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Abstract 
 

A combined process of supercritical water oxidation (SCWO) and supercritical water 

hydrothermal synthesis (SCWHS) in a continuous counter current reactor is reported. Acrylic 

acid was used as a model unsaturated carboxylic acid compound and the effects of the 

reaction temperature, residence time, oxidant ratio and acrylic acid concentration on chemical 

oxygen demand (COD) were all investigated. Two different experimental configurations for 

oxidant delivery were carried out in ‘pre-heated’ and ‘non-preheated’ oxidant configurations. 

With a stoichiometric excess of 100% oxygen, COD reduction levels of 80% (non-preheated) 

and 15% (preheated) were achieved with very short residence times. SCWHS was achieved 

through the addition of small amounts of various soluble metal salts in the cold upflow 

resulted in nanoparticles forming which increased the reaction rate and hydrothermal 
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oxidation efficiency. The addition of small amounts of chromium nitrate (>5mM) results in  

nearly 100% COD reduction at 380°C and residence times of 0.75 seconds. The potential 

economic benefits of combining the two processes together, in the different configurations, 

were also evaluated.  

 

Keywords: Supercritical Water Oxidation; Supercritical Water Hydrothermal Synthesis; 

Mixing; Free Hydroxyl Radicals; Homogeneous and Heterogeneous Catalysis. 

 

 

  



  

1. Introduction 

Research activities using supercritical water (SCW) as a reaction medium have been 

increasing in recent years [1-3]. The critical point for water is 374°C and 22.1MPa 

whereupon water exhibits unique behaviour [4]. Increasing temperature reverses the solvation 

properties of water and, unlike water at ambient conditions, SCW can dissolve non-polar 

molecules whilst also having low solubility for inorganic ionic salts. An increase in the 

dissociation constant (Kw) and decrease in the dielectric constant (as a result of breakage in 

hydrogen bonding) have a great effect on hydrolysis due to high content of    and     ions 

[5]. These characteristics create an extreme environment for most molecules and makes SCW 

an ideal medium for many applications including oxidation [6], composite recycling [7] and 

nano-particulate production [8, 9]. 

Supercritical water oxidation (SCWO) is a destructive process used to convert toxic and 

hazardous waste into less harmful products. In an ideal case this would be simply water, N2 

and CO2 [10]. The process is well-known for its ability to destroy a wide range of 

complicated wastewater contaminants from a broad variety of industries [11-13]. SCWO is 

an alternative to combustion based technologies used for the destruction of military waste 

[14], resilient pesticides [13] and radioactive waste [15]. Whilst SCWO has the advantage of 

a higher destruction efficiency with no partial oxidation products (which can be problematic 

with wet air oxidation and incineration technologies) [16] there are still significant 

disadvantages [17]. SCWO takes place at relatively high temperatures and pressures in the 

presence of high oxygen concentrations and with potentially corrosive contaminants [10]. 

Such an environment creates challenges for process design and the choice of equipment, 

particularly with respect to materials of construction. Halogenated contaminants can rapidly 

accelerate corrosion rates [18] even with relatively expensive and exotic alloys [19]. 



  

Although the supercritical water oxidation (SCWO) has been recognized as a promising 

technology for hazardous waste treatment, and numerous studies on SCWO were published 

in last two decades, the industrial application of SCWO to-date have been limited to 

laboratory and pilot-plant level, and few large-scale commercial applications are reported [2]. 

One of the major disadvantages that inhibit the industrialization of SCWO technology is the 

high energy cost to get high reaction temperature (>550°C). Therefore, in order to increase 

the efficiency of SCWO at mild temperatures, reactive free radicals can be used as an oxidant 

rather than molecular oxygen. In the non-preheated H2O2 scenario, a highly reactive hydroxyl 

radical is produced via thermal decomposition as represented in Equation (1) [20, 21]. Once 

generated, those free radicals immediately attack all organics present in the solution as shown 

in Equation (2) [22]. 

  

    

    
                                                                                                   

      
      
                                                                               

However, when H2O2 is preheated in pre-heated H2O2 scenario, the generally accepted 

mechanism for the SCWO process is shown by Equation (3) [23]  

     

      
           

                                                                       

At moderate temperatures (e.g. <400
o
C), reaction (iii) is relatively slow since ground-state 

oxygen does not react readily with most organic molecules because of its spin restrictions 

[24]. In addition, recent studies have shown that this ‘oxygenation’ accelerates the corrosion 

of the tubing, particularly where the H2O2 solution temperatures are near-critical [18, 25]. 

Hence, non-preheated oxidation provides a more favourable approach for SCWO.  

enxaa73
Cross-Out

enxaa73
Inserted Text
3



  

The use of catalysts could be a means to reduce these issues, either to increase the rate of 

reaction or to reduce the process conditions required to achieve the same efficiency as non-

catalysed reactions. Under subcritical conditions, e.g. wet air oxidation (around 300ºC), the 

COD conversion is always lower than 70% and requires a subsequent biological treatment. 

The use of homogeneous or heterogeneous catalyst is restricted by the maximum metal intake 

of the selected bacteria. Supercritical hydrothermal synthesis (SCWHS) is another emerging 

technology which takes advantage of the tuneable chemical and physical properties of 

superheated water to produce inorganic nanoparticles by rapid nucleation [26, 27]. A wide 

range of metal oxide nanoparticles, titania (TiO2), cobalt oxide (Co3O4), chromium oxide 

(Cr2O3), manganese oxide (MnO2) and hematite (Fe2O3) have been commonly reported in the 

literature. The process has also been used to produce metals [28], sulphides [29], phosphates 

[30], as well more complex materials such as layered double hydroxides [31] and metal 

organic frameworks [32].  

Whilst diametrically opposed as processes (one is destructive and one is for synthesis), both 

processes have similarities e.g. whilst there are a significant number of papers that heat the 

SCWO flow from ambient to supercritical conditions, using staged heating, there are others 

that use rapid mixing of a preheated flow (possibly containing the oxidant) with a secondary 

colder flow containing the contaminant [33]. The latter requires a mixing design or ‘reactor’ 

geometry and these have included co-current pipe in pipe, Y piece, tangential swirl, jetting, 

transpiring wall etc. The use of a reactor to mix hot and cold flows for SCWO therefore 

creates a valuable synergy, the opportunity for two processes at the same time. i.e. destruction 

of the contaminants whilst simultaneously producing nanomaterials that can act as catalysts 

to increase the oxidation kinetics. Certainly catalysts could be added to the contaminant flow 

prior to the rapid heating and oxidation phase, but this would mean pumping particulate 



  

slurries into the system which potentially create new issues with settling [34], poor dispersion 

[35] and pump head wear [36]. 

In order to test the principle of in-situ catalyst formation during SCWO, we used acrylic acid 

as model unsaturated carboxylic acid contaminant. It is considered to be one of the major 

chemicals in a range of industries (oil additives, painting, detergents) and can cause extensive 

damage to the aquatic system if not being treated [37, 38]. Acrylic acid can also be 

considered as one of the key intermediates during phenol oxidation. In these experiments 

COD levels were used to quantify oxidation rates rather than measuring residual acrylic acid 

concentration. Measuring residual contaminant levels can give a false measure of removal 

efficiency since partial oxidation (to produce intermediates) is not necessarily a sufficient 

means of achieving COD discharge targets. 

In this article, the advantages of the rapid mixing in the counter current mixing reactor [39] 

have been exploited to produce a combined process of organic materials oxidation and metal 

oxides production (in nanometre scale) which can speed up the oxidation rate via enhanced 

catalytic activity [40]. Furthermore, the effect of pre-heated (hot) and non-preheated (cold) 

hydrogen peroxide as an oxidant has been investigated.  

 

2. Experimental 

2.1 Materials  

Acrylic acid, [C3H4O2] (98%, extra pure) and hydrogen peroxide [H2O2] (30% w/v) were 

obtained from Fisher and were used as received without any purification. Iron(ΙΙΙ) nitrate 

nonahydrate (product code: 10154170) and cobalt(II) nitrate hexahydrate (product code: 

10391061) were purchased from Acros Organics. Titanium(IV) oxysulfate (product code: 



  

495379) and chromium(III) nitrate nonahydrate (product code: 379972) were obtained from 

Sigma-Aldrich. Manganese(II) nitrate hexahydrate (product code: L14040) was purchased 

from Alfa Aesar.  Distilled and deionized water (<50µS/cm) was used to make feed solutions 

of different molar concentrations.  

2.2 Apparatus and procedures 

All reactions were conducted at laboratory-scale. A simplified scheme of the experimental rig 

including the counter current mixing reactor is shown in Figure 1. A Gilson HPLC pumps 

(Model 305 equipped with a 25 SC pump head) were used for feed delivery. K type 

thermocouples were used for temperature monitoring at different locations. All parts, fittings 

and tubing were made from SS316L from Swagelok.  

Two different set of experiments were carried out for investigating pre-heated and non-

preheated oxidant. The methodology of reporting reaction temperature is discussed in 

supplementary data section S1.3.  

2.2.1 Experiments with oxidant preheating 

A schematic diagram for this set of experiments is shown in Figure 1a. An aqueous solution 

of hydrogen peroxide was preheated through 6 m length of ¼” outer diameter (o.d.) coiled 

heater at supercritical temperature. This setup enabled a complete decomposition of hydrogen 

peroxide to supercritical water and oxygen. After the heater (insulated), the oxygen and 

supercritical water mixture flows downwards via the concentric tube in tube configuration 

(heated on the outside using a 1kW Watlow band heater) through the thinner inner tube (1/8” 

o.d.), and the cold organic solution feed enters from the bottom via an outer tube (3/8” o.d.). 

Mixing and oxidation reaction occurs just below down the nozzle tip [41, 42] and the product 

flows out of the side arm of the cross piece to the counter current heat exchanger. After 

cooling the product stream is brought to ambient temperature and passed through the back 



  

pressure regulator and the liquid product flowed out at ambient conditions into collection 

vessel.   

 

2.2.2 Experiments without oxidant pre-heating 

In this set of experiments, free hydrogen radicals were used as an oxidant rather than oxygen 

gas. This was delivered as a cold feed stream containing a H2O2 via a third pump. This feed 

stream was pressurized and mixed with organic feed stream at a mixing tee below the reactor 

at the base, at room temperature and without any preheating. The heated SCW flow was 

introduced from the top as a downward flow with just deionized water (Figure 1b).  

2.2.3 Experiments with in-situ catalyst addition 

These experiments used the same set up as described in Section 2.2.1 and 2.2.2 but with 

controlled addition of different precursor salts (5, 10 and 20 mM) dissolved in 250 mL of the 

acrylic acid solution. 

 

 

  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Flow diagram of the continuous SCWO system. (a) Preheated oxidant 

configuration and (b) Non-preheated oxidant configuration. T1 measures immediately after 

the heater. T2 is the post mixed flow (see Table S2 for temperatures measurements). T3 < 

40°C, is the temperature prior to the back pressure regulator. 

(a) 

(b) 



  

2.3 Analytical methods     

At the end of each experiment, samples were collected and allowed to settle. The 

supernatants were tested for Chemical Oxygen Demand (COD) using COD cuvette test 

LCI400 (HACH LANGE LTD, Manchester, UK). The test involved oxidising the organic 

content of liquid samples under acidic conditions for 2h at 148°C. This gives water, carbon 

dioxide and trivalent chromium. The detection of the trivalent chromium was measured at 

605 nm wavelength (DR 2800 spectrophotometer). Some researchers reported the 

interference of overall COD result from residual H2O2 in the effluent of the Advanced 

Oxidation Processes (AOPs)[43, 44]. Residual H2O2 has been found to be a problem since it 

will cause an overestimation of the COD. Therefore, blank tests have been carried out to 

ensure that all H2O2 has been consumed within the reactor with no residual remaining. 200% 

excess of H2O2 solutions had been mixed with supercritical water at different temperatures in 

non-heated oxidant configuration and the COD tests show that there is no residual H2O2 

remaining after hydrogen peroxide decomposition test.      

Samples of the nanocatalysts formed during the in-situ experiments (2.2.3) were suspended in 

alcohol for examination by transmission electron microscopy (TEM).  A drop of this 

suspended alcoholic solution mixture was placed on the TEM grid. TEM images were 

obtained using a JEOL 2100F (FEGTEM) operating with an acceleration voltage of 100kV. 

XRD analysis was carried out on the dried metal oxides nanoparticles which were obtained 

by freeze drying with liquid nitrogen and under low temperature vacuum (-54°C). The 

analysis were completed using Bruker D8 Advance (Bruker AXS, Germany) using Cu Kα 

radiation (λ=1.54056 Å) in a 2θ range between 15° and 75°. Scherrer method, assuming 

Gaussian peak broadening was used to calculate the crystallite size for hematite, titania and 

cobalt oxide. 



  

 

2.4 Calculations 

2.4.1 Residence time 

The residence time for the counter current mixing reactor was calculated to be from the 

mixing point, below the nozzle [39, 45] to the first cooler. The position of the mixing point is 

based on the pseudo reactor modelling that showed that the jetting distance relates to the flow 

and flow ratios [42]. The estimated average hydraulic residence time () for the reaction was 

calculated in the following equation [46]: 

  
  

  
                                                                                                                                    

Where    is the reaction volume, which was estimated from the mixing point of two streams 

to the outlet of the reactor at the top (prior to the first cooler),    is the total mass flow rate 

including the water, oxidant and the organic solution feeds into the system. The        term 

refers to the density of fluid at reaction pressure and temperature. Reaction temperature was 

approximated (see Figures 1a-b) from the average between the superheated water (T1) and 

outlet mixture temperature (T2). 

2.4.2 Concentration of reagents at reaction conditions 

The following equation is used to calculate the initial concentration of acrylic acid at the 

reaction conditions [47]: 

          
   

  
                                                                                                        

Where,     is the concentration of acrylic acid in the feedstock in mol/L,    is the feed mass 

flow rate of acrylic acid into the reactor in g/min,   is the total feed mass flow rate into the 

system in g/min, and        is the density of fluid at reactions conditions. 



  

For the initial concentration of oxidant at reaction conditions 

[  ]= 
      

 
   

     

  
                                                                                                   

Where,        is the concentration of H2O2 in the feedstock in mol/L,      
 is the feed mass 

flow rate of H2O2 into the reactor in g/min,    is the total feed mass flow rate into the system 

in g/min, and        is the density of fluid at reaction conditions. The equation is divided by 

two to fulfil the reaction stoichiometry, because 1 mole of H2O2 is decomposed into 0.5 mole 

of O2 and 1 mole of H2O.   

2.4.3 Oxidant ratio and COD reduction 

 

The amount of oxidant supplied for SCWO reaction is defined as follows [48]: 

 

               
             

                    
                                                                                                

 

The total oxidation reaction of acrylic acid to H2O and CO2 is presented below: 

 

           

      
                                                                                (8) 

 

 

Hence, an oxidant ratio of unity indicates that the amount of oxidant delivered was exactly 

the amount necessary for ideal stoichiometric conversion. Consequently, an oxidant ratio 

greater than 1 indicates an oxygen excess and oxidant ratio less than 1 indicated an oxidant 

deficit. 

The reduction in COD is calculated based on the following equation: 

               
                       

        
                                                (9) 

Where CODinlet and CODtest result are the initial and final concentrations of COD in mg/L. 



  

Two separated streams of distilled water and a known concentration of acrylic acid in a ratio 

of 2:1, were flowed through the experimental rig at the beginning of operation without any 

pressurising or preheating. The resultant mixed solution stream was further diluted to a factor 

of 0.2. This ‘double diluted’ product represents the initial concentration of COD. The 

collection effluent from all SCWO experiments were diluted in the same manner.    

3. Results and discussion  
 

3.1 The effect of temperature on COD levels 
 

 

Figure 2 shows the effect of reaction temperature (in the range of 300-380°C) on COD 

reduction at constant pressure (25.0 MPa) and stoichiometric concentration of oxidant. The 

flow rate and initial concentrations of reactants at the feed stock were adjusted to maintain a 

fixed residence time of 1.5 sec. The impact of increasing residence time and acrylic acid 

concentrations were found to be minimal on COD reduction and are therefore covered in 

Supplementary data.  

 

As can be seen from Figure 2, COD removal increased from 1 to 60% and from 5 to 18% for 

the non-preheated and preheated oxidant scenarios, as the temperature was increased from 

300  to 380 . At temperatures above 340°C, the presence of reactive free hydroxyl radicals 

formed in non-preheated oxidant configuration enhances the conversion efficiency. However, 

below 340°C, the temperature of the downward flow is well below the critical temperature of 

water (i.e. a down flow temperature of 345-370
o
C equates to a post mixed temperature of 

300-340
o
C). Therefore, there is not enough energy to break down the organic or the oxidant 

mixture which result in a low COD removal for the non-preheated oxidant configuration. 

However, as the temperature of the heated down flow reaches the critical point, there are 

significant increases in COD removal. A high COD reduction of >50% at such low 



  

temperatures and residence times, particularly when compared to other studies [49, 50], 

might result from the immediate and rapid heating of the organic and oxidant solution within 

the counter-current mixing reactor in addition to the instantaneous strong and uniform mixing 

of upward and downward streams [39].  
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3.2 The effect of oxidant excess on COD reduction 

 

Minimal COD reduction was achieved at 380°C without the addition of an oxidant (Figure 3). 

It is therefore reasonable to assume that the effect of the hydrolysis reaction on acrylic acid 

was negligible, and that the oxidation reaction alone is responsible for its removal. Oxidant 

ratio was altered from 0-3 at fixed operating conditions of 380°C and 25.0 MPa with an 

initial concentration of 10 mM and 0.75 sec residence time. Figure 3 shows that COD 

Figure 2: The effect reaction temperature on %COD removal. All experiments were 

carried out at 25.0 MPa, a residence time of 1.5 sec, an initial acrylic acid concentration 

of 10 mM and an oxidant ratio of 1 



  

removal rapidly increases with excess oxidant particularly in the case of the non-heated 

oxidant configuration. The reduction rate appears to plateau above an oxidant ratio of 2.0 

which is in agreement with the findings of Shin et al. [51] and  although their residence times 

were significantly longer than 0.75 seconds.   
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3.3 The impact of in-situ nano-catalyst formation 

A series of experiments was carried out to investigate whether the addition of various metal 

salt solutions would impact on COD reduction. In principle these metal salts form 

nanoparticles, via the SCWHS process [52]. These newly formed metal oxides nanoparticles 

would then act as catalysts during the decomposition of acrylic acid.  Figure 4 shows the 

catalytic effect of each metal oxide on COD removal compared to the catalyst free reactions 

at both sub- (4a and 4c) and supercritical (4b and 4d) temperatures. Chromium oxide appears 

to show the most significant improvement in COD reduction at supercritical temperatures, 

Figure 3: The effect of oxidant ratio on COD removal efficiency at 380°C, 25.0 MPa and 

10mM acrylic acid. 
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with both the preheated and non-preheated scenarios. TiO2 shows the lowest activity of the 

tested materials.  

 

 
 

 

 

 

Hematite significantly improves the removal rate of acrylic acid at both temperatures but 

specifically with more than 95% COD reduction in the non-preheated oxidant configuration. 

It is worth mentioning that, part of the high COD removal is also due to the Fenton reaction 

between H2O2 and the iron(III) present in the solution [53]. Cobalt oxide shows a high 

catalytic activity with a 61% increase over the non-catalysed reaction especially in the 

preheated oxidant arrangement where its activity is obviously higher compared with the non-

preheated oxidant scenario. Interestingly, it has no effect at subcritical temperatures. MnO2 is 

Figure 4: Catalytic effect of metal oxide nanoparticles on %COD removal at 

25.0 MPa, oxidant ratio of 1 and initial acrylic acid concentration of 10mM. (a) 

at 340°C, preheated configuration, (b) at 380°C preheated configuration, (C) at 

340°C non-preheated configuration and (d) at 380°C non-preheated 

configuration. 
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Figure 4: Catalytic effect of metal oxide nanoparticles on %COD removal at 25.0 MPa, oxidant ratio of 1 and initial acrylic acid concentration of 10mM. (a) at 340°C, preheated configuration, (b) at 380°C preheated configuration, (C) at 340°C non-preheated configuration and (d) at 380°C non-preheated configuration.



  

generally considered to be one of the most active and stable catalysts during phenol oxidation 

[54]. In Figure 4d the MnO2 catalyst showed a 77.3 and 84.1% of COD reduction in the 

preheated and non-preheated oxidant configurations, respectively. There are other interesting 

possibilities with the combination of catalysts e.g. whilst TiO2 appeared to have relatively 

low catalytic affect, its combination with Fe2O3 enhanced the final settling rate in the 

effluent. Hematite, when on its own, was relatively stable in the effluent which would present 

practical issues with scale up of the process. 

The catalytic preheated oxidant configuration showed highest activity when operating at 

supercritical temperatures. As discussed previously, O2 is a weak oxidant at moderate 

temperatures (e.g. <400
o
C) (28), so the addition of catalyst clearly improves the overall 

reduction rate. For the catalytic preheated oxidation, the oxidation is most probably initiated 

by the adsorption of reactant species on the catalyst surface. Oxygen adsorbed at the catalyst 

surface is present mainly as the superoxide ion O
-
2 which may decompose further with the 

formation of the O
-
 ion [55]. The radical ion forms O

-
 and O

-
2 which possess even higher 

oxidative activities than OH
•
 radicals [56]. As such, this combined approach with catalysts in-

situ presents a new approach to enhanced COD reduction although more work is necessary to 

understand the kinetic mechanisms at work. Homogeneous and heterogeneous catalysis 

reactions may well create the synergetic effects where the metal salts and subsequent metal 

oxide products both act as catalysts during the destruction of acrylic acid at supercritical 

conditions.  

                                                                             

 

 



  

 

   

3.4 Characterization of the nanocatalyst product 
 

Figure 5 shows the representative XRD profiles for each catalyst in Section 3.3. The XRD 

patterns show that the obtained particles are TiO2, Fe2O3, and Co3O4. For experiments with 

Cr salt  addition, all products showed a transparent green colour and, when tested with a laser 

pointer (Figure S3 in supplementary data), showed a positive beam path which normally 

indicates the presence of nanoparticles. However, the XRD patterns show no crystalline or 

amorphous phase of chromium oxide. TEM images of each nanomaterial produced (in both 

configurations) are shown in Figures 6a-b. The morphology in most cases appears to be 

spherical with detectable edges and (in most cases) crystallinity. Table 1 gives the crystal 

sizing data from XRD and TEM analysis using Scherrer equation and ImageJ software and 

over 100 measurements. Cr based particles were very small via TEM - and that is one the 

most important factors that increase the catalytic activity of metal nanoparticles. Cr2O3 has 

been synthesised hydrothermally at milder conditions i.e. 180
o
C in batch, but only in the 

presence of urea[57], so it is more likely  that these particles observed using TEM were either 

CrOOH or Cr(OH)3 particles. There are other papers to support the assumption that this 

greenish suspension is the Cr equivalent of boehmite (AlOOH). Most researchers conclude 

that a minimum of 450
o
C is required to convert the CrOOH to Cr2O3[58, 59] which is higher 

than the experiments in this paper. However, the CrOOH is clearly the best catalyst in this 

work. 

  



  

 

 

Catalyst Type 

Preheated oxidant scenario 

 

Non-preheated oxidant scenario 

 

Scherrer  

(nm) 

ImageJ  

(nm) 

Scherrer  

(nm) 

ImageJ  

(nm) 

TiO2 7.7 8.0 7.5 9.0 

Fe2O3 25.5 26.5 21.8 16.1 

Co3O4 23.3 35.4 20.4 15.8 

CrOOH - 5.0 - 6.0 

MnO2 - 19.0 - 20.6 

Fe2O3 + TiO2 - 13.0 - 14.6 

  

Table 1: Crystal size (nm) of in-situ metal oxides formed during SCWO. 



  

 

 

 

 

 

 

 

 

 

 

  

Figure 5: XRD profiles of the metal oxide nanoparticles obtained at 380°C, 25.0 

MPa, oxidant ratio of 1.5 and 0.02M of metal salt concentration. (a) Preheated 

oxidant and (b) Non-preheated oxidant scenario. 
 



  

  

 

 

 

 

 

 
 

 

Figure 6: TEM images of the metal oxide nanoparticles obtained at 380°C, 25.0 MPa, 

oxidant ratio of 1.5 and 0.02M of metal salt concentration. (a) Preheated oxidant and 

(b) Non-preheated oxidant scenario.  
 

CrOOH 

CrOOH 



  

3.5 Initial economic considerations for the benefits of a combined SCWO/CHS 

approach 
 

An initial simulation and economic study was carried out on the combined SCWO/SCWHS process to 

better understand the advantages that might be presented at industrial scale. These studies were based 

on an actual industrial scale plant, which was designed and constructed during the SHYMAN project 

[60]. An Aspen Plus
®
 simulation used the flow rates of 3:1.5 m

3
/h (downflow of supercritical water: 

upflow of acrylic acid in water) and the reaction pressure at 25.0 MPa.  

Three different scenarios are modelled using Aspen Plus
®
 software to achieve a COD removal of 

98%: pre-heated, non-preheated and catalytic non-preheated oxidant configuration (using 

Fe(NO3)3.9H2O). Whilst CrOOH was the better catalyst, the iron nitrate precursor is significantly 

cheaper and Fe2O3 is more environmentally benign[61]. 

For calculating the necessary temperature to get 98% of conversion, the experimental results shown in 

Figure 2 were extrapolated with polynomial equations and the temperatures for the pre-heated and 

non-preheated oxidant process found to be 498ºC and 401°C, respectively. These conditions were 

chosen because the catalytic non-preheated oxidant configuration, already showed that a 98% 

reduction of COD was possible at 380°C (see Figure 4). 

Figure 7 shows the main simulated process using Aspen Plus
®
 software. Mass balances are given in 

Supplementary data S1.4. In pre-heated configuration, the organic solution is fed in via stream 9 and 

enters at the bottom end of the reactor via stream 11. The oxidant solution is introduced in the reactor 

by stream 13 at the top end. This stream is heated in a heat exchanger followed by a gas-fired boiler 

using natural gas (NG). Regarding non-preheated oxidant configuration the flow diagram is the same 

but in this case, the oxidant is fed by stream 9 and stream 13 consists of process water. Finally, using 

catalytic configuration, the metal salt is supplied from stream 9.  
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Figure 7. Flow diagram of the industrial scale process (Aspen Plus
®
 software) 

 

With the objective of studying the economic feasibility of each configuration in the industrial plant, 

the energy requirements are compared in Figure 8. The capital expenditure (CAPEX) is the effectively 

the same in three configurations with the same number of pumps, heaters etc. and the assumption is 

that none of the configurations will cause specific long term issues with operation. From Figure 8 the 

electricity requirement by the pumps are essentially equivalent in all three configurations. However, 

the natural gas requirement is dependent on the temperature required to achieve 98% conversion. 

Therefore, in pre-heated oxidant configuration the natural gas requirement is the highest, at about 

1160 kW.  
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Figure 8: Energy calculations for demand for energy demand for the three scenarios  

Water casts 1.92 £/m
3
, and hydrogen peroxide is 0.32 £/kg. In the United Kingdom electricity is 

costed at 0.12 £/kW and natural gas is 0.055 £/kW. Thus, the costs calculated for pre-heated and non-

preheated oxidant configuration on an industrial scale plant are about 85 £/h and 61 £/h, respectively, 

as shown in Table 2. 

  



  

 

 

Preheated 

 H2O (l/h) H2O2 (kg/h) Natural Gas (kW) Electricity (kW) Total cost (£/h) 

Flow 3807 22.95 1158.0 55.6 

85.01 

Cost (£/h) 7.31 7.34 63.7 6.7 

Total cost (£/kg contaminant-water) £0.067 

Non-preheated 

 H2O (l/h) H2O2 (kg/h) Natural Gas (kW) Electricity (kW) Total cost (£/h) 

Flow 3807 22.95 717.4 55.6 

60.78 

Cost (£/h) 7.31 7.34 39.5 6.7 

Total cost (£/kg contaminant-water) £0.048 

 

With the catalytic configuration (Table 3), it must be noted the iron nitrate precursor price is 0.84 £/kg 

(from molbase.com) bringing the total cost to 67 £/h. This is more than the non-preheated case. 

However, in this case, Fe2O3 nanoparticles are also produced. Economic calculations should therefore 

take into account the value of this nanomaterial which, at almost 2.0 kg/hr and a relatively 

conservative value of £30/kg would certainly negate any basic operating expenditure (OPEX).  

  

Table 2: Cost of preheated and non-preheated oxidant configurations. 
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Non-preheated + catalyst 

H2O 

(L/h) 

H2O2 

(kg/h) 

Fe(NO3)3.H2O 

(kg/h) 

Natural Gas 

(kW) 

Electricity 

(kW) 

Total cost (£/h) 

Flow 3803.39 22.95 12.12 640.93 55.59 

66.80 

Cost (£/h) 7.30 7.34 10.23 35.25 6.67 

Total cost (£/kg contaminant-water) 0.053 

 

  

Table 3: Cost of catalytic non-preheated oxidant configuration. 



  

 

4. Conclusions 
 

The counter current reactor was designed to produce short residence times and rapid mixing 

of two different fluids and (whilst most SCWO reactors use substantial residence times and 

high times)  COD reduction was shown to be relatively high (up to 80%).  

The oxidant (H2O2) delivery method was found to have a large impact on removal efficiency 

and reaction temperature was also a key variable. At 380 °C and 25.0 MPa, the non-preheated 

oxidant configuration with a residence time of 0.75 sec resulted in an 80% COD removal as 

opposed to a 15% COD removal with the equivalent preheated oxidant experiment. The 

difference between the efficiency for the two methods is linked to the availability of -OH 

radicals and/or molecular oxygen, respectively. 

The addition of small amounts of metal salts in the upflow also led to a reduction in COD 

levels. These precursors created metal oxide or oxyhydroxide nanoparticles in situ which 

enhanced the oxidation efficiency. Fe2O3 and CrOOH were the most significant catalysts, 

increasing COD reduction to more than 98% at a temperature of 380°C and a residence time 

of less than 1 sec.     

From a basic OPEX analysis, the best option is the non-preheated catalytic configuration 

because the temperatures required to achieve high levels of COD reduction were much lower 

than the other configurations. The basic economic impact of catalyst addition was also 

assessed to be favourable. The secondary value of any nano-catalyst bi-product could 

potentially outweigh any OPEX costs for the SCWO process itself. There is also a clear 

opportunity to increase the metal precursor concentration, which would not impact on 

removal rates of the contaminant but would increase the quantity of the nano bi-product, 

further increasing the financial viability of the combined process. 
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HIGHLIGHTS 

 

 

 A combined oxidation/synthesis process for contaminant removal  

 Lower temperature requirements for contaminant removal compared to other 

papers 

 A comparison of the effectiveness of different nanocatalysts in contaminant 

removal 

 Experiments to show how oxidant addition impacts on contaminant removal 

efficiency 

 An initial techno-economic assessment showing benefits of the process vs current 

standards 
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