(X)(inr(b)) :≡ x0, [ϵ(X)](glue(f, b)) := f(b). □
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Remark B.11. It is possible to obtain Proposition B.10 from a more general adjunction on pointed
types involving the smash product, −∧B ⊣ (B →∗ −), where the smash product A ∧B is defined as
the following pushout involving the wedge inclusion,

A ∨B A×B

1 A ∧B.

i

⌜
inr

inl

This adjunction is described in details in [31, Sec. 4.3.3], and has been formalized in Lean.
To get Proposition B.10, we’d also need the natural equivalence A ∗B ≃ Σ(A ∧B), and then we

could calculate

(A ∗B →∗ X) ≃ (Σ(A ∧B) →∗ X) ≃ (A ∧B →∗ ΩX)

≃ (A→∗ (B →∗ ΩX)).

However, it is considerably less work to establish Proposition B.10 directly, since both ΩX and
B →∗ ΩX are purely homogeneous types, where a pointed type (X,x0) with base point x0 : X is
called purely homogeneous if (X,x0) =U∗ (X,x) for all x : X. Indeed, in this case, two pointed
maps (A, a0) →∗ (X,x0) are equal as long as the underlying maps A → X are. This follows
from Lemma B.12 below, using ex :≡ Ω(w(x)) where w is a witness of pure homogeneity.

This notion of pure homogeneity is closely related to being an H-space. Indeed, Lemma B.12
also applies to left-invertible H-spaces, taking ex :≡ Ω(µ(−, x)), where µ : X → X → X is binary
operation such that µ(−, x) is invertible for all x : X and satisfying µ(x0,−) = idX .

The Hopf construction [30, Sec. 8.5.2] applies as well to any connected purely homogeneous
type (X,x0), since also the maps w(−, y) will be invertible thanks to w(−, x0) being homotopic to
the identity. In particular, this means that we can only expect Sn to be purely homogeneous for
n = 0, 1, 3, 7.

Note that any pointed connected type (X,x0) is merely homogeneous in the sense that we have
∥(X,x0) =U∗ (X,x)∥ for all x : X, as witnessed by the identity.

Lemma B.12. Let (X,x0) be a pointed type and ex : (x0 = x0) → (x = x) a family of equivalences
parametrized by x : X. Let (A, a0) also be a pointed type, (f, f0), (g, g0) two pointed maps (A, a0) →∗
(X,x0), and h : f ∼ g a homotopy. Then (f, f0) = (g, g0).

Proof. It suffices to give a homotopy h′ : f ∼ g such that h′(a0) = g−1
0 f0. Define p :≡ e−1

g(a0)
(g−1

0 f0h(a0)
−1) :

x0 = x0 and h′(a) :≡ eg(a)(p)h(a) : f(a) = g(a) for all a : A. Then indeed h′ : f ∼ g. Moreover,

h′(a0) ≡ eg(a0)(e
−1
g(a0)

(g−1
0 f0h(a0)

−1))h(a0) = g−1
0 f0. □

Remark B.13. Define a wild monoid to be a pointed type (M, 1) equipped with a function
· :M ×M →M and elements:

α :
∏

x,y,z:M

x · (y · z) = (x · y) · z

ι :
∏
x:M

(x · 1 = x)× (x = 1 · x)

If M is a set, then the types of α and ι become propositions and we are left with just a usual monoid.
In particular, for any wild monoid M , the type ∥M∥0 has the induced monoid structure.

Note that any wild category C, for any object a : C, induces a wild monoid structure on a⇝ a,
pointed at ida with the multiplication ◦(a, a, a), and the witnesses α(a, a, a, a) and ι(a, a) coming
from C.

For example, Sn →∗ Sn and Sn → Sn, with composition of (pointed) maps, are wild monoids for
each n : N. Set truncation yields ordinary monoids ∥Sn →∗ Sn∥0 and ∥Sn → Sn∥0.
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