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A B S T R A C T

The global manufacturing supply chain is undergoing a digital transformation (DT) powered by various digital 
technologies. In both stable and turbulent environments, DT helps safeguard supply chain performance by 
enhancing supply chain agility. While research on the use of digital technologies and their impacts on supply 
chains is growing, there is a lack of an overarching theoretical lens to synthesize their diverse functionalities, 
effects, and benefits. To address this gap, we adapt the concept of the data network effect to the supply chain 
context and propose that DT improves supply chain performance by enhancing supply chain resilience (SCRes) 
and robustness (SCRob) capabilities. To validate our hypotheses, we conducted a large-scale survey for data 
collection and performed Partial Least Squares Structural Equation Modelling (PLS-SEM) for data analysis. The 
results confirm the positive effect of DT on supply chain performance and the mediating roles of SCRob and 
SCRes. Our study contributes to the ongoing discussion on DT in the context of supply chains by introducing a 
novel theoretical perspective on the supply chain data network effect.

1. Introduction

As McKinsey (2020) found in a recent survey of cross-sectoral supply 
chain executives, over 70% of them had experienced disruptions to their 
supply chains during the Covid-19 pandemic, and in the food and con-
sumer goods industries the percentage reached 100%. The detrimental 
impact has urged organizations to accelerate their digital transformation 
(DT) efforts, due to the novel opportunities that digital solutions can 
offer in the post-pandemic era (McKinsey, 2020; Cui et al., 2022). 
Against the background of Industry 4.0, companies are characterized by 
the increasing use of digital tools to transform their supply chain oper-
ating models, strategies, and the way they deliver value to customers 
(Hahn, 2020). DT encompasses a series of strategic changes made by the 
organization through the employment of digital technologies (Hess 
et al., 2016; Faruquee et al., 2021), and managers are motivated to 
embark on DT to address challenges their organizations face. For 
instance, successful DT is found to benefit the organization in terms of 
creativity (Mikalef and Gupta, 2021), internal and supply chain envi-
ronmental integration (Benzidia et al., 2021), and competitive 

performance (Wamba and Guthrie, 2019), among others, and these 
benefits and opportunities would not be feasible in the past when digital 
technologies were not available.

Managing the supply chain is highly challenging, and frequent 
external disruptions further add to the intricacy. Under such circum-
stances, maintaining supply chain performance requires capabilities that 
can support supply chain operations in various environmental condi-
tions. Literature has suggested that in uncertain environments, supply 
chains need to develop agile capabilities that enable them to recover 
quickly from the damage and to resist potential disruptions in the future 
(Nikookar and Yanadori, 2021). These capabilities are categorized as 
supply chain resilience (SCRes) and robustness (SCRob) respectively in 
the supply chain management literature and have gained extensive 
attention since the outbreak of Covid-19 (Brandon-Jones et al., 2014; 
Ivanov, 2020; Cui et al., 2022; Tian et al., 2024).

Developing capabilities such as SCRes and SCRob at the same time is 
never an easy task, but modern digital tools are believed to bring new 
opportunities (Appio et al., 2021). The profound and long-lasting impact 
of the pandemic and geopolitical risks has moved DT and the 
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development of SCRes and SCRob to the top of the strategic agenda for 
all types of organizations and supply chains. DT, characterized by the 
implementation of various digital technologies, is turning unstructured, 
massive data into strategic organization resources. Such an ongoing 
phenomenon of collecting, analyzing, learning and transforming from 
data is termed by Gregory et al. (2021) as “data network effect”, through 
which more data generated within an entity, the more value it can yield 
for the users. This is particularly relevant for supply chains, as com-
panies have more digital tools available to collect and deal with big data 
and share data among themselves, more benefits can be generated to 
individual firms participating in a supply chain. For instance, P&G and 
its biggest customer Walmart achieved mutual benefits through 
technology-enabled data sharing, and more importantly, it motivated a 
healthy competition among Walmart’s suppliers to innovate which 
further benefits the supply chain (Waller, 2013). However, the phe-
nomenon of data network effect is severely under-researched in the 
supply chain management domain. It remains empirically unclear as 
what data network effect manifests in the context of supply chain 
management. We therefore propose that the simultaneous achievement 
of SCRes and SCRob is a form of data network effect, which then 
translates into enhanced supply chain performance. Our study aims to 
shed light on the burning research question:

Does DT create a data network effect in the supply chain, in the form of 
improved SCRes and SCRob capabilities and performance?

To address this question, we conduct a large-scale survey of Chinese 
manufacturers and perform structural equation modelling for data 
analysis. This study contributes to the DT literature by conceptualizing 
and operationalizing the concept and empirically validating its intended 
benefits in the supply chain context. Further, we aim to enrich the 
technology management studies by bringing in a new theoretical 
perspective, data network effect, to understand the implications of 
digital technologies more deeply. Practically, our study urgers supply 
chain managers to actively engage in DT by embracing emerging digital 
tools and pay particular attention to the development of capabilities that 
enable them to respond to and recover from disruptions.

The rest of the paper is structured as follows. Section 2 is a thorough 
review of relevant theories and concepts. That is followed by hypothesis 
development in Section 3. Section 4 then introduces the method 
employed and reports the data analysis results. Section 5 discusses the 
main findings and implications of the study and points out its limitations 
and directions for future research.

2. Theoretical background

2.1. Data-driven DT in the context of supply chain

Embedded in Industry 4.0, DT is defined as “a process that aims to 
improve an entity by triggering significant changes to its properties 
through combinations of information, computing, communication, and 
connectivity technologies” (Vial, 2019, p. 121). It was originally pro-
posed as an organizational effort to improve business performance or 
create new business models through deploying digital technologies 
(Fitzgerald et al., 2013, p.2). Specifically, as Feliciano-Cestero et al. 
(2023) indicate, DT can either enable revolutionary methods of pro-
duction or foster the development of new offerings. With supporting 
strategies and capabilities in place, digitally transformed organizations 
will potentially reshape the organizational structure and how they 
interact with stakeholders, which showcases DT’s relevance to supply 
chain management. Understandably, the supply chain management 
research community is increasingly embracing DT by actively expanding 
its scope. A digitally transformed supply chain is perceived as a 
customer-centric platform where members actively exchange informa-
tion empowered by digital tools to co-deliver user value (Ngo et al., 
2023). Successfully transformed supply chains are therefore considered 
more effective and efficient due to timely data-driven decision-making. 
However, such transformation process cannot be taken for granted, 

which requires close and continuous cooperation among organizations 
within the supply chain built on high organizational flexibility, strong 
digital competences, and the same level of digital consciousness and 
motivation (Ngo et al., 2023).

So far, nascent research on DT in the supply chain context has started 
to yield valuable insights. For instance, Wang et al. (2024) illustrate the 
digital transformation of the food supply chain as composed of the 
initiation phase (defining objectives and principles of DT) and the 
technology implementation phase. Hartley and Sawaya (2019) elabo-
rate how technologies can digitalize the business process of the firm. 
While diverse foci and findings remain highly inconclusive, researchers 
seem to agree on the essential roles of technology adoption in driving DT 
and improving various aspects of organizational performance (Lang 
et al., 2023; Wang et al., 2024; Yuan et al., 2024).

2.2. Driving DT through multiple digital technologies

The adoption of digital technologies by organizations is considered 
an important initial step for initiating DT (Shi et al., 2023). Currently, 
digital technologies that are driving organizations’ DT include big data 
analytics, artificial intelligence (AI), blockchain, cloud computing, and 
the internet of things (IoT), all of which are increasingly being adopted 
by Chinese manufacturers (Chin et al., 2021). In normal or turbulent 
environments, these digital technologies show a promising role in sup-
porting organizational and supply chain processes and achieving supe-
rior performance. These digital technologies work around a key 
organizational resource, data. While technologies such as IoT and big 
data analytics create and capture big data, AI is an effective tool to make 
sense of massive amounts of raw data. Raw data and processed data can 
then be safely stored by technologies such as blockchain and the cloud 
and shared among authorized parties. Wamba et al. (2020a, p.2) define 
big data analytics as “a holistic process that involves the collection, 
analysis, use, and interpretation of data for various functional divisions 
with a view to gaining actionable insights, creating business value, and 
establishing competitive advantage”. As a powerful tool to make rapid 
and accurate sense of massive volumes and high velocity of data, the 
application of big data analytics has been found to bring firms and 
supply chains a wide range of benefits, including enhanced agility and 
adaptability (Wamba et al., 2020a), improve trust and collaboration 
among supply chain members (Dubey et al., 2019), bricolage capability 
and servitization (Chen et al., 2022), innovation capabilities and 
high-quality information (Bahrami and Shokouhyar, 2021), 
sustainability-related capabilities (Bag et al., 2021), as well as better 
overall organizational and supply chain performance (Gunasekaran 
et al., 2017).

IoT, one of the most prominent digital technologies in the industry 
4.0 era, has been widely adopted by organizations especially manufac-
turers. The application of IoT significantly improves supply chain co-
ordination as it enables human-to-object and object-to-object 
communications anytime and anywhere (Ben-Daya et al., 2019). IoT 
serves as a powerful tool to create and collect valuable big data, 
providing a solid basis for organizations’ decision-making regarding risk 
management (Birkel and Hartmann, 2020).

AI refers to “the capability of machines to communicate with, and 
imitate the capabilities of, humans” (Toorajipour et al., 2021, p.502), 
and is capable of reshaping the creation and delivery mode of value for 
companies. Powered by big data analytics and IoT, AI has been found to 
contribute to resilient and sustainable supply chain management 
through its strong computational power, large datasets, and the devel-
opment of novel learning algorithms (Belhadi et al., 2021; Benzidia 
et al., 2021; Pournader et al., 2021). AI-empowered learning from in-
dividual cases can feed instantly into the predictive models and be 
translated into current value of the product to all users (Gregory et al., 
2022). As Tian et al. (2024) suggest, technologies like IoT and AI work 
together to complete the datafication process which is the first step of 
successful DT.
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When items and their movements are datafied and information 
analyzed, the insights should be effectively stored and shared among 
supply chain partners. Blockchain is an important digital technology 
that can support this. According to Schmidt and Wagner (2019), 
blockchain is essentially a decentralized, consensus-driven ledger that 
records transactions in a way that is mostly immutable. The decentral-
ized nature of blockchain has the potential to make the supply chain 
more efficient, transparent, visible, traceable, flexible, and sustainable 
(Wamba et al., 2020b; Kamble et al., 2021; Nandi et al., 2020).

Cloud computing provides a virtualized and distributed environment 
where resources are stored and made accessible on demand to autho-
rized parties through web-based technologies (Maqueira et al., 2019). 
Since resources like data are usually not confined within organizational 
boundaries, cloud computing can enhance supply chain efficiency and 
improve decision-making (Bruque-Cámara et al., 2016). While various 
digital technologies offer distinct functionalities for managing supply 
chains, their combined use is aimed at better managing data to generate 
a data network effect within the supply chain (Gregory et al., 2021).

2.3. Data network effect

According to Saarikko et al. (2020), while increasing digital tools are 
available to organizations, the real challenge of their DT process lies in 
the lack of capability that can help them leverage digital technologies to 
change their existing business models. The data management process 
enabled by digital technologies is considered a starting point of DT 
(Wang et al., 2024). Our study proposes that DT can only be seen as 
happening in the supply chain when the data network effect starts to 
emerge following organizations’ data management process enabled by 
their adoption of multiple digital technologies.

Building on the network effect literature and the unprecedented 
learning from data enabled by AI, data network effect refers to the 
phenomenon that the more user data a platform collects and the more it 
learns from the data, the more valuable the platform and its offerings 
become to each user (Gregory et al., 2021). Gregory et al. (2022) further 
clarifies the two conditions of data network effect. First, the resulting 
experience enhancement must be for all users of the platform and its 
offerings. Second, learning-driven experience enhancement should 
happen fast enough to allow for current value increase of the platform’s 
offering. Departing from the traditional platform context, our study 
applies the data network effect concept to another format of platform, 
the supply chain.

A supply chain is a network of agents collaborating in a series of 
processes to deliver a product or service to end users. The agents in a 
supply chain differ from the users defined in a platform context (e.g., 
Huang et al., 2017), as the former are primarily contributing parties, 
while the latter are more often receiving parties. However, the mecha-
nisms by which they derive utility values from the network can be 
shared (Gregory et al., 2021).

According to Gregory et al. (2021), three aspects are core to data 
network effect, namely data stewardship, user-centric design, and 
platform legitimation. These three play key roles in facilitating the 
achievement of data network effect through the use of AI in a platform. 
Similarly in the context of digitally transformed supply chain, these 
aspects are also crucial for the same purpose. First, data quality and 
quantity are vital inputs into and serve as a prerequisite for a success-
fully digitally transformed supply chain. As discussed above, the 
deployment of multiple digital technologies by supply chain partners 
enables data availability for sense-making and exchange of data within 
the supply chain. The enhanced data stewardship therefore ensures the 
accuracy and speed of the prediction models, which provide significant 
guidance for organizational decision-making across various environ-
mental conditions. Second, the supply chain must be managed as a 
user-centric network to fulfil users’ needs. Traditionally, the supply 
chain’s objective is defined as meeting the end consumers’ demand 
through the delivery of a product or service in the required quality and 

quantity, and at the right cost (Gu et al., 2021). Therefore, to accurately 
capture their real needs, end consumers need to be actively engaged in 
the design and production stages. However, when a supply chain is 
viewed as a digital platform, the concept of users becomes wider, 
including all organizations and individuals involved in the chain. A 
digitally transformed supply chain must be designed to empower all to 
co-create their own experiences, encouraging greater openness in data 
sharing (Gregory et al., 2021). The more data each party shares within 
the supply chain, the more valuable the supply chain becomes to 
everyone involved. A user-centric supply chain must ensure that every 
participating entity derives value from it, further strengthening the 
benefits of data stewardship. Last, platform legitimation is defined as 
actions taken by the platform to secure its key stakeholders’ positive 
legitimacy evaluations (Gregory et al., 2021, p. 543), which aims to 
ensure responsible data use by the platform and the balancing of 
stakeholders’ needs. This is crucial as organizations within a digitally 
transformed supply chain will need to open up their data assets to others 
while benefiting from access to shared data. Irresponsible or opportu-
nistic behavior in data usage by any party can become a barrier that 
hinders others from participating in the supply chain. The continuous 
transformation of the supply chain and the realization of the data 
network effect can only be achieved when all parties align on proper 
digital conduct.

In sum, the use of multiple digital technologies not only drives the 
digital transformation of the supply chain but also enhances the data 
network effect by making data more accessible and creating conditions 
that foster improved data stewardship. Supply chain members gain a 
better understanding of their own operations and those of others. As a 
result, a digitally transformed supply chain can evolve into a digital 
platform allowing the actualization of two benefits. In addition to 
facilitating better coordination among entities to co-create and co- 
deliver value to all participants and end users, digitally transformed 
supply chain can potentially lead to the nurturing of agile supply chain 
capabilities.

2.4. DT-empowered agile supply chain capabilities

Agile supply chains are best known for their flexibility in adapting to 
various environmental conditions and effectively coping with changes 
(Aslam et al., 2018). One of the major benefits of DT in the supply chain 
and an important manifestation of the data network effect is the 
enhanced supply chain capabilities that secure performance across 
various environmental conditions. Managing complex supply chain 
systems in stable and turbulent environments requires different capa-
bilities, including supply chain resilience (SCRes) and supply chain 
robustness (SCRob). Table 1 summarizes existing conceptualizations 
and operationalizations of SCRes and SCRob. While defined differently, 
the focus of SCRes is commonly placed on the ability of the system (e.g., 
firm, supply chain) to quickly recover from a disruption and adapt to the 
new situation. According to Tukamuhabwa et al. (2015), when 
disturbed, a resilient supply chain is able to return to the original state, 
or even achieve a better state, in a time- and cost-efficient manner. 
Therefore, SCRes requires rapid reactive responses, usually radical, 
made by the organization or supply chain to the disruptive forces.

SCRob differs from SCRes in that a robust supply chain is designed to 
withstand disruptions (Ivanov, 2020), reducing the need for radical 
changes when disruptions occur (Durach et al., 2015). A robust supply 
chain can “resist change without adapting its initial stable configura-
tion” (Wieland and Wallenburg, 2012, p. 890). In other words, a robust 
supply chain can maintain a certain level of performance across all 
environmental conditions. Such an ability can only be achieved through 
constant, forward-looking and proactive small-scale adjustments in op-
erations to absorb variances between operations and the external envi-
ronment. Based on the conceptual difference between SCRes and SCRob, 
our study proposes the following definitions:

SCRes is the ability of the supply chain to make timely and cost-efficient 
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radical changes in their operations as a response to disruptions. SCRob refers 
to the supply chain’s ability to remain unimpacted by disruptions and 
therefore do not have to make radical changes to their operations.

The simultaneous achievement of SCRes and SCRob capabilities 
enabled by data-driven DT of the supply chain is a typical manifestation 
of data network effect. SCRes and SCRob share common processes such 
as environmental scanning, sensing, and environmental sensemaking, 
and at the same time require distinct supporting capabilities. 

Table 1 
SCRes and SCRob conceptualization and operationalization.

Study SC Robustness SC Resilience

El Baz and Ruel (2021)
Definition Ability of the supply chain 

to maintain its function 
despite internal or external 
disruptions. It is also 
frequently seen as the 
ability to resist the 
immediate impacts of a 
disruption.

Capability to anticipate and 
overcome disruptions and is 
defined as “the ability of a 
supply chain to return to 
normal operating 
performance, within an 
acceptable period of time, 
after being disrupted” with 
an objective to regain pre- 
disruption performance.

Operationalization The ability of the supply 
chain to:
- retain the same stable 

situation when disrupted;
- develop a reasonable 

reaction to disruptions;
- adapt through developing 

scenarios;
- function despite damages.

The ability of the supply 
chain to:
- cope with changes due to 

disruptions;
- adapt to a disruption;
- provide a quick response;
- maintain high situational 

awareness.

Mackay et al. (2020r)
Definition The degree of system 

sensitivity when facing 
disruptions, which ensures 
the system’s capability to 
absorb disruptions.

The supply chain’s ability to 
withstand the effect of a 
disruption and recover 
within acceptable timeframe 
and within elastic 
boundaries.

Operationalization SCRob’s two dimensions:
- resistance
- avoidance

A post-disaster behavior of 
the system reflecting the 
ability to:
- recover

Cohen and Kouvelis (2021)
Definition Operational flexibility to 

operate across a wide range 
of operating scenarios in the 
short term.

The ability to recover from 
current shocks, understand 
vulnerabilities and potential 
future shocks, and 
proactively mitigate their 
risks.

Gu et al. (2021)
Definition SCRes is the capability of the 

supply chain to recover from 
supply chain disruptions and 
maintain the continuity of 
material, information, and 
cash flow.

Operationalization The ability of the supply 
chain to:
- maintain high situational 

awareness at all times;
- provide a quick response to 

supply chain disruptions;
- cope with changes brought 

by the supply chain 
disruption;

- adapt to the supply chain 
disruption easily;

- recover to normal 
operations speedily after 
disruption.

Wong et al. (2020)
Definition SCRes prepares firms with 

capacity to cope with and 
recover from disruptions to 
the original state of 
operations. It reflects the 
ability to survive, adapt, 
respond, recover, and grow 
when confronted with 
change and uncertainty.

Operationalization The ability of the supply 
chain to:
- quickly return to its 

original state after being 
disrupted;

Table 1 (continued )

Study SC Robustness SC Resilience

- maintain a desired level of 
connectedness among 
members at the time of 
disruption;

- maintain a desired level of 
control over structure and 
function at the time of 
disruption;

- have the knowledge to 
recover from disruptions 
and unexpected events.

Brandon-Jones et al. (2014)
Definition SCRob refers to the ability 

of the supply chain to 
maintain its function 
despite internal or external 
disruptions.

The ability to quickly and 
successfully recover from a 
disruption and return to the 
original state of operating.

Operationalization The ability of the supply 
chain to:
- continue operations;
- meet customer demand;
- keep performance not 

deviated significantly 
from targets;

- carry out its regular 
functions.

The ability of the supply 
chain to:
- quickly restore material 

flow;
- quickly recover normal 

operating performance;
- easily recover to original 

state;
- deal with disruptions 

quickly.
Tukamuhabwa et al. (2015)
Definition 

Operationalization
The adaptive capability of a 
supply chain to prepare for 
and/or respond to 
disruptions, to make a timely 
and cost-effective recovery, 
and therefore progress to a 
post-disruption state of 
operations – ideally, a better 
state than prior to the 
disruption 
The adaptive capability of a 
supply chain to:
- prepare for and/or respond 

to disruptions;
- make a timely and cost- 

effective recovery.
Therefore, progress to a post- 
disruption state of operations 
- ideally, a better state than 
prior to the disruption.

Our definition and operationalization in this study
Definition SCRob refers to the supply 

chain’s ability to remain 
unimpacted by disruptions 
and therefore do not have to 
make radical changes to 
their operations.

SCRes is the ability of the 
supply chain to make timely 
and cost-efficient radical 
changes in their operations as 
a response to disruptions.

Operationalization The ability to:
- to retain the same 

operations;
- to grant sufficient time for 

reactions;
- to perform well in various 

scenarios without 
adaptations;

- to carry out planned 
functions when disrupted.

The ability to:
- quickly return to the 

original state;
- maintain a desired level of 

connectedness;
- maintain a desired level of 

control;
- quickly recover after being 

disrupted.
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Specifically, SCRes is supported by flexibility, rapid resource reconfi-
guring, responding and recovering, while SCRob requires continuous 
improvement, risk prevention and variance absorption. Therefore, agile 
supply chains with both capabilities are able to maintain performance in 
various conditions, which is largely a result of rich data resources and 
the associated learning co-contributed by supply chain partners. Entities 
involved in agile supply chains then enjoy the data network effect and 
secure their own performance against external disturbances.

3. Hypotheses

3.1. Data-driven DT and supply chain performance

Supply chain performance (SCP) refers to the extent to which the 
supply chain can meet customer needs in terms of product and service 
availability and on-time delivery at the lowest possible cost (Belhadi 
et al., 2021). In disastrous events, supply chains face serious challenges 
in terms of maintaining the promised service level due to changes in 
supply, demand, as well as logistics. Timely gathering, analysis and 
exchange of information along the entire supply chain and coordinated 
actions of all are thus crucial to maintain SCP, especially in unstable 
conditions.

Consumer satisfaction will drop if the supply chain fails to deliver on 
time (Gu et al., 2021), and this can be prevented with effective DT that 
enables and manifests data network effect. DT, with the use of digital 
technologies, provides data stewardship and supports organizational 
decision-making. For instance, information related to potential risks can 
be captured and communicated among supply chain partners through 
digital technologies in a timely fashion, which strengthens supply chain 
relationships and forms the basis for co-developing precautions (Nasiri 
et al., 2020). Honest and in-time communication of difficulties can 
adjust customer expectations during challenging times, preventing sig-
nificant disappointment and unsatisfaction from happening. The 
acquisition of demand data can also be used to modify supply and 
production plans (Li et al., 2020). For firms involved in multiple supply 
networks, comprehensive planning and re-scheduling enabled by digital 
visualization can temporarily deal with supply shortages. Due to 
well-established digital infrastructure in many parts of the world, big 
data collection, analysis and virtual communications empowered by 
modern digital technologies have been made highly cost-efficient, 
saving expenses and increasing profit for organizations (Cui et al., 
2022). The seamless connection between data collection, analysis and 
sharing technologies improves the user-centeredness of the supply 
chain, allowing all parties to contribute and benefit at the same time. 
This, along with well-implemented data rules and codes of conduct 
produces a virtuous cycle that keeps strengthening the value of the 
supply chain to each member. Therefore, we propose that enhanced SCP 
is a tangible manifestation of the data network effect enabled by DT. 

H1. DT has a positive effect on SCP.

3.2. The mediation effect of agile supply chain capabilities

In terms of intangible manifestations of the data network effect, the 
development of agile supply chain capabilities, including both SCRes 
and SCRob, is important. As discussed earlier, developing SCRes and 
SCRob requires common capabilities, including environmental scan-
ning, sensing, and environmental sensemaking, and these can be real-
ized through the data stewardship provided by implementing multiple 
digital technologies. The basis of these capabilities lies in the acquisition 
and analysis of extensive market information, which is what the DT 
enabled data network effect can deliver. From a supply-side perspective, 
Yang et al. (2021) find a positive effect of DT on supply chain visibility. 
Specifically, the simultaneous deployment of IoT, blockchain, and cloud 
computing makes supply chain processes and actors visible and trans-
parent through data generation and sharing, providing the condition for 

effective environmental scanning and opportunity- and threat-sensing 
(Xiong et al., 2021). Song et al. (2021) also gather empirical evidence 
that environmental scanning empowered by social media and big data 
analytics positively relates to the development of sensing capability. 
Dias and Lages (2021) validate the conceptualization of market sensing 
capability as including scanning, interpreting and responding, which are 
closely linked to information collection, data analysis and sense-making, 
and propose its contribution to successful data-driven decision-making 
in organizations. Further, blockchain ensures data quality and security, 
as all transactions are recorded in real time and cannot be altered 
(Baharmand et al., 2021), and such platform legitimation enables ac-
curate sensemaking of the environment and data-driven decision-mak-
ing. Overall, the ability of timely and precise understanding the 
environment is thus supported by the boosted data stewardship 
(Williams et al., 2013), and the user-centric design of the digital supply 
chain and the supply chain platform legitimation further strengthen the 
data stewardship.

Meanwhile, SCRes and SCRob require different foundational capa-
bilities which rely heavily on the data network effect resulting from DT. 
SCRes is generally supported by flexibility, resource reconfiguration, 
and recovery. Big data analytics contributes to supply chain flexibility 
by effectively processing, visualizing and analyzing data, thereby 
enabling data stewardship and supporting data-driven decision-making 
on resource reconfiguration and faster adaptation to the changing 
environment (Koot et al., 2021; Yu et al., 2021; Faruquee et al., 2021; 
Dennehy et al., 2021). The use of AI, which is also significantly 
data-dependent, can contribute to supply chain agility by providing both 
flexibility and cost efficiency through machine learning (Toorajipour 
et al., 2021). Resource reconfiguration and recovery from disasters are 
built upon planning and preparedness, whose effectiveness depends on 
the reach and richness of data and the quality of algorithms, combined 
with high human intelligence (Faruquee et al., 2021). Well-planned DT, 
with appropriate human and organizational support, can contribute to 
data stewardship that preludes the data network effect and improve 
SCRes capability.

By contrast, SCRob stresses the maintenance of normal operations 
throughout without having to make substantial changes despite dis-
ruptions, which reflects the supply chain’s ability to “absorb” variances 
on a continuous basis (Mackay et al., 2020). To achieve this, supply 
chains need the ability to sense and predict changes, and effectively 
incorporate them into their operations to develop preventive and pre-
parative measures (El Baz and Ruel, 2021), where DT and the associated 
data network effect can contribute too. Seizing, as a crucial 
micro-foundation of dynamic capabilities, is essential for the develop-
ment of absorptive and prevention capabilities (Teece, 2007). 
DT-enabled data stewardship can also enhance the ability of the supply 
chain to make effective prevention plans. For instance, with the capture 
and analysis of 10 years’ transaction data, Alibaba is able to predict 
changes in Yu E Bao users’ timing of moving money into and out of their 
accounts, and take action accordingly (Hassna and Lowry, 2018). Such 
actions taken are effective preventive or preparative measures that can 
protect the supply chain from being significantly disrupted by unex-
pected events. By constantly scanning the environment, sensing oppor-
tunities and changes, communicating them with partners in a timely 
manner, and incorporating them in their daily operations with the help 
of digital technologies, companies and supply chains are able to keep 
pace with the market trend and minimize the need for radical changes 
when confronted with disruptions.

DT-enabled data network effect, in the form of enhanced SCRes and 
SCRob capabilities, can then translate into maintained and even 
improved SCP during disruptions as well as in relatively stable times. 
While SCRes reflects the flexibility and adaptability of the supply chain 
(and all its members individually) when disruptions occur (Gu et al., 
2021), SCRob reduces the vulnerability of the supply chain and in-
creases its ability to avoid disruption (Wieland and Wallenburg, 2012). 
A digitally transformed supply chain is characterized by the widespread 
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adoption of digital technologies by all parties involved, leading to the 
establishment of a platform where participants actively share data and 
leverage it to maximize their own benefits. This creates a virtuous cycle 
in which more data leads to a better user experience, further motivating 
users to be more open in sharing their data. As data-driven capabilities, 
SCRes and SCRob work together for the supply chain to perpetuate a 
high level of performance in various environmental conditions, meeting 
and even exceeding users’ needs and requirements. We therefore pro-
pose that. 

H2. SCRes mediates the DT-SCP link.

H3. SCRob mediates the DT-SCP link.

Fig. 1 illustrates the conceptual model and hypotheses.

4. Research methodology

4.1. The survey instrument

A survey-based quantitative approach was adopted to validate the 
research model based on established measurement scales. As the target 
respondents were mainly Chinese-speaking, a back-translation method 
involving two bilingual researchers (Bhalla and Lin, 1987) was applied 
to the questionnaire. The questionnaire was then reviewed by five in-
dustrial and six academic experts. Based on their feedback, minor 
modifications were made to ensure the clarity of questions and the face 
validity of the survey instrument.

To measure SCRes, four items were adapted from Wong et al. (2020)
and Golgeci and Ponomarov (2013). Respondents were asked to indicate 
the degree to which their firms’ supply chains can: (1) quickly return to 
the original state, (2) maintain a desired level of connectedness, (3) 
maintain a desired level of control, and (4) quickly recover when being 
disrupted. Measures of SCRob were adapted from El Baz and Ruel 
(2021). Respondents indicated the extent to which their supply chains 
are able to: (1) retain the same operations, (2) grant sufficient time for 
reactions, (3) perform well in various scenarios without adaptations, 
and (4) carry out planned functions when disrupted. Measures of SCP 
were based on Gu et al. (2021), capturing the supply chain’s perfor-
mance in (1) quickly modifying existing offerings, (2) developing new 
offerings, and (3) shortening length of the supply chain process, (4) 
overall speediness, (5) supply chain knowledge, (6) on-time delivery, 
and (7) customer service level. To measure DT, we followed Faruquee 
et al. (2021) and asked respondents to indicate the level of adoption of 
AI, big data analytics, IoT, blockchain and cloud computing in their 
supply chains. A seven-point Likert scale was applied to all questions, 
with 1 indicating “very low” and 7 “very high”. The survey instrument is 
presented in the Appendix.

Firm size, industry type, location, and the level of involvement in 
global supply chains were dealt with as control variables. Theoretically, 

large firms tend to possess more resources in the form of qualified 
personnel and tacit knowledge, which contribute to capabilities such as 
SCRes and SCRob (Yang et al., 2021). Further, we acknowledge that 
sub-sectoral differences may have an influence on the result (Dubey 
et al., 2018; Faruquee et al., 2021; Yang et al., 2021). Therefore, a 
dummy variable of sub-sector was created to control the influence of 
sub-sectoral heterogeneity. Moreover, according to Bray et al. (2019), 
suppliers’ physical proximity to the focal firm plays an important role in 
flows of materials, information, and capital along the chain. Therefore, 
the level of involvement in the global chain was also included as a 
control variable.

4.2. Sampling and data collection

The unit of analysis in this study is the organization. A pilot study 
was conducted with 30 respondents before the survey was launched 
officially to ensure the readability, interpretability, and structural ac-
curacy of the questionnaire. We collaborated with a professional market 
research company in China to collect data. Such professional support is a 
popular alternative to traditional approaches and has been increasingly 
used in recent studies (e.g., Faruquee et al., 2021; Revilla and Saenz, 
2017). The questionnaire was emailed to key informants of companies, 
together with a cover letter with instructions, purpose of the survey, and 
assurance of confidentiality. To ensure the collection of high-quality 
data, quality check procedures were applied (Schoenherr et al., 2015). 
Stringent qualification criteria were established, restricting participa-
tion to senior executives or departmental heads of operations, supply 
chain, production, and procurement, who were believed to possess 
substantial knowledge of their companies’ use of digital technology and 
operations. Respondents who did not pass through the qualifying 
checkpoints could not access the main survey.

With the help of the research company, the questionnaire was 
emailed to a total of 760 randomly selected manufacturing enterprises 
across mainland China in August 2022. After two and half months and 
four polite reminder emails, 257 complete responses were returned and 

Fig. 1. Conceptual model.

Table 2 
Sample demographics.

Industry % %
Electrical machinery and 

equipment
17.1 Sales (mRMB)

Special equipment 13.6 <5 2.3
Metal, mechanical and 

engineering
32.3 5–10 6.6

Building materials and furniture 4.7 10–50 19.5
Food, beverage, alcohol and 

cigarettes
8.6 50–100 29.2

Chemicals and petrochemicals 6.2 100–300 19.1
Fabric 9.7 >300 23.4
Rubber and plastics 3.5
Others 4.3
Number of employees % Region %
<21 0.8 Yangzi river delta 32.7
21–300 21.8 Pearl river delta 18.7
301–1000 42.0 Bohai Bay economic rim 10.5
1001–2000 12.1 Middle South China 16.0
2001–3000 7.4 Northeast China 10.1
>3000 16.0 Other areas in China 12.0
Ownership %
Private 54.5
State-owned 20.2
Joint venture 19.1
Foreign 6.2
Tenure of respondent in 

organization (years)
% Position of respondent in 

organization
%

1–5 9.0 Chief executive officer (CEO) 3.5
6–10 23.7 Senior managers/ 

departmental heads
96.5

11–15 24.1
16–20 23.4
>20 19.8

L. Wu et al.                                                                                                                                                                                                                                      International Journal of Production Economics 277 (2024) 109402 

6 



considered valid, representing a response rate of 33.8%. Table 2 shows 
the demographic statistics of the sample.

4.3. Non-response bias (NRB) and common method bias (CMB)

Following Armstrong and Overton (1977), NRB was assessed by 
comparing firm characteristics of early (119) and late responses (138). 
T-test results show no significant difference between these two groups of 
responses in terms of firm annual revenue, level of global supply chain 
involvement, location and ownership type (p = 0.449, p = 0.137, p =
0.111, p = 0.828, respectively). Thus, non-response bias is not a serious 
concern in our study.

To control for CMB, we followed Podsakoff and Organ (1986) to 
place conceptually related variables far apart in the questionnaire to 
avoid unconsciously consistent responses. To test whether CMB affected 
the results, we performed Harman’s single-factor test. Eleven factors 
with eigenvalues above 1.0 emerged, explaining 65.1% of the total 
variance, with the first factor explaining 28.4%. Hence, CMB is not a 
serious problem.

4.4. The measurement model

Partial least squares structural equation modeling (PLS-SEM) was 
performed using Stata 18.0 to analyze data. First, confirmatory factor 
analysis (CFA) was carried out to assess convergent validity and 
discriminant validity of the constructs. Items with low factor loadings 
were removed from subsequent analysis, and the remaining items for 
each construct are presented in Table 3. Model fit indices, including χ2 

= 1883.675, df = 136, root mean square error of approximation 
(RMSEA) = 0.057, comparative fit index (CFI) = 0.947, and standard-
ized root mean square residual (SRMR) = 0.045, indicate a good fit 
between the collected data and the proposed model (Hu and Bentler, 
1999).

Following the standard procedure of PLS-SEM (Hair et al., 2019), we 
first assessed the measurement model through item reliability, construct 
reliability and validity. As shown in Table 3, the standardized factor 
loadings for all measurement items exceed the threshold of 0.7, indi-
cating good item reliability. Cronbach’s α values of all variables are 
above 0.7, composite reliability (CR) values are greater than 0.8, and 
average variance extracted (AVE) values are above 0.5, indicating suf-
ficient reliability and validity of constructs (Hair et al., 2019). 
Discriminant validity is established for all constructs, as shown in 
Table 4. The square root of the AVE for each construct is greater than its 
correlations with other variables.

Table 3 
Constructs and indicators.

Construct Indicator* Cronbach’s α Composite Reliability (CR) AVE Factor loading

Digital transformation (DT) DT1 0.776 0.848 0.527 0.732
DT2 0.738
DT3 0.743
DT4 0.716
DT5 0.700

Supply chain resilience (SCRes) SCRes1 0.780 0.859 0.604 0.743
SCRes2 0.719
SCRes3 0.837
SCRes4 0.805

Supply chain robustness (SCRob) SCRob1 0.801 0.869 0.625 0.756
SCRob2 0.805
SCRob3 0.764
SCRob4 0.836

Supply chain performance (SCP) SCP4 0.756 0.845 0.578 0.799
SCP5 0.752
SCP6 0.761
SCP7 0.727

Note(s): Original measurement items for each construct are shown in the Appendix.

Table 4 
Square root of AVE and correlation matrix of constructs.

1 2 3 4

1 Digital transformation 
(DT)

N/A

2 Supply chain resilience 
(SCRes)

0.589*** N/A

3 Supply chain robustness 
(SCRob)

0.555*** 0.770*** N/A

4 Supply chain 
performance (SCP)

0.638*** 0.690*** 0.660*** N/A

Square root of AVE 0.726 0.777 0.791 0.760

Note(s): sample size = 257, *p < 0 0.05; **p < 0 0.01; ***p < 0 0.001.

Table 5 
Estimation results.

Panel A: Structural model results

Hypothesis Path Coefficient p- 
value

Result Model 
fit

R2_a
H1 DT → SCP 

(Direct)
0.317 0.000 Supported 0.575

DT → SCP 
(Indirect)

0.320 0.000 0.575

DT → SCP (Total) 0.638 0.000 0.575
H2 DT → SCRes 0.589 0.000 Supported 0.345

SCRes → SCP 0.320 0.000 0.575
H3 DT → SCRob 0.555 0.000 Supported 0.306

SCRob→ SCP 0.238 0.000 0.575

Panel B: Parallel mediating effects

IV MV DV coefficient SE p- 
value

95% CI: 
Confidence 
Interval

DT - > SCRes - > SCP (H2) 0.188*** 0.050 0.000 [0.089 0.287]
DT- > SCRob - > SCP (H3) 0.127** 0.043 0.003 [0.044 0.211]
DT- > Total indirect effect of 

SCRes and SCRob- > SCP (
H1)

0.315*** 0.062 0.000 [0.192 0.437]

Note(s): 5000 bootstrap sample size is used for the PLS-SEM estimation. Firm 
size, industry type, location and the level of involvement in global supply chains 
are treated as control variables. They are not found significantly related to the 
DVs and are not reported here.
†p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.
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4.5. The structural model

We then ran the structural model using 5000 bootstrap samples, and 
the results of the path coefficients are shown in Table 5. In Panel A, the 
direct effect of DT on SCP is significantly positive (b = 0.317, p < 0.001), 
supporting H1. DT is also found to be significantly related to both SCRes 
and SCRob (b = 0.589, p < 0.001; b = 0.555, p < 0.001, respectively). 
Both SCRes and SCRob positively relate to SCP (b = 0.320, p < 0.001; b 
= 0.238, p < 0.001, respectively). Additionally, the indirect effect of DT 
on SCP is positive and significant (b = 0.320, p < 0.001). Therefore, H2
and H3 are supported, indicating a partial mediation effect of SCRes and 
SCRob on the DT-SCP relationship.

We followed Preacher and Hayes (2008) by using a parallel media-
tion model since our proposed model includes two mediators. We ran 
the analysis with 5000 bootstrap samples, and the estimation results are 
shown in Panel B of Table 5. The results indicate significant indirect 
effects of the independent variable, DT, on a firm’s SC performance 
through SCRes and SCRob (b = 0.188, p < 0.001; b = 0.127, p < 0.01), 
further supporting H2 and H3.

4.6. Robustness checks

To check the robustness of the results, we conducted further tests to 
eliminate potential biases. First, we used ordinary least squares (OLS) 
regressions as an alternative method to assess the sensitivity of the PLS- 
SEM model. Firm size, industry type, location, and the level of 
involvement in global supply chains were included in the estimation. As 
shown in Table 6, in Model 3, the effect of DT on SCP is significantly 
positive (b = 0.669, p < 0.001), supporting H1. In Models 1 and 2, DT is 
significantly related to both SCRes (b = 0.556, p < 0.001) and SCRob (b 
= 0.512, p < 0.001). In Models 6 and 7, both SCRes and SCRob are found 
to positively relate to SCP (b = 0.216, p < 0.001; b = 0.195, p < 0.001, 
respectively). When SCRes and SCRob are treated as mediators, the ef-
fect of DT on SCP is weakened but remains positive and significant (b =
0.140, p < 0.001; b = 0.155, p < 0.001, respectively), indicating a partial 
mediation effect of SCRes and SCRob on the DT-SCP relationship. 
Therefore, H2 and H3 are supported.

To further assess the robustness of the results, we applied cluster 
analysis to classify firms based on their DT levels. This approach has 
been widely used in similar studies for robustness checks (e.g., 

Karahanna et al., 2019). Following Sullivan et al. (2023), we first pre-
determined the number of clusters by dividing firms into three groups: 
low-level, medium-level, and high-level of DT. We then applied the 
k-means algorithm to generate three-cluster solutions. Using cluster 
membership as a control variable, we found that firms with high level of 
DT exhibited a higher degree of SCRes and SCRob, as well as better SCP. 
However, the difference between the low and medium DT level groups 
was not significant in terms of SCP. Overall, our robustness tests 
remained qualitatively consistent with the main analysis in terms of 
significance and direction.

5. Discussion

Through a novel theoretical perspective of the data network effect, 
our study empirically validates the effect of DT on SCP, through the 
mechanisms of improved agile capabilities of SCRes and SCRob. We 
operationalize DT as the implementation of a wide portfolio of digital 
technologies, including big data analytics, IoT, AI, blockchain, and cloud 
computing. We propose that the data network effect is generated 
through data creation and collection, data analysis and sense-making, 
and data-sharing among supply chain members, in the form of 
enhanced supply chain capabilities (intangible) and performance 
(tangible). Our result is consistent with past studies which have 
confirmed the positive effect of DT on capabilities and performance (e. 
g., Belhadi et al., 2022; Li et al., 2023; Yuan et al., 2023). However, our 
study is novel in terms of employing the perspective of data network 
effect to explain how DT improves the common and distinct underlying 
capabilities of SCRes and SCRob at the same time and consequently 
influences SCP in various environmental conditions. Therefore, this 
study makes significant contributions to the supply chain management 
literature and practice.

5.1. Theoretical contribution

First, our study contributes to the DT literature, especially in the 
context of supply chain management. While a growing body of research 
is interested in exploring the implications of DT in supply chains, it re-
mains unclear what DT really means. In other words, more knowledge is 
needed for clarifying what a digitally transformed organization or sup-
ply chain is like and what the process of DT exactly entails. Our study 

Table 6 
Regression results.

DV SCRes SCRob SCP SCP SCP SCP SCP

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Constant − 0.728d − 0.800d 0.189 − 0.583b − 0.619b − 0.474b − 0.485b

(0.291) (0.353) (0.279) (0.255) (0.266) (0.232) (0.236)
Control variable
Firm size 0.083b 0.071a − 0.023 − 0.029 − 0.023 − 0.025 − 0.021

(0.041) (0.048) (0.039) (0.037) (0.039) (0.034) (0.034)
Global chain involvement 0.055 0.090 − 0.039 0.123c 0.121b 0.096b 0.092b

(0.055) (0.056) (0.052) (0.047) (0.050) (0.043) (0.044)
DT 0.556d 0.512d 0.669d 0.140d 0.155d

(0.053) (0.055) (0.051) (0.019) (0.021)
SCRes 0.309d 0.216d

(0.048) (0.024)
SCRob 0.293d 0.195d

(0.036) (0.024)
N 257 257 257 257 257 257 257
R2 0.407 0.359 0.308 0.352 0.380 0.420 0.406

Note(s): Standard errors are in parenthesis. The coefficients of industry type and location are control in all models, but since they are both a range of dummy variables, 
we do not report them in the table.
Standard errors are in parenthesis.

a p < 0.1.
b p < 0.05.
c p < 0.01.
d p < 0.001.
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proposes that DT is an ongoing data-driven process, where multiple 
digital technologies continuously work around and with data to nurture 
and propel data network effect. Specifically, different digital technolo-
gies serve different purposes for DT and data network effect. For 
instance, IoT and big data analytics create and capture data, AI analyzes 
and makes sense of data, and blockchain and the cloud store and share 
data. The co-implementation of these technologies strengthens data 
stewardship, user-centeredness and the governance legitimation of the 
supply chain, creating an environment for data network effect to 
emerge. Empirically, we operationalize the DT process as the imple-
mentation of a wide portfolio of digital technologies that cover all these 
sub-processes. Our study therefore contributes to the DT literature by 
providing an account that is novel in conceptualization and feasible in 
operationalization (Vial, 2019).

Further, our study contributes to the intellectual development of 
digital technology research, in particular from the phenomenon and 
theorizing of data network effect. Originating from the platform litera-
ture, data network effect is proposed to explain the enhanced value of a 
platform and its offerings to users as a result of the platform collecting 
and learning from mounting user data (Gregory et al., 2021). While the 
importance and occurrence of data network effect is increasingly 
acknowledged (e.g., Haftor et al., 2021, 2023), related theoretical and 
empirical development is largely absent from the area of supply chain 
management, despite the growing emphasis on the use of digital tech-
nologies by researchers from the supply chain management community. 
Therefore, our study serves as a pioneer to extend the data network ef-
fect concept to the supply chain context, and empirically validates the 
DT-enabled data network effect through enhanced CSP (tangible) and 
the improved agile capabilities (intangible). To guard performance 
against various environmental conditions, supply chains need to have 
both SCRes to respond effectively to disruptions and SCRob to maintain 
operations. Our study, through a thorough review of key literature on 
SCRes and SCRob, clarifies their underlying processes and how they 
work together to achieve supply chain management objectives. SCRes 
and SCRob are connected by sharing common supporting capabilities 
such as environmental scanning, sensing, and environmental sense-
making. Meanwhile, they also require distinct foundational capabilities. 
For instance, SCRes requires rapid resource reconfiguration while 
SCRob stresses variation absorption. Our study acknowledges that both 
SCRes and SCRob are data-driven capabilities and explains how DT can 
enhance them from the lenses of data stewardship, user-centric design, 
and platform legitimation. Specifically, the use of data capture and 
sensemaking tools, such as IoT and AI, enhances quality and quantity of 
data. Data sharing technologies like blockchain strengthen the gover-
nance legitimation of the supply chain while simplifying data access for 
users. DT can therefore enhance the performance of the supply chain 
directly and through improved supply chain agility.

5.2. Practical implications

This study also offers important management insights for practi-
tioners. First, advancements in digital technologies provide new op-
portunities for firms and their supply chains to generate and deliver 
value which might not have been feasible before. Therefore, companies 
are advised to actively engage in DT to deploy the new strategic 
resource, i.e., data. Especially in the current business environment, 

where unprecedented events have disrupted the physical supply chain, 
managers are urged to utilize digital tools to maintain a seamless in-
formation chain. It is worth noting that digital technologies form a 
digital ecosystem to generate and connect data, and companies within a 
supply chain are advised to co-develop DT strategies and actively engage 
in the DT process. To fully realize the power and benefits of the data 
network effect, managers involved in the supply chain must carefully 
develop their data strategies. This ensures that all participants in the 
supply chain can achieve further benefits despite ongoing and often 
unexpected changes in the environment.

Second, the recent business environment is becoming more dynamic, 
and the need for agility is pushed to the forefront of supply chain 
management. Whereas some changes can be foreseen, others, such as the 
global pandemic and natural disasters, are hard to predict and prepare 
for. Therefore, in addition to their day-to-day operational practices, 
managers are advised to focus on the intangible assets, i.e., the devel-
opment of agile capabilities, as a way of maintaining and improving 
performance in both normal and catastrophic times. It is crucial that 
companies understand different types of capabilities and unleash any 
synergies in their existing resources to nurture multiple capabilities 
together. For instance, DT can be utilized to advance SCRes and SCRob 
capabilities simultaneously, due to the affordance of digital technologies 
to help firms predict environmental changes and make adaptations 
accordingly, by capturing and making sense of big data. Therefore, 
managers are advised not to focus only on tangible indicators and quick 
returns in their decision-making. Attention should also be paid to 
intangible aspects such as capabilities, which may take time to be 
transformed into quantifiable benefits.

5.3. Limitations and future research directions

Despite the high conceptual novelty of our study and valuable con-
tributions to the literature, it is not without limitations. First, we relied 
on self-reported, subjective data collected through a survey, which may 
not have captured the whole picture on the issues of interest, due to 
respondents’ cognitive and knowledge bias and limits. Therefore, future 
studies are encouraged to make efforts to triangulate data sources. 
Second, our survey was conducted in a single country and in a single 
sector, and the findings may not be readily generalizable to other con-
texts. Therefore, the developed model should be validated in other 
contexts in the future. Third, in addition to SCRes, SCRob and SCP, data 
network effect can take other forms. We call for more works that 
empirically validate the existence of the data network effect.

CRediT authorship contribution statement

Lin Wu: Writing – original draft, Methodology, Formal analysis, 
Conceptualization. Jimmy Huang: Writing – review & editing, Writing 
– original draft, Project administration, Conceptualization. Miao Wang: 
Validation, Supervision, Project administration, Funding acquisition. 
Ajay Kumar: Writing – review & editing, Supervision, Project 
administration.

Data availability

Data will be made available on request.

Appendix

Measures

Digital Transformation (DT)
Extent of technology adoption in the supply chain:
DT1: Artificial intelligence (AI)

(continued on next page)

L. Wu et al.                                                                                                                                                                                                                                      International Journal of Production Economics 277 (2024) 109402 

9 



(continued )

Measures

DT2: Blockchain
DT3: Cloud computing
DT4: Internet of things (IoT)
DT5: Big data analytics

Supply chain resilience (SCRes)
SCRes1: Our supply chain can quickly return to its original state after being disrupted
SCRes2: Our supply chain has the ability to maintain a desired level of connectedness among its members at the time of 

disruption
SCRes3: Our supply chain has the ability to maintain a desired level of control over structure and function at the time of 

disruption
SCRes4: Our supply chain has the knowledge to recover from disruptions and unexpected events

Supply chain robustness (SCRob)
SCRob1: For a long time, our supply chain retains the same stable situation as it had before some changes occur
SCRob2: When changes occur, our supply chain grants us much time to consider a reasonable reaction
SCRob3: Without adaptations being necessary, our supply chain performs well over a wide variety of possible scenarios
SCRob4: For a long time, our supply chain is able to carry out its function despite some damage done to it

Supply chain performance (SCP)
SCP1: Our supply chain has the ability to quickly modify products to meet customers’ requirements
SCP2: Our supply chain allows us to quickly introduce new products into our markets
SCP3: The length of the supply chain process is getting shorter
SCP4: We are satisfied with the speediness of the supply chain process
SCP5: Based on our knowledge of the supply chain process, we think that it is sufficient
SCP6: Our supply chain has an outstanding on-time delivery record
SCP7: Our supply chain provides high-level customer services
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