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Abstract
Scanning probemicroscopists generally do not rely on complete images to assess the quality of data
acquired during a scan. Instead, assessments of the state of the tip apex, which not only determines the
resolution in any scanning probe technique, but can also generate a wide array of frustrating artefacts,
are carried out in real time on the basis of a few lines of an image (and, typically, their associated line
profiles.)The very small number ofmachine learning approaches to probemicroscopy published to
date, however, involve classifications based on full images. Given that data acquisition is themost
time-consuming task during routine tip conditioning, automatedmethods are thus currently
extremely slow in comparison to the tried-and-trusted strategies and heuristics used routinely by
probemicroscopists. Here, we explore various strategies bywhich different STM image classes (arising
from changes in the tip state) can be correctly identified frompartial scans. By employing a secondary
temporal network and a rollingwindowof a small group of individual scanlines, wefind that tip
assessment is possible with a small fraction of a complete image.We achieve this with little-to-no
performance penalty—or, indeed,markedly improved performance in some cases—and introduce a
protocol to detect the state of the tip apex in real time.

1. Introduction

One of themajor challenges in the drive to fully automate the scanning probemicroscope is the need to
constantlymaintain the integrity of the tip [1, 2]. During an experimental session, interactionswith the surface
can cause the tip to spontaneously and randomly change shape,modifying the interactions and therefore
changing the data acquired in a highly nonlinear fashion. This frequently results in inconsistent scans containing
visual artefacts, oftenmaking data unusable or, at best, problematic to interpret. Furthermore, it is becoming de
rigeuer in state-of-the-art SPM to functionalise tips by deliberately picking up adsorbedmolecules or atoms from
the surface [3], vastly improving resolution [4], enabling directmeasurement of intermolecular pair potentials
[5, 6], and/ormodifying the capability of the probe, for better orworse, tomanipulate and position single
adsorbates [7].

Indeed, SPMexperimentation is now at the point where not only is single atom/molecule termination of the
tip apex required, butfine control and detailed understanding of its atomic/molecular orbital structure is often
essential. Gross et al [8] provided a particularly elegant example of the importance of ‘orbital engineering’ of this
type by demonstrating the significant enhancement of submolecular resolution in scanning tunnelling
microscopy (STM) images of pentacene and naphthalocyaninemolecules via tunnelling through p-wave
orbitals, as the tunnellingmatrix element for these states is proportional not to the samplewavefunction itself
but its spatial derivatives. The spatial distribution and orientation of electron density at the tip apex also plays a
central role in single atommanipulation [9]. Controlling andmaintaining the atomistic and orbital structure of
the tip apex is therefore a vital part of state-of-the-art SPMoperation. Currently, this requires a protracted and
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repetitive routine of voltage pulsing, ‘gentle’ (or not-so-gentle) indenting of the tip into the surface, scanning at
relatively high voltages and currents, and/or attempts to pick up adsorbates. This is at present a high-effort,
time-consuming andmanual process involving only simple sub-processes,making it ideal to automate.

Whilst convolutional neural networks (CNNs) have been shown to be capable of assessing SPM tips [10–12],
and,most recently, of extracting ‘hidden order’ from STMdatasets [13], CNNmethods to-date have been
trained exclusively with complete images. Partial scans comprising a small number of scanlines therefore simply
do not provide the information uponwhich the networkmathematically depends and so currentmethods of
CNN image assessment require complete scans. Thismethod of CNNassessment after complete scans compares
extremely poorly to human-based assessment, inwhich SPMoperators routinely perform accurate assessment
during in-process scans by observing individual line profiles as the image is acquired. Indeed, as little as 1%–2%of
a full scanmay be required to correctly assess a particularly poor tip. Furthermore, because themajority of time
spentmaintaining the tip is spent acquiring the data to assess,manualmaintenance by a human is beyond an
order-of-magnitude faster than any current CNNprotocol. Given thatmanualmaintenance can take several
hours as-is, automated tip assessment with full-scanCNNprotocolsmay be unable to keep upwith the demands
of SPMexperimentalists unless an alternative strategy is introduced. In this paperwe outline such a strategy and
demonstrate that it performs extremely well against currentmethods based on complete images.

Furthermore, there is awealth of data embedded in SPM scans, which can be exploitedwith neural network
structures. For example, Burzawa et al [14] have very recently shown that single layer neural networks can be
used to extractmeaning in Isingmodel images, which are otherwise difficult for humans to interpret. A key
difference in our case is that we focus on accurately observing atomic resolution, which is lost (or at best aliased)
for larger scan areas. This is not the case for Burzawa et al’s work, where close to a critical point the correlation
length becomes effectively ‘system spanning’. These patterns at criticality therefore are described by power law
behaviour. Indeed, our group has previously examined this type of power law behaviour and the associated
structural correlations for nanoparticle assemblies [15, 16].

Beginningwith a dataset of 6167 scans of theH:Si(100) surface, we extend our previous study of CNN tip
detection [12] to explore and compare a variety ofmethods bywhich the state of the tip can be determined using
incomplete, partial scans. In addition to the simple, commonmethod of ‘padding’ incomplete scan frameswith
an arbitrarymarker value, we also discuss training the network to recognise individual linescans instead of entire
images. Optimal performance is seenwhen classifying a ‘window’ consisting of a small group of linescans, and
using a second temporal network to determine tip state as thewindow is ‘rolled’ over the course of a scan. This
method remarkably produces better-than-complete-image performance with only a fraction of the data. By
combining several of thesemethods in a ‘hybrid’ approach, it is possible to accurately assess scanning probe (in
this case, STM) data by at least an order ofmagnitude faster than current CNNprotocols [10–12].

2.H:Si(100)dataset

As discussed in the Introduction, SPM images often containmultiple features because of the scanning probe
apex changing during a single scan. These tip changes also regularly and immediately result in discontinuities
perpendicular to the direction of the scan. After the tip changes shape,multiple,more complex visual artefacts
can also appear [17–19]. For example, features can appear to ‘ghost’ due to the presence ofmultiple tip apices
[10, 20], or large blursmay appear due to impurities on the probe itself.Whilst these particular features can be
seenwhen scanning any surface, others are specific to the surface being investigated [21]. For example, for the
H:Si(100) surface, four different, distinct tip states of ‘individual atoms’ (for the sharpest tips), ‘dimers,
‘asymmetries’, and ‘rows’have been observed and discussed in the literature [18, 22, 23]. Typically, an operator
will want to coerce the tip into producing images with one of these atomistic resolutions visible. (It is alsoworth
noting that the tip apex capable of the highest resolutionmay not be best suited to other tasks, including, in
particular, single atommanipulation [24].)Uncontrolled, and sometimes controlled, tip changes, however,
mean that it is possible to produce images ofH:Si(100) showing a combination of any of these four states, tip
change shears, and other defects. Examples for each state are shown infigure 1, alongwith a diagramof theH:Si
(100)-(2×1) surface reconstruction.

Besides its distinctive surface features,H:Si(100) is an ideal test-bed for developingCNNautomation
techniques. In addition to the relative simplicity of its reconstruction and awealth of previous literature [25],
H:Si(100) is a well understood substrate that has been used inmany important advances in single atom
technology and atomically precisematerials engineering [24, 26–31]. Furthermore, because it has been
previously studied in the context ofmachine-learning-enabled SPM [10–12], a good comparison can be formed
with existingmachine learning approaches based on full scans. As such, we used our existing dataset of 6167
complete images ofH:Si(100) [12]. These imageswere acquired on aOmicron variable-temperature STM
betweenMarch 2014 andNovember 2015, and at varying scan sizes and voltage biases of 3×3 nm2 to
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80×80 nm2 and−2 V to+2 V, respectively. Theywere then hand-classified into the four categories listed
above, as well as ‘tip changes’ and ‘generic defects’. Specific defects were not considered, as tip conditioning is
performed based on the presence of any defect, and not the specific defect itself. As such, combining all defects
into one category simplified the classification task, improvingCNNperformance.

Fromhere, imageswere then randomly assigned into a training/testing set for training the network.
Performancewas then calculatedwith a separate, blind holdout set for verification. After random shuffling, 4987
of the imageswere assigned into the training/testing datasets in an 80/20 split, and 1180 into the holdout set.
Datawas thenfiltered to remove ambiguous images that were classified inmultiple categories and/or the human
classifiers did not perfectly agree upon [12]. This left 3386 images for training/testing, and 648 for blind
verification. Because of the relatively small number of images available and to further improve performance, all
data were then pre-processed using identicalmethods as inGordon et al [12] (namely flattening and scaling
linescans to havemean of 0 and standard deviation of 1). The training/testing sets were also augmentedwith
vertical and horizontalflips, random rotations from0° to 360°, crops, pans, and randomGaussian noise. This
stepwas needed to prevent the network from rapidly overfitting. (This is where aCNN learns about random
noise in the training set [32], performing extremelywell during training, but poorly with testing/verification
data unseen during training.)To allow for the best approximation of real-world performance on unseen data,
the verification set was not augmented.

Furthermore, the data were also downscaled, which reduced both training time and overfitting further still
[32]. Previously, optimal performancewas foundwhen reducing full-scans from size 512×512 to 128×128
[12]. Panning and cropping augmentationswere applied in such away that 128×128 regions of the images
were taken, allowing for downscalingwithout interpolation of data. Because the holdout datawere not
augmented, these images were downscaled in themore traditional sense.

Because an operatormay desire the presence of some tip states (e.g. ‘individual atoms’), but desire the
absence of others (e.g. ‘blurry’/defects), there are different implications to predicting the tip to be (or not to be)
in different states. Thismakes use of the fact that CNNs do notmake binary yes/no predictions, but instead
output confidence ratings between 0 and 1 for each category. A decision is thenmade by rounding each number
to 0 or 1. This rounding can be altered, and true positive/false positive rates then compared to demonstrate the
overall performance of the classifier for each category. This forms the receiver-operator characteristic curve
(ROC) [33, 34], which is then easily quantified by calculating the area under (AU) the curve. TheAUROC for all
categories can then be averaged to give an average AUROC for the classifier as awhole. A perfect classifier has
AUROC=1, while a network that operates purely by guessing has AUROC=0.5. To the same end, we also
calculate the precision-recall curve, inwhich the average precision is theweightedAU this curve. Thesemetrics
are independent of the number of images in each class, which drastically skews a pure accuracy value. As a result
of this class imbalance, we therefore also calculate weighted accuracy [34] instead of pure accuracy. This was of
particular importance in our case, as the filtered dataset was highly imbalanced, with only 5.6% images classified
in themost ideal ‘atomic resolution’ class. Certain states were alsomore likely to appear than others, with 4.0%
classified as asymmetries, 32.2%dimers, 16.4% rows, and 41.9%generic defect.

3. Results and discussion

3.1.Data padding/masking
Inmany neural network applications, data are often of varying length. For example, in natural language
processing [35], somewords and sentences are inevitably longer than others. In these cases, shorter pieces of data

Figure 1. Selection of planeflattened 4×4 nm images showing key tip states for STM imaging ofH:Si(100). (a)Ball-and-stickmodel of
(not to scale) atomic structure ofH:Si(100)-(2×1), which comprises rows of hydrogen-terminated silicon dimers; (b) atomic
resolution; (c) asymmetry; (d) dimer resolution; (e) row resolution; and (f) bad/blurry. The tip can also spontaneously change during
imaging, resulting in the horizontal discontinuity in (e). Frequently, features appear to blend between images, such as with
asymmetries and atoms, or the dimer-likemodulation in rows. Asymmetries and dimer classes were therefore combined. Imageswere
acquired at a tip bias of 1.6 V and tunnelling current of 10 pA. All images are 300×300 resolution, except for (c) at 512×512.We
note that the complete dataset contains amuchwider variation of scan parameters.
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are lengthened by ‘padding’ themwith amarker value [35] until they are as long as the longest piece of data. The
marker value is chosen such that it cannot naturally appear in the real data. Training and testing then continues
as normal, as the network learns to ignore themarker value. In the context of SPM,we can exploit the fact that
images are sequentially generated one linescan at a time, and that completed images contain the same number of
linescans, regardless of scan parameters. During an incomplete scan, themissing linescans can therefore be
replacedwith amarker value to allow the network to produce an output. Figure 2 demonstrates howdata could
be padded during scanning to form a full sized image.

As such, it is possible simulate and test partial scanswith the original dataset of complete scans. To do this, a
randomnumber of linescans from the end of the scanwere ‘masked’ during training by replacing the real data
with themarker value. To do this, we let
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whereN is the total number of lines in a full image, andM themarker value. This produces an array, Aj
i , for the

ith image of a dataset, inwhich only j linescans appear to have been produced. To improve performance, data is
further augmented by repeating Ai multiple times, butwith randomly assigned j.

Although thismethod is simple and can easily be applied to existing protocols, the use of amarker value is of
course highly problematic. In the context of SPM, data can theoretically contain any positive or negative value
within the operating range of the acquisition hardware. As such, nomarker value exists that could not showup
in the actual dataset, without being so large as tomake the actual dataminiscule by comparison and negatively
impacting learning. As such, the networkwill likely become insensitive to some of the actual data. Given that
each linewas pre-processed to havemean of 0 and standard deviation of 1, we therefore consider arbitrary
marker values ofM=0 andM=10. As an alternative, we also consider ‘tiling’ by repeating Aj

i to full scan-size.
This avoids the need tofill with an arbitrarymarker value.

TheCNN structurewas chosen to beVGG-like [36] after strong all-round performancewas previously
found forH:Si(100) using a similar structure [12]. This network [36] begins with two 2D convolutional layers of
32 outputfilters, 3× 3 convolutionalfilters, and 3× 3 strides. This is followed by a thirdmax pooling layer with
2× 2 convolutional filters and 2× 2 strides. This three layer block is then repeated, butwith output filters of 64
and then 128 layers, respectively. The very first convolutional layer in themodel was then altered to have 7× 7
convolutionalfilters and 2× 2 strides. This structure was then trained three separate times to create amajority
voting ensemble. Not only does this allow for the performance benefits seenwhen taking amajority vote of a
subjective task, but also reduces variance inCNNperformancewhichwas found to vary by about 1%between
repeats. A schematic of this structure is provided as supplementarymaterial available online at stacks.iop.org/
MLST/1/015001/mmedia.

Figure 2. Figure to demonstrate a potentialmethod to allowneural networks to predict the state of an SPM tip using incomplete scans.
Because CNNs can onlymake predictions if given the same number of data points used during training, it is not possible tomake
predictions using incomplete scans. It is also computationally wasteful to createmultiple CNNs for each stage of scan completeness.
Instead, partial scans can be ‘padded’with an arbitrarymarker value until there are enough data points to equal a full sized scan. After
each successive linescan, less padding is required. This allows theCNN (green border) to train/predict using incomplete scans.
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To test thismethod, the performance of theCNNensemblewas calculated as one additional line was
unmasked at a time.We do this bymasking from the jth line of Aj

i using equation (1) for all 648 images in the

verification dataset. TheCNNensemble was then used to predict the tip state, P Aj
i( ), from j=2 to j=N. By

assuming the humanprediction to be perfectly correct, performancewas calculated by comparing CNN
predictions to the corresponding human predictions. Performance is shown as a function of j infigure 3.

From thesefigures, it can clearly be seen that for all types of padding, the padding-enabled-CNNs
successfully learnt tomake correct observations with limited data. Furthermore, when comparing the
performance difference of small amounts of data with j=2 to full scanswith j=N, the performance of all
padding types only decreased by an average of 4%±1%, 8%±6%, and 7%±2% formeanAUROC,mean
precision, and balanced accuracy, respectively. Given that the balanced accuracy,mean precision andAUROC
values are significantly better than the 0.25, 0.25 and 0.50 of guessing, respectively, it is entirely possible to assess
SPM tip state with only a small number of linescans.

However, at j=N the padding-enabled-CNNs performed significantly worse than an identical ensemble
trainedwithout padding. Here, padding reduced full size performance by up to 12%, 23%and 22% for themean
AUROC,mean precision, and balanced accuracy, respectively, when compared to theworst performing padding
methods. GivingCNNs the ability to classify partial scans therefore significantly harms performance, reducing
the real-world effectiveness of such systems.We also note that this architecture also performed better than the
ensembles presented inGordon et al [12]. The large initial convolutional windowmay have caused this. Besides
the reducedmaximumperformance, therewas also a large computational inefficiency due to training theCNNs
to perform (and subsequently ignore) a large number of expensive calculations onmeaningless data.

One advantage of partial-scanmethods is that tip changes can be instantly detected by looking for changes
and impulses inCNNoutput, as visible infigure 4. This is a significant improvement on previous full-scan
methodswhich require a secondary ‘tip change’network [12].We note thatwithoutmanual labelling of all tip
change locations on all images, a quantitative analysis of tip-change detection is not possible. However, the
imperfect ignoring of themarker valuesmeant that some of the horizontal shears due to tip changes caused little-
to-no-change in network output. The change in prediction to reflect a new tip state was also often small, and
tended to ‘drift’ rather than instantly ‘snap’ to the new value. This was particularly problematic for tip changes
later on in a scan.One explanation is that the network learnt to heavily rely on earlier scanlines because training
images often had early scanlines present, but later scanlines did so increasingly rarely. It was also impossible to
detect tip changes using the ‘tile’method of data padding, which created a horizontal shear (visually identical to a
tip change shear) between every tile. As such, padding should only be employed early on in scans andwhen the
tip state is likely stable.

Figure 3. Figure to demonstrate the balanced accuracy (a), mean area-under the receiver-operator-characteristic curve (b), andmean
precision (c) of a neural network trained to classify partial STM images of theH:Si(100) surface. Given that SPMdata is generated one
line at a time, incomplete scans can be padded to full-size with amarker value that the otherwise identical network then learns to
ignore. In this way, the data requirements for neural network automated state detection can be reduced significantly. Here, we
considermarker values of 10 (red), 0 (blue), and also tile the data to size (green). However, performance is far below an identical
network trained exclusively on full size data (black)
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3.2. Individual linescanwindows and cumulative averages
One alternative to padding incomplete scans is to train so as to classify the individual linescans that form an
image, rather an image in its entirety. As new lines are scanned, they could immediately be predicted. This
negatesmuch of the insensitivity and computational wastefulness caused as a result of padding, and is
demonstrated infigure 5.

However, one consequence of basing predictions on individual linescans is that each linescan is stripped of
its context to the rest of the scan. Acquiringmore linescans should therefore not improve network performance.
As such, a small amount of context can be applied to the other scanlines in the image by applying an additional
layer to cumulatively average the network predictions using the equation

Figure 4. Figure to demonstrate a variety ofmethods bywhich theH:Si(100) tip states of individual atoms (yellow), asymmetries/
dimers (blue), rows (green), and generic defects (red) can be recognised from incomplete SPM scans. Instead of detecting SPM tip
states using complete scans, neural networks were taught to recognise partial scans by zero padding (a), or by classifying single
linescans (b). In this case, non-defect categories had to be combined together (pink). However, optimal results were found by forming
a ‘window’with a small group of 20 consecutive linescans, and giving additional predictive power by using a second LSTMnetwork as
the window is ‘rolled’ over time (c). This networkwas found to perform the strongest at single class classifications, and showed good
responsiveness with varying tip state.

Figure 5. Figure to demonstrate a potentialmethod to allowneural networks to predict the state of an SPM tip using incomplete scans.
Instead of training/predictingwith complete scans, the network (green border)was allowed to predict individual linescans. Asmore
linescans become available during a scan, network predictions are cumulatively averaged to give context between successive linescans.
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where P Aj
i( ) is the cumulatively averaged vector describing the predictions of the jth linescan of the ith image in

the dataset. A prediction for the entire image is therefore foundwhen the condition j=N ismet.
We also note that although the cumulative averaging provided context to the predictions, the actual

predictive part of the networkwas unaware of the surrounding linescans.Whilst this averaging therefore served
to reward consistent single-class output, it should be expected to have poor responsiveness to scanswhere the tip
constantly changes shape. Furthermore, the network had little-to-no ability to distinguish between features that
cannot be distinguished at the 1D level. For example, a single linescan of ‘atoms’ or ‘rows’ features infigure 1
would appear identical with a half-rectified sinusoid. The varying scan areas of the dataset required tomake
predictions invariant to scan area then prevent the network from learning any spatial information to distinguish
between the two states. As such, the number of tip states was simplified to just two - ‘generic defect’ and ‘visible
resolution’.

Adaptions also had to bemade to the network architecture. Because 2D convolutions cannot be performed
on 1Ddata, the 2D layers of the networkwere replacedwith their one-dimensional counterparts to provide the
closest possible comparison between the protocols. Furthermore, because successive lines were often highly
similar, only 1 in every 30 lines of each imagewere used during training to prevent improper training and
decrease training time.

As before, performancewas verified by iteratively predicting additional lines of the i images in the holdout set
and calculating the cumulative predictions using equation (2). This is shown infigure 6. To comparewith full-
sized performance, the 1D convolutions were replacedwith their 2D equivalents (as used in section 3.1), and
trained to recognise only the two simplified states.

Without the cumulative averaging layer, the low standard deviation demonstrated that performance
remained near constant as expected, withAUROCof 0.853±0.006,mean precision of 0.841±0.007, and
balanced accuracy of 0.780±0.004. Un-averaged individual linescans therefore provide an effectivemeans of
making a basic, but accurate, assessment of the tip. Further, despite forcing the simplification of classes
recognised, the decoupling of the linesmeant that the networkwas highly sensitive to tip changes. This is visible
when looking at the unaveraged output infigure 4(b). As this networkwas clearlymore responsive to state
changes than padding, it is possible to use the single linescan network, (alongwith its low computational cost),
solely for the purpose of detecting tip changes by looking for sharp peaks and changes in network output.

Regardless, even stronger performancewas seenwith single-class images after cumulatively averaging. After
including the layer, performance began to improve as expected, with AUROC substantially improving by 13.2%

Figure 6. Figure to demonstrate the balanced accuracy (a), mean area-under the receiver-operator-characteristic curve (b), andmean
precision (c), of a neural network trained to classify the SPM tip states of theH:Si(100) surface with incomplete scans. Given that SPM
data is generated one line at a time, the identical network can be trained on single linescans, instead of only on complete scans (black).
In this way, the data requirements for neural network automated state detection can be reduced significantly. Because thismethod
removes context between scans, predictions cannot be influenced by prior scans. Performance is therefore only improvedwith the
addition of new data by cumulatively averaging successive linescans in an image together (blue).Without this averaging step (yellow),
performance remains roughly consistent, as expected.

7

Mach. Learn.: Sci. Technol. 1 (2020) 015001 OMGordon et al



relative to the average,mean precision by 11.8%, and balanced accuracy increasing by 9.9%. This resulted in an
AUROCof over 0.9, thus demonstrating highly effective ability when full data is available. This was also found to
hold true for the padding strategywith all 128 linescans. It should, however, be stressed, that relative to training
onlywith complete scans, peak performance is still reduced. In this case, when training the 2DCNNsolely with
complete scans and the two simplified categories, AUROCperformancewas near perfect, at 0.973. Further,
cumulative averaging caused predictions to be significantly less sensitive to tip changes, as expected.

3.3.Multiple linescanwindows and LSTM
Whilst single linescans provide an effectivemethod tomake a basic assessment of the tip, the inability to assess
the complete range of statesmakes it of limited use. To overcome the lack of context between linescans, a CNN
could instead be trained to recognise a small ‘window’ consisting of afixed number,W, of linescans. As newdata
becomes available, thewindow could then be ‘rolled’ to consist of the new line and the (W−1) linescans
preceding it. This window could then be iteratively rolledwhile an image is being generated.We therefore
modify equation (2), and use cumulative averaging tomake predictions after each successive linescan from
j=W+1 to j=N

å
= = + -

j
P A

P A
. 3j

i k W

j
k W k
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1 :

( )
( )

( )
( )

However,whilst effective at improving single-state classificationperformance and rewarding tip consistency,
cumulative averaging doesnotmake the predictive part of the neural network aware of the lines surrounding each
window, resulting indecreased responsiveness.One recent advance in the area of video content recognition is the
long-term recurrent convolutional network (LRCN) [37], which has been shown tobehighly effective at this task.
Here, a secondnetwork is placed just before thefinal (dense)CNN layer (which reduces theoutput to a size equal to
thenumber of classification categories). This secondnetwork is typically a long-short-term-memory (LSTM)
network [38], which is often used for 1D sequence classification. TheLSTMnetwork then acts on the temporal
domainof thedata, giving context to the singleCNNswhich have no knowledge of how the video frames link
together. This can bemade analogous to SPM,where each sub-image ofwidthWbecomes a video frame. The
temporal element is seen as thewindow rollswhen j increments over timewith newdata.We therefore replace the
cumulative averaging layerwith an LSTMnetworkwith 256 hidden layers, and calculate predictions, -P A j W j

i
:( )( ) ,

from j=W+1 to j=N as before,with increasing j chosen as the temporal axis. For consistency,we employ the
same 2DCNNarchitecture as before. The resulting protocol is shown infigure 7.

One consequence of thismethod is thatW linescansmustfirst be accumulated before any predictions can be
made. As such, whilst largerWwill give the networkmore data withwhich tomake predictions, a larger number
of linescans are required to be scanned before thewindow can be fullyfilled. For example, for a windowof
W=20, predictions can only bemade after the 20th, 21st, 22nd linescans, and so on.We also note that the size
and number of convolutions usedmeant that predictions withW<20were not possible with theCNN
structure used. Furthermore, all but one linescan of data is repeatedwith each additional window,multiplying
memory usage byN−W+1 times.

Figure 7. Figure to demonstrate a potentialmethod to allowneural networks to predict the state of an SPM tip using incomplete scans.
Rather than training/predictingwith complete scans, the network (green border) can instead be allowed to predict a small group of
individual linescans. This windowof CNNs can then be rolled tomake additional predictions as successive linescans become available
over time. The outputs of theseCNNs can then be fed into a second temporal neural network, tomake afinal prediction.
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As can be seen infigure 8, the inclusion of additional linescans once again resulted in improved performance,
demonstrating that the LSTMcomponent did indeed learn from the temporal evolution of the scans.
Performancewas also very strong regardless of j. For example, full scanswithW=20 yielded a near-perfect
AUROCof 0.960,mean precision of 0.890, and a balanced accuracy of 0.847. This is almost identical to the
AUROC,mean precision and balanced accuracy of 0.963, 0.910 and 0.856, respectively, calculatedwhen training
theCNNcomponent only on full-sized images. Thewider LRCNnetworks were even able to exceed full-size
performance, despite using less data. This is understandable, given that a human operator will often look not only
at the scanlines, but also at how they evolve over time.Only the LRCNnetwork takes advantage of this temporal
context. It can therefore be concluded that by adding LSTM to an existing network and retraining on partial
scans offixed size, a full set of STM image classes/tip states can be correctly and accurately assessedwith
negligible performance impact despite using a fraction of the data.However, increasingW beyondW=30 did
not always improve performance. Althoughwider windows providedmore opportunities to observe trends in
the 2D convolutional domain, leading to near-baseline precision of 0.908 forW=30 smaller windows provided
more temporal elements for the LSTM layer to use.

The benefit of using temporal information can also be seen by comparing LRCN to cumulative averaging.
For the sameW=20window, full-scan performance using cumulative averagingwas calculated to have
AUROCof 0.880,mean precision of 0.862 and balanced accuracy of 0.620. Not only was this slightly worse than
the paddingmethod offigure 3, but also significantly poorer than LRCN,which scored 9.10%higher for
AUROC, 3.24% formean precision, and 36.7% for balanced accuracy. This performance disparity held true
regardless of values ofW and j, or when classifying variable state images. As viewable in the supplementary
material, cumulative averagingwas often unresponsive to both sudden changes in state.Moreover, LRCNwas
more able to correctly distinguish between atoms and asymmetries, andwas less likely tomistakenly see rotated
surfaces as a ‘generic defect’ compared to the baseline of full scan classification.Whilst it would seemobvious to
combine both LRCNand cumulative averaging, the issues with decreased responsiveness later in a scan remain.
This resulted in a small performance penalty which increased asmore linescanswere simulated (on the order of
1%at j=N).Whilst cumulative averagingwas still better than guessing and is therefore another potential
method for speeding up tip state recognition, LRCN is superior.

Furthermore, whilst the state of the tipwas still successfully observedwithW=20, the size and number of
convolutions usedmeant that window sizes belowW=20were not possible to test. Thismeant that j=20 lines
mustfirst be acquired before predictions can bemade. To reduce the number of linescans further, larger images
could instead be considered (which in this case would be achieved by downscaling from512×512 to a size
larger than 128×128). For example, simulatingW=20with 256 points per linescanwould be equivalent to
128 points per linescanwithW=10.However, the same number of data-points would need to be acquired
before predictions could bemade. Therewould therefore be no improvement to tip assessment speed in

Figure 8. Figure to demonstrate the balanced accuracy (a), mean area-under the receiver-operator-characteristic curve (b), andmean
precision (c) of a neural network trained to classify the SPM tip states of theH:Si(100) surfacewith incomplete scans. Given that SPM
data is generated one line at a time, the identical network can be trainedwith small groups of 20 (green), 30 (yellow), or 40 (blue)
linescans, for example. These predictions are then fed into a secondary LSTMnetwork that acts temporally. This prevents the need to
train (and therefore classify) only on complete scans (black). In this way, the data requirements for neural network automated state
detection can be reduced significantly.
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practise. Although the network parameters could be decreased to allow for smallerW, this would result in a
different network that could not be fairly compared in this study. To allow for predictions at any j, it is trivial to
create a ‘hybrid’network ensemble inwhich a basic assessment ismade using the linescan/paddingmethods for
low j, and then LRCN for the remainder of the scan.

4. Conclusion

By comparing a variety ofmethods based around a commonVGGnetwork, we have successfully demonstrated
that STM images of theH:Si(100) surface can be accurately assessed using partial scans. As such, only a few lines
from a typical 128×128 scan are now required to assess the tip, which is a fraction of the data required by
previousCNNassessment protocols. Given that themajority of the time spentmaintaining SPM tips is spent
acquiring data, a ‘hybrid’ approach combining individual linescans and LRCNpredictionwould speed upCNN
routines by approximately 100 times. This allows for state recognition in a time similar to that of currentmanual
means, thusmaking it practical for everyday use.However, given that the states considered only apply to the
H:Si(100) surface, new datasets and networksmust bemanually created and trained for each surface,making
this strategy non-applicable to poorly understood surfaces.

Relative to a full-size network, we find that similar or better performance can be achievedwith less data by
creating a small windowofmultiple linescans, and adding an LSTM layer tomake predictions as thewindow is
rolled over time. Furthermore, we qualitatively demonstrate that the use of partial linescans allows tip changes to
be detectedwithout the need for a secondary network.We also show that thismethod allows for the detection of
images inwhich tip changes causemultiple tip states to be present, alongside their relative position in the image.
However, the lownumber of human classifiers and lack ofmanual labelling of these positions during data
collectionmeant that only single tip-state images were quantitatively assessed. Furthermore, none of these
approaches overcome the limitation of only being able to automate assessment of a single, already known surface
reconstruction after a lengthy data collection process.

In future, we aim to assess SPM tips with a ‘hybrid’ approach combiningmultiple protocols of predicting
with padded full-scans, individual linescans, and temporally connected partial scans of fixedwidth. Ultimately,
this will enable seamless, automatic and constantmaintenance of SPM tip integrity as part of routine
experimental sessions. Unsupervised learning is the next, obvious, protocol to adopt in order tomakemachine
learning strategies sample-independent.
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