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Abstract 

Control strategies aimed at the suppression of periodic disturbance, such as Repetitive Controller (RC) and 

disturbance observer (DO) have been used in many applications in the past few years. A traditional RC and 

a conventional DO can be merged into a novel repetitive observer (RO). This paper provides tools to design 

a RO and proves mathematically that the separation principle used in the DO design is also valid for the RO. 

The effects of each control parameter on the system performance are also studied and the RO approach is 

then tested for torque ripple reduction in permanent magnet synchronous machine (PMSM) drives. 

Introduction 

Repetitive controller (RC) has received increasing interest in the past years as an effective solution for 

rejecting periodic disturbances in closed loop control systems for power electronics and drives applications. 

In power electronics, periodic disturbances are, for example, harmonics on the power supply or generated by 

non-linear loads [1]. In drive systems, a periodic disturbance can be represented by the torque ripple [2] 

produced by cogging effects, non-sinusoidal flux distribution and any mechanical misalignment.  

 

RC works only on the harmonics suppression to supplement a conventional feedback controller. One of the 

main advantages of RC is that it can be designed by only knowing the frequency of the disturbance. However, 

due to lack of information about the plant, the design of the controller can be challenging in terms of stability. 

For example, some main causes of instability can be parameter variations of the controlled plant, which 

modify gain and phase of the whole system; or variation of the plant delays, which consequently causes 

unwanted phase shift between reference and controlled variable. 

 

Since harmonics can be modelled as disturbances, a disturbance-observer (DO) can also be used as a 

supplement to the feedback controller for harmonic cancellation as in[3-6].  

 

On one hand, the main benefit of choosing the DO is that it can be added to an existing control loop directly 

without affecting the system stability, because the separation principle can be applied [7]. Usually, there is a 

low-pass filter in the DO to attenuate measurement noise. If the frequency of the target disturbance is close 

to the measurement noise, the performance of DO will degrade[5]. On the other hand, the RC has stronger 

noise rejection ability since a high order filter with a sharp cut-off characteristic can be used. However, the 

RC is dynamically much slower than the DO. It requires at least one disturbance fundamental period of delay 

before it takes effect. Moreover, it needs to be designed together with the feedback controller to ensure the 

system stability.  

 



Taking benefits of the best characteristics of both methods, authors of [7, 8] have pointed out that by adding 

a correction term in RC and considering the disturbance as states, the resulting RC can be designed as a DO. 

This new hybrid approach has been applied to grid-connected voltage source inverters for reducing the output 

voltage Total Harmonic Distortion (THD) in [9] and is named as Repetitive Observer (RO) in [8] for torque 

ripple reduction in permanent magnet synchronous machine (PMSM) drives. It has been claimed in [7] that 

the RO performs like a traditional RC for harmonics attenuation, but a larger stability margin can be achieved 

without sacrificing its performance. In addition, it is claimed in [8] that RO can be designed using the same 

method as a conventional DO. However, no rigorous theoretical proof and design guidelines have been yet 

provided in order to support the method. Moreover, the effects of the control parameters of the RO on its 

disturbance rejection ability are still not clear. 

 

Therefore, this paper aims to provide clear design guidelines for a RO and prove mathematically that the 

separation principle used in the DO design can also be applied in the design of a RO, which is then tested for 

improving torque ripple reduction capabilities in PMSM drives. The relationship between each control 

parameters in the RO and its disturbance suppression performance is also studied. Moreover, although the 

feedback controller and the RO are independent from the stability point of view, their interactions are 

analysed to find the combination that provides the best performance. 

 

The paper will be arranged as follows: Section II will describe and compare traditional Proportional-Integral 

(PI) control loops with the insertion of RC, DO and RO respectively. The separation principle for the RO 

will be proven in Section III. The effects of each control parameter in the RO on the performance will be 

discussed in the simulation results of Section IV and design guidelines will be provided. Experimental 

validation of the simulation results will be given in Section V for the case of torque ripple reduction in a 

PMSM drives, while conclusions will be shown in Section VI. 

RO plus PI control loop 

Fig.1 shows the block diagram considering the application of a RO approach in support of a PI speed closed 

loop control for the torque ripple reduction in a PMSM drive, where, R denotes the control reference and E 

denotes the control error. The proportional and integral gains for the PI controller are Kp and Ki, respectively. 

U is the input of the plant, the output of the plant is the state V, which equals x2. The plant P is assumed to be 

a simple first order mechanical system, of which the continuous transfer function is 1/(Js+B). The 

fundamental frequency of the periodic disturbance D (torque ripple) is fd, whereas the sampling frequency is 

fs. Therefore, for every N=fs/fd samples, the disturbance repeats itself. In this paper, the RO as shown in Fig.1 

is used for cancelling the torque ripple D.  Fig.2a and Fig.2b show instead, the system diagrams with only 

RC and DO, respectively. 

 

The parameters of the RO in Fig.1 will be given in details in the next section. In general, on one hand, the 

high dimension matrices (which have been highlighted in bold) in the RO provide the same effect as the long 

delay chain z-N in the RC. The parameter Q (will be defined in the next section) in the RC has also been 

included in the matrixAd. On the other hand, the RO has the same structure as the DO, although the 

dimension of the DO is much lower (i.e. 1st order).   

Proof of separation principle 

According to Fig.1, the discretised form of the plant transfer function can be expressed as in (1). 
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where, T denotes the sampling period. 



From (1), the state-space equation of the control loop in Fig.1 can be derived as in (2): 

{
𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝑩𝑅(𝑘) + 𝑬𝐷(𝑘)

𝑉(𝑘) = 𝑪𝒙(𝑘)
                                                                                           (2) 

where, 𝒙(𝑘) = [
𝑥1(𝑘)

𝑥2(𝑘)
] , 𝑨 = [

1 −1
𝑏1𝑘𝑖 𝑎1 − 𝑏1𝑘𝑝

] , 𝐁 = [
1

𝑏1𝑘𝑝
] , 𝐂 = [0 1], 𝐄 = [

0
𝑏1
]. 

 

Again, assuming the fundamental frequency of the periodic disturbance is fd, and define N=fs/fd, the 

disturbance can therefore be modelled using the N states as in (3).  

{
𝒙𝒅(𝑘 + 1) = 𝑨𝒅𝒙𝒅(𝑘)

𝐷(𝑘) = 𝑪𝒅𝒙𝒅(𝑘)
                                                                                                                     (3) 

where, 𝒙𝒅(𝑘) =

[
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, 𝑪𝒅 = [1 0 0 … 0 0].        

Combining (2) and (3), the extended system state-space equation can be seen in (4). 

{
 

 [
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                                                                                (4) 

Since the states in x are all known or measurable, the disturbance states xd can be observed by the reduced-

order observer as in (5).  

�̂�𝒅(𝑘 + 1)  = [𝒙(𝑘 + 1) − 𝑨𝒙(𝑘) − 𝑩𝑅(𝑘) − 𝑬𝑪𝒅�̂�𝒅(𝑘)]�̅�𝒅�̂�𝒅(𝑘) + 𝑳 

= (�̅�𝒅 − 𝑳𝑬𝑪𝒅)�̂�𝒅(𝑘) + 𝑳[𝒙(𝑘 + 1) − 𝑨𝒙(𝑘) − 𝑩𝑅(𝑘)] 
= (�̅�𝒅 − 𝑳𝒅𝑏1𝑪𝒅)�̂�𝒅(𝑘) + 𝑳𝒅[𝑥2(𝑘 + 1) − 𝑏1𝑘𝑖𝑥1(𝑘) − (𝑎1 − 𝑏1𝑘𝑝)𝑥2(𝑘) − 𝑏1𝑘𝑝𝑅(𝑘)] 

 

Fig.1 Block diagram of a typical PI control loop with RO. 

 

(a)                                                                             (b) 

Fig.2 Block diagram of a typical PI control loop with RC and DO. 



= (�̅�𝒅 − 𝑳𝒅𝑏1𝑪𝒅)�̂�𝒅(𝑘) + 𝑳𝒅[𝑥2(𝑘 + 1) − 𝑎1𝑥2(𝑘) − 𝑏1𝑈(𝑘)] → as in Fig. 1                              (5) 

where, 𝑳 = [𝟎 𝑳𝒅] =

[
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0 𝐿2…
0 𝐿𝑁−1
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0
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0
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0
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…
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 . 

The L matrix is the observer gain matrix. The Q in the matrix 𝑨𝒅̅̅̅̅  is known as the forgetting factor, which 

is a value between zero and one. It is not used in the DO, but commonly used in the RC to tune the magnitude 

response of the disturbance.  

 

Assuming the observed disturbance is added into the system as shown in Fig.1, where, Kd can be calculated 

from (6). 

𝑈𝑟𝑜 = 𝑲𝒅�̂�𝒅 = 𝐷 = 𝑥𝑑1 ⇒ 𝑲𝒅 = [1 0 0 … 0 0]，𝑲𝒅�̂�𝒅 = 𝑥𝑑1                                                 (6) 

The ultimate state-space equation for the whole control system becomes (7). 

{
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                                                    (7) 

The system closed loop poles can be obtained by calculating the eigen values of the system matrix in (8).  

|𝜆𝑰𝟐𝑵+𝟐 − [
𝑨 𝑬𝑪𝒅      −𝑲𝒅
𝟎
𝟎

    𝑨𝒅
  𝑳𝑪𝒅

  𝟎
�̅�𝒅 − 𝑳𝑬𝑪𝒅

]| = |𝜆𝑰𝟐 − 𝑨||𝜆𝑰𝑵 − 𝑨𝒅||𝜆𝑰𝑵 − (�̅�𝒅 − 𝑳𝑬𝑪𝒅)|                       (8) 

where, IN denotes the unity matrix of size N.  

 

As shown in (8), the eigen values of the system consist of the eigen values of A, Ad, and (�̅�𝒅 − 𝑳𝑬𝑪𝒅), 

which implies that the RO and the PI controller can be designed independently. 

 

In summary, although there are some differences between the RO and DO (i.e. the RO is a N-dimension 

observer, whereas the DO is a first-order observer, and the forgetting faction included in the RO is not 

present in the DO), the separation principle of the DO is still valid for the RO. This makes the RO easier to 

tune than the RC, since it can be added to any existing loop without interfering with the system stability, 

whereas the RC may cause instability.  

PERFORMANCE ANALYSIS IN SIMULATION 

The system stability can be guaranteed simply by making the feedback controller and the RO stable 

separately. The next question is how the system performance can be optimised. In this section, the influences 

of the observer dimension N, the observer gain matrix Ld, and the forgetting factor Q will be discussed by 

comparing output waveforms (currents and speed) acquired with different control parameter settings. The 

settings for the PI and the RO that provide the best performance will also be analysed.  

 

A simulation model has been built in Matlab/Simulink for the disturbance torque reduction of the PMSM 

drive. The simulation model includes a high bandwidth deadbeat current loop[10], a PMSM model with 

Finite Element (FE) analysis-generated lookup tables for magnetic flux and cogging torque (of which the 

main ripple components are the 6th, 12th, and 18th harmonics with respect to electrical frequency), a speed 



loop and RO as in Fig.1. Because the deadbeat current controller do not contain a integer, offsets in current 

response may occur due to voltage drops on the inverter and electrical parameter mismatches. Periodic 

errors in the current response also presents due to harmonics from the inverter. However, such errors can 

all be recognised as torque disturbances and therefore can be handled by the RO. For this application, the 

state D in Fig.1 represents the load torque, the disturbance torque and the equivalent disturbance torque 

caused by current control errors, the input R represents the reference speed, and the output V represents the 

speed feedback. The number of pole pairs is 3. Stator resistance Rs is 1.4 Ω, dq-axis inductances are 4.8 mH 

and 7.1mH respectively, moment of inertia J and friction factor B are 9 kgcm2 and 0.004 Nms/rad. 

The choice of N 

The observer dimension N can be calculated as N=fs/fd. Where, fd should be the fundamental frequency of 

the periodic disturbance. In PMSM drives, the fundamental frequency of the periodic disturbance is the 

rotational frequency. For example, at 1500 rpm, fd=25 Hz. Assuming fs=10 kHz, then N=400. It is worth 

pointing out that the normal RO does not support variable speed conditions when N varies online or is a 

non-integer. An angle-based RO has been proposed in [8] for variable speed, and the performance in speed 

transients will not be discussed in this paper. 

The choice of Ld and Q 

The eigenvalues of matrix (�̅�𝒅 − 𝑳𝑬𝑪𝒅) can be calculated by solving equation (9). 

|𝜆𝑰𝑵 − (�̅�𝒅 − 𝑳𝑬𝑪𝒅)| = 𝜆
𝑁 + 𝑏1𝐿1𝜆

𝑁−1 + 𝑏1𝐿2𝜆
𝑁−2 +⋯+ 𝑏1𝐿𝑁−1𝜆 + 𝑏1𝐿𝑁 − 𝑄 = 0                 (9) 

It is noticed from (9) that the easiest way of placing the poles is to set L1=L2=…=LN-1=0, such that the poles 

are determined by just two parameters, i.e. LN and Q. For stability reason, |Q-b1LN|<1 must hold.  

 

Fig.3 Observed and real disturbance during a disturbance step with different Q in simulation. 

Fig.4 Observed and real disturbance during a disturbance step with different b1LN in simulation. 



Fig.3 and Fig.4 show the observed disturbance x̂d1 and the actual disturbance D with different values of Q 

and LN, respectively. The RO is running on its own without connecting its output to the system, and a 3 Nm 

load torque step is applied at 0.5s. The results show that the observation is the most accurate when Q=1. 

And the value of LN does not affect the observed disturbance value at steady state but affects mainly the 

convergence speed.  

The interaction between PI and RO 

 
(a) x2 

 
(b) Upi 

 
(c) -Uro      

 
(d) x2 

Fig.5 Speed and torque references during a disturbance step with different PI and RO settings in 

simulation. 



Fig.5 shows the speed responses and torque references under different combinations of PI and RO tuned to 

be slow, medium and fast. The three PIs compared are named as PI1, PI2, and PI3, with which the speed 

loop bandwidths are 200 Hz, 400 Hz, and 600 Hz, respectively. The three ROs compared are called RO1, 

RO2, RO3, whose gains LN are set to be 0.1/b1, 0.5/b1, 1.5/b1, respectively. Define the output of PI as Upi 

and the torque reference generated by RO as Uro, where Uro=Kdx̂d. According to Fig.1, the torque reference 

U=Upi-Uro. 

Results show that when a step in disturbance is applied suddenly at 2s, both PI and RO generate the extra 

torque references but in different pace. PI responses immediately, RO responses after one mechanical 

rotation. During such period, PI interacts with RO to ensure that the overall torque reference U follows the 

load. When RO is fast, such interaction deteriorates the smoothness of speed during sudden disturbance 

steps. Hence, it is suggested to tune PI independently according to the dynamic requirement, while set the 

gain LN of RO small to minimize the interaction between PI and RO.   

EXPERIMENTAL VALIDATION 

Experimental tests are carried out on the rig shown in Fig.6, where, the control algorithms are implemented 

using uCube, a high performance DSP/FPGA platform[11]. The machine parameters are shown in Table I. 

Several practical issues, such as the noise in the position measurement, the compensation of delay in speed 

feedback, the misidentified mechanical parameters, and the application of angle-based RO under variable 

speed have been considered in the implementation. The details have been discussed in [8]. As a result, the 

RO has been implemented in the angle-domain, such that it is adaptive to variable speed with fixed N. N is 

set to 200. Sampling frequency is 10 kHz. 

Table I Parameters of PMSM 

Parameters Values Parameters Values Parameters Values 

Stator 

resistance 

0.5 Ω Pole pairs 5 Rated torque 3.8 Nm 

d-axis 

inductance 

1.667 mH Moment of 

inertia J 

5.52 kgcm2 Rated current 

(rms)  

5.37 A 

q-axis 

inductance 

2.468 mH Friction B 0.00217 

Nms/rad 

  

 

Since the torque ripple problem is more serious at low speed. The tests have been carried out at 100 rpm. 

To verify the arguments in “The choice of Ld and Q” section, the observed disturbance when RO is just 

activated at 0.25s and the observed disturbance at steady state are compared in Fig.7 and Fig.8, where, the 

observed disturbance at steady state is considered as the real disturbance. Ideally, PI is the faster, the better, 

but practically, using a faster PI will increase the audible noise due to quantization noise in the position 

 

Fig.6 Experimental rig. 



feedback. Hence, during the test, the PI is tuned to provide 200 Hz speed loop bandwidth, and RO is running 

on its own without connecting its output to the system.  

In Fig.7, gain LN=1/ b1, and Q varies from 0.5 to 1.5. The results confirm the fact that Q=1 is the best setting. 

In Fig.8, Q is fixed to 1, while LN varies from 0.005/b1 to 1.5/ b1. The results are like the simulation results 

in Fig.4. Overall, again, it is recommended to choose Q=1 and LN to a small value. Although a smaller gain 

LN may slow down the learning process of RO, it does not affect the steady state performance as shown in 

 

Fig.7 Observed disturbance when just activated and at steady state with different Q in experimental tests 

with no load. 

 

Fig.8 Observed disturbance when just activated and at steady state with different b1LN in experimental tests 

with no load. 

 

Fig.9 Speed during a disturbance step in experimental tests (a 4A current disturbance is applied at 0.25s). 



Fig.9, where the speed ripple has been reduced to the same level with LN=0.5/b1 and LN=0.01/b1. A 

disturbance step in current is applied at 0.25s in Fig.9, and same trend as in Fig.5 can be seen in Fig.9 that 

using a smaller LN is clearly the better.   

CONCLUSION 

The RO is a powerful tool to reduce periodic disturbance in power electronics and drives systems. It is 

obtained as a combination of the DO and the RC, such that it is easier to tune than the RC and more powerful 

in reducing periodic disturbance than the DO. A systematic tuning method for the RO, however, has not yet 

been fully discussed in literature. This paper aims to prove mathematically that the separation principle of 

the DO still applies to the RO, and to investigate how the RO and the feedback controller can be tuned 

together to provide the best performance. It is a very promising technology that can directly be added as a 

plug in feature for many applications where periodic disturbance is an issue. Overall, the feedback controller 

can be designed independently according to the dynamic requirements, and it is suggested to set the Q 

parameter of RO to one and keep its gain LN a small to reduce the interaction between the feedback controller 

and RO, and to achieve a smoother transient behaviour.  
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