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Abstract 1 

In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence 2 

and spreading ability. However, our understanding of the genomic determinants influencing lineage 3 

transmission and disease severity remains incomplete.  4 

Here, we developed a computational framework using machine-learning, genome scale metabolic 5 

modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage 6 

transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-7 

2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with 8 

virulence, motility and bacteriophage resistance functions.  9 

We also found a strong correlation between V. cholerae genomic traits and disease severity, with some 10 

traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a 11 

complex interplay between transcription regulation, protein interaction and stability, and metabolic 12 

networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom 13 

severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera 14 

spread. 15 

 16 

Introduction 17 

Cholera is an acute diarrheal disease. Worldwide, 1.3 billion people are estimated to be at risk and 18 

approximately 1.3 to 4 million cases occur annually, with 21,000 to 143,000 resulting in death1,2. In 19 

Bangladesh alone, where cholera is endemic, an estimated 66 million people are at risk of cholera with 20 

at least 100,000 cases and 4,500 deaths per year1,3. Globally the O1 serogroup remains the primary 21 

cause of cholera1,2. The O1 serogroup is divided into the main serotypes Ogawa and Inaba, and 22 

subdivided into two biotypes, classical and El Tor (7th pandemic), which are genotypically and 23 

phenotypically distinct4-6. V. cholerae has shown an extraordinary capacity to undergo genetic and 24 

phenotypic changes over time, giving rise to successive waves of genetically and phenotypically diverse 25 
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pandemic clones. These variants exhibit increased virulence, pathogenicity, resistance and spreading 26 

capability7,8.  27 

Recently, distinctive lineages belonging to the 7th pandemic El Tor (7PET) wave-3 have been observed 28 

circulating in Bangladesh9-11. The two most prominent circulating lineages identified over the last 20 29 

years are BD-1 and BD-29-11, and more recently BD-1.2, responsible for the latest 2022 massive 30 

outbreak in the country10. Genomic analysis revealed variations between BD-1.2 and BD-2 in the Vibrio 31 

seventh pandemic island II (VSP-II), Vibrio pathogenic island 1 (VPI-1), mobile genetic elements, 32 

phage-inducible chromosomal island-like element (PLE), and SXT-related integrating conjugative 33 

elements (SXT ICE)10. Despite the advances of genomic analysis, the complete genomic repertoire and 34 

the mechanisms causing the greater transmission of BD-1.2 remain unknown. Gaps persist in our 35 

knowledge regarding whether coding or non-coding single nucleotide polymorphisms (SNPs), or 36 

accessory genes, drive the evolutionary shifts. It remains unclear whether gene regulation, metabolic or 37 

molecular networks, or folding events play a role. There is even less knowledge about the genomic 38 

determinants responsible for the severity of cholera resulting from these lineages. About 1 in 5 people 39 

with cholera will experience a severe condition owing to a combination of symptoms (primarily 40 

diarrhoea, vomiting, dehydration)12. Amongst the major symptoms, watery diarrhoea characteristic of 41 

cholera is caused by the cholera toxin (CT)4-6. The V. cholerae El Tor responsible for the current cholera 42 

pandemic has become more virulent by undergoing several changes in CTX genotype13 and acquiring 43 

virulence-related gene islands14. 44 

In this study, we developed a reference-agnostic machine learning method, coupled with genome-scale 45 

metabolic modelling (GSMM) and protein structural analysis, to achieve two key objectives as outlined 46 

below. The first objective was to identify the genetic variations and signatures of the BD-1.2 lineage 47 

evolution beyond what has been found so far10. Our analysis considered 129 V. cholerae isolates from 48 

diarrhoea samples collected between 2015 and 2021, from patients admitted to the icddr,b hospital in 49 

Bangladesh. Several genomic studies investigated the evolution of lineages from 1991 to 2017, as well 50 

as in 20229-11. However, there remains a gap in research during the intervening period. In our analysis, 51 

we discovered a set of 77 SNPs within the coding genome (mapped to 50 known genes), along with 12 52 
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annotated accessory genes, including some associated with antibiotic resistance, virulence, motility, 53 

colonization, biofilm formation, acid tolerance and bacteriophage resistance, identified as correlated 54 

with BD-1.2 transmission. Our findings go beyond what was recently discovered9-11  for the lineage.  55 

The second objective was to investigate if correlations exist between the genomic determinants of BD-56 

1.2 strains and clinical manifestations among hospitalised patients from whom the isolates were 57 

collected from. Machine learning revealed the existence of correlations between genetic determinants 58 

in V. cholerae and clinical symptoms (diarrhoeal duration, number of stools, abdominal pain, vomit, 59 

and dehydration). Overall, the analysis revealed an overlap of 11 mutations, four accessory genes, and 60 

one intergenic SNP between the unique genomic determinants associated with BD-1.2 transmission and 61 

the clinical symptoms linked to this lineage. Additionally, a distinct set of 17 mutations, 39 accessory 62 

genes, and four intergenic SNPs were found exclusively linked to the severity of clinical symptoms. 63 

Through detailed GSMMs and 3D structure analysis of these genes, we inferred the mechanistic basis 64 

behind the selection of these genomic drivers in BD-1.2 and link to severity of the symptoms. 65 

 66 

Results 67 

From 2015 to 2021 in Bangladesh, a diverse array of genetic variations characterises the 68 

emergence of distinct circulating lineages 69 

To explore the evolutionary dynamics of V. cholerae linked to cholera cases in Bangladesh, a genomic 70 

analysis was done considering the years 2015 to 2021. We sequenced 129 V. cholerae O1 El Tor isolates 71 

taken from stool samples of patients between September 2015 to April 2021 admitted to hospitals in six 72 

districts (Barisal, Chittagong, Dhaka, Khulna, Rajshahi and Sylhet) of Bangladesh, Supplementary Data 73 

1. During the duration of this study, isolates belonging to serotypes Inaba and Ogawa were identified, 74 

Fig. 1. Consistent with previous studies10,15 , a serotype switch was observed, with Inaba predominantly 75 

present in 2016 and 2017, followed by a predominance of Ogawa samples in 2018 and 2019 (Fig. S1). 76 

Both serotypes were detected in 2015 and continued to coexist from 2020 onwards. Serotypes were 77 
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significantly associated with collection years (chi-square test with p-value Bonferroni < 0.005) but not 78 

significantly associated with collection location (chi-square test with p-value Bonferroni > 0.005).  79 

The maximum likelihood phylogeny of the 129 isolates was reconstructed based on the alignment of 80 

the core genome (3468 genes) and showed two distinctly evolved lineages, Fig. 1.  Comparison with 81 

previous studies9,10, identified these lineages as BD-1.2 (n=84) and BD-2 (n=45), Fig. S2. Apart from 82 

the previously reported genetic variations4, we identified additional differences existing between the 83 

two lineages, in VSP (vibrio seventh pandemic; VSP-1 and VSP-2), VPI (vibrio pathogenicity islands, 84 

VPI-1 and VPI-2) and PLE (phage inducible chromosomal island-like elements), see Fig. 1. More 85 

precisely, in VSP-2, BD-2 isolates had a tryptophan at position 249, while BD-1.2 had a leucine at this 86 

position. In addition, in VSP-2, gene VC-514 (aer) was present in all BD-2 isolates but absent in BD-87 

1.2. In VPI-2 a SNP led to an amino-acid variation at position 150, with BD-1.2 having an aspartic acid, 88 

and BD-2 an asparagine. BD-2 samples exclusively exhibited PLE2, while BD-1.2 samples had both 89 

PLE1 and PLE2 along with PLE2. Moreover, further differences were found in nonsynonymous SNPs 90 

on core genes and presence/absence of accessory genes, as described in the following section.  91 

The distinct phylogeny patterns of BD-2 and BD-1.2, were also confirmed through a comparative study 92 

analysing 1134 isolates from V. cholerae El Tor O1 strains across 84 countries, including our isolates, 93 

(Supplementary Data 2 and 3, Fig. S3). BD-2 isolates clustered with Indian-1 (IND-1), while BD-1, 94 

BD-1.1, and BD-1.2 isolates from Bangladesh clustered with African (T9-T13)16, Latin America-3 95 

(LAT-3)13, Asian-2 (AS-2), and Indian-2 (IND-2) lineages (Fig. S3), in agreement with previous 96 

results10. 97 

 98 

Genetic and temporal differentiation of V. cholerae BD-1.2 and BD-2 lineages correlate with SNPs 99 

on coding and non-coding regions, and accessory genes 100 

To assess the relatedness of V. cholerae isolates in our cohort, we measured the number of different 101 

core genome SNPs in a pairwise manner across all isolates. We created a network based on clusters of 102 

related isolates with less than 15 SNPs, as done previously17,18. Across the cohort the median SNP 103 
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difference was 117 SNPs (ranging from 0 to 1710 SNPs with IQR of 1211). The resulting undirected 104 

graph (Fig. 2) revealed that BD-2 and BD-1.2 formed two disconnected graphs each composed of 105 

samples from a specific lineage, but with no distinct separations between the Ogawa and Inaba 106 

serotypes. 107 

To identify additional potential involvement of genetic elements in shaping the differences between the 108 

BD-1.2 and BD-2 isolates in our cohort, beyond current annotations (ctxB allele, type of SXT/ICE, 109 

VSP-II, VIP-I, gyrA gene allele)10, we sought for patterns of similarities and differences, at a finer scale, 110 

searching for the number, type and position of accessory genes as well as mutations in the core genome 111 

and intergenic regions across all the isolates. A two-sided Fisher exact test, with Bonferroni correction, 112 

was performed to assess the relationship between the BD-2 and BD-1.2 lineages and each of the various 113 

genomic features (core and intergenic SNPs and accessory genes). Overall, we found a significantly 114 

larger proportion of core genome mutations (51.4%, 1224 core genome SNPs and 73.1%, 160 intergenic 115 

SNPs) and a small proportion of accessory genes (11.3%, 115 genes) that exhibited statistically 116 

significant differentiation between the two lineages, Supplementary Data 4. Refer to Supplementary 117 

Note 1 and Fig. S4 for more details on the statistical analysis comparing the number of accessory genes, 118 

core genome SNPs and intergenic SNPs. The comparative analysis also indicated a temporal shift in 119 

the distribution of core genome and intergenic SNPs over the years, showing that BD-1.2 isolates 120 

accumulated different SNPs compared to BD-2 isolates as time progressed (Fig. S4E-F). 121 

Out of the 115 accessory genes that differed between the two lineages, 12 were annotated while the 122 

remaining 101 were hypothetical. Among these 12 annotated genes, five – (lon_3, endA, adh, hdfR_4 123 

and bcr_2) – were predominant (over 96% presence) in BD-1.2 and absent in BD-2, and seven (aer_3, 124 

hlyA_2, mcrC, mepM_3, mrr, tetA and tetR) were present (over 97% presence) in BD-2 and absent in 125 

BD-1.2. Of the twelve annotated genes, three are known to be antimicrobial resistance genes (bcr, tetA 126 

and tetR)19. TetA and tetR were mainly detected in BD-2 isolates (97.7%), confirmed as primarily 127 

tetracycline-resistant through susceptibility testing in both doxycycline and tetracycline antibiotics 128 

(Supplementary Data 1). On the contrary, bcr, a multidrug efflux pump, was predominantly present in 129 

BD-1.2 isolates (96.4% of isolates) and completely absent in BD-2 isolates. Out of the 16 known 130 
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antimicrobial resistant genes (ARGs) present in the pangenome of this cohort, only tetA, tetR and bcr 131 

were found to statistically separate both lineages. TetA and tetR were both located in a contig showing 132 

high similarity to the SXT-ICE element, SXT(HN1) in BD-2 isolates. Conversely, bcr was found in a 133 

mobile element in the BD-1.2 isolates with similarity to SXT ICE element, ICEVchBan5. The presence 134 

of these SXT elements in the BD-2 and BD-1.2 lineages was previously shown by Monir et al10. Both 135 

contigs contained two identical insertion sequences, mobile genetic elements MGEs, (ISShfr9 and 136 

ISVsa3), see Fig. S5. Also, among the 12 annotated genes, four (endA, hlyA, lon and mcrC) were 137 

previously found to be related to virulence18-23.  More information about the function of these genes is 138 

given in the Supplementary Note 2.  139 

To assess the extent of our results beyond our cohort, we investigated whether the 12 annotated 140 

accessory genes that we had found were also present in other Bangladeshi and Indian lineages. We 141 

performed a comparative genomic analysis of 219 V. cholerae O1 reference isolates collected in 142 

Kolkata, India, and Dhaka, Bangladesh, between the years 2004 and 2022 (ENA public database 143 

http://www.ebi.ac.uk/ena, see Supplementary Data 5). The results confirmed the presence/absence 144 

patterns of the 12 genes in the BD-1.2 and BD-2 lineages in the reference isolates, aligning with our 145 

initial findings, see Supplementary Note 2.  146 

In addition to differences in accessory gene types and patterns, missense mutations associated to allelic 147 

variations were found in BD-1.2, when compared to BD-2 strains. We identified 1385 SNPs in the core 148 

genome, including 291 non-synonymous and 934 synonymous coding variants, both representing 149 

variants in their functional protein-coding form. In addition, 160 intergenic SNPs were found, 150 

representing variants in their regulatory form. Many SNPs showcased unique allelic distribution 151 

patterns between the two lineages. When mapped back, the non-synonymous SNPs identified 291 152 

amino acid substitutions in 105 genes, including 50 known genes and 55 hypothetical ones (see 153 

Supplementary Data 4). Table S1 shows core genes with allelic distribution between BD-1.2 and BD-2 154 

significantly different (i.e., containing polymorphic sites found exclusively in one lineage but absent in 155 

the other lineage).  156 

 157 

http://www.ebi.ac.uk/ena
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 158 

Among the genes exhibiting lineage-specific allelic variation, some contribute to functions including 159 

growth, cell wall organization, colonization, toxigenicity and resistance, similar to what found 160 

previously10. Additionally, we found genes with a unique non-synonymous variant in BD-1.2, with roles 161 

in toxin transport and acid tolerance, shedding light on functions that may clarify their contribution to 162 

the recent prevalence of BD-1.2 over BD-2. See Supplementary Note 3 for more information about 163 

these genes. Notably, ompU is another gene with a statistically significant mutation (G325D) underlying 164 

lineages’ separation. Amino acid D is predominant in BD-1.2, while the amino-acid G is prevalent in 165 

BD-2. To assess for any additional genes separating the BD-1.2 and BD-2 lineages we also conducted 166 

an analysis on the pangenomes of the lineages separately but found the results broadly in line with that 167 

of the combined pangenome analysis presented above (Supplementary Note 4 and Supplementary Data 168 

6-10) 169 

To understand the systemic relationships connecting the identified lineage-specific genetic signatures 170 

on a mechanistic level, we analysed the 30 core genes in Table S1 with allelic variants that were found 171 

exclusively in one lineage but absent in the other lineage using the V. cholerae GSM model iAM-Vc960 172 

(Fig. 4). Thirteen of these genes (murI, ftsI, appC, suhB, glmM, dsbD, licH, cysG_1, cobB, clcA, argG, 173 

mak, phhA) are metabolic and have been identified as playing integral roles in amino acid metabolism, 174 

cell wall metabolism, carbon metabolism, amino sugar and nucleotide sugar metabolism, energy 175 

metabolism (see Supplementary Data 11). Moreover, for these genes we sought to better understand 176 

their role by examining their effects on V. cholerae growth rate biochemical networks and metabolites 177 

production in the networks. As the effect of mutations/gene knockouts cannot always be observed as 178 

change in growth rate (due to the redundancy of the reactions in metabolic networks of bacteria), it can 179 

be useful to also consider the changes in metabolite yield. Changes in metabolite yield have been found 180 

to correlate with changes in the virulence, persistence, and fitness of some organisms24. Furthermore, 181 

V. cholerae are capable adapting to ecological niches by altering the metabolites they excrete to create 182 

a more favourable environment for V. cholerae and/or a less favourable environment for other species 183 

competing for the same resources25,26. Mutations disrupting larger numbers of metabolite yields may be 184 
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suggestive of a larger systems-level impact on bacterial metabolic function. Therefore, gene 185 

essentiality, flux variability analysis (FVA) and flux balance analysis (FBA) were used to predict, 186 

through gene knockouts, the essentiality and the effects of the identified genetic determinants on the 187 

growth rates of V. cholerae, and also used to further explore their influence on metabolite yield. The 188 

latter was done by assessing the influence on metabolite flow within the complete metabolic network 189 

of V. cholerae, encompassing all known metabolites and metabolic reactions (see Methods). In this 190 

analysis it was important to consider all reactions and metabolites in the model rather than focussing on 191 

a subset, as doing so ensures no undue bias or assumptions underlie the results.  192 

The genes cysG, clcA, adh and mcrC, were found to be essential for growth (i.e., knocking these genes 193 

out reduced the biomass growth to less than 0.0001h-1) in both rich and minimal media. Furthermore, 194 

murI, glmM, and dapF displayed auxotrophic behaviour in minimal media, whereas cysG, clcA, adh, 195 

and mcrC were found to be essential in rich media with alternative carbon sources. Additionally, three 196 

genes, murI, glmM and dapF, were found to be essential for growth in minimal media only.  Next, flux 197 

variability analysis (FVA) was used to identify biochemical reactions whose flux span was significantly 198 

changed (greater than 10% change) by knocking out these genes. In total ten genes murI, glmM, cysG, 199 

clcA, argG, mak, adh, dapF, add, and mcrC when knocked out significantly changed the flux span in 200 

at least one reaction through the model by FVA analysis, Supplementary Data 11. Finally, FBA analysis 201 

was used to determine the effect of gene knockouts on metabolite yield. Five genes, murI, glmM, cycG, 202 

mak, and dapF were found to reduce at least one metabolite yield to zero in the model when knocked 203 

out (given the wildtype yield was greater than 0), Supplementary Data 1127,28. Interestingly, the average 204 

number of metabolite yields affected by knockouts of the genes discriminating lineages was 205 

significantly higher than a random selection of 100 metabolic genes (p-value 0.0429, Mann Whitney U 206 

test, two-sided), indicating a stronger influence on metabolite production for this subset of genes. 207 

To further elucidate the metabolic differences between the BD-1.2 and BD-2 lineages, we repeated our 208 

previous analyses done on the generalized model using strain-specific models automatically generated 209 

by CarveMe27. Gene essentiality analysis concurred with the general model (iAM-Vc960), with only a 210 

small number of differences (Supplementary Data 12). The effect of murI gene knockouts differed 211 

between lineages, proving non-essential in 94% of BD-1.2 lineage models but only in 76% of BD-2 212 
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lineage models. Flux variability analysis of the individual models revealed that clcA knockouts led to 213 

significant changes in the flux span of the CLt3_2pp reaction, which controls chloride transport, in 96% 214 

BD-2 models compared to just 5% of BD-1.2 models. The clcA gene has been linked to bacterial acid 215 

resistance and it has been suggested that changes to the expression/repression of this gene may help 216 

facilitate survival during movement through the intestinal tract 28. Similarly, flux balance analysis 217 

indicated that metabolite yield was changed differently across lineages in response to knocking out 218 

clcA, with the metabolite yield of chloride reduced to 0 in 95% of BD-1.2 isolates. 219 

In summary, a total of 15 genes found to underly the genetic and temporal differentiation of V. cholerae 220 

BD-1.2 and BD-2 lineages, were also found to significantly alter the growth, reaction flux, or metabolite 221 

yield of V. cholerae when knocked down, either in the generalised iAM-Vc960 GSM model or in the 222 

draft strain-specific models. Of interest was the gene clcA, which showed differences in both flux span 223 

and metabolite changes between lineages in the draft GSM models. The FVA and FBA results indicate 224 

that the genes identified by machine learning as strongly associated with the severity of symptoms play 225 

important metabolic roles. Disruption of these functions could potentially affect bacterial growth or 226 

metabolic output, which may contribute to the survival and dominance of one lineage over another. 227 

Although our analysis cannot pinpoint a single SNP as responsible for the loss of metabolic function, it 228 

suggests that an accumulation of SNPs or gene losses could collectively lead to metabolic changes. We 229 

observe the potential for metabolic alterations driven by multiple mutations (SNPs). 230 

Lastly, when mapping the 160 intergenic SNPs back to genomes, we found their location in the 231 

upstream/downstream regions of 35 known genes and 34 hypotheticals genes (see Supplementary Data 232 

4). These intergenic SNPs exhibited allelic distribution, with the minor variant prevalent in the BD-2 233 

isolates (68% to 100%), while the major variant dominated in the BD-1.2 isolates (over 98%), only one 234 

SNP in BD-1.2 had a major allelic variant at of 47% (Fisher exact test, Bonferroni correction p-value< 235 

2.31e-08). Many of these SNPs were located within transcriptional factor binding sites (TFBs) 236 

(Supplementary Data 4). Intergenic SNPs, exhibiting significantly different allelic distributions 237 

between BD-1.2 and BD-2, mapped across the TFBs of 11 TFs (ToxT, Fur, AmpR, OmpR, LuxR, LexA, 238 
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ArgR, PhoP, CRP, ArcA) (Fig. S6-S16).  More information about the function of these transcriptional 239 

factor binding motifs is provided in Supplementary Note 6. 240 

 241 

Machine learning unravels correlations between genomic determinants and clinical symptoms in 242 

humans 243 

Beyond identifying the potential involvement of new genetic traits in differentiating the BD-1.2 and 244 

BD-2 lineages, we hypothesized that the same or additional genetic features might play a significant 245 

role in the manifestation and severity of clinical symptoms in patients when infected with V. cholerae. 246 

A summary of the distribution of each clinical symptom over the two lineages is given in Fig. S17. We 247 

focused on the lineage BD-1.2, which caused the most recent outbreak in Bangladesh. To identify if 248 

and which coding and non-coding mutations and/or presence/absence of accessory genes would 249 

correlate with the different clinical symptoms, we employed a bespoke, supervised machine learning 250 

pipeline.  251 

The pipeline is aimed at mining sequencing data to identify the genetic elements that more strongly 252 

correlate with observed clinical symptoms, which in this case are vomit, dehydration, number of stools, 253 

duration of diarrhoea and abdominal pain (see Methods section). The pipeline is a bespoke adaptation 254 

of ML-based data-mining methods previously developed within our team to identify correlations 255 

between genomic features with phenotypes17,18,29,30. In the pipeline, information about different genetic 256 

features (SNPs -both from coding and non-coding regions- and presence/absence of accessory genes) 257 

can be encoded as input to ML-powered predictive models designed to estimate the likelihood of 258 

observing the selected phenotypes under each specific pattern of input values17. As long as trained with 259 

sufficient observational data, the ML-powered predictive models are able to replicate experimental 260 

evidence, in addition to providing information on what inputs correlated most strongly with each 261 

phenotypic manifestation. Through such introspective power, the pipeline is able to unravel co-262 

occurrent, multiple mechanisms (mutations, horizontal gene transfer - HGT), variants in their functional 263 
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protein-coding and regulatory forms, as well as their additive effect on the targeted phenotypes, which 264 

in this work, were clinical symptoms.  265 

The following clinical symptoms were selected, namely: vomit, abdominal pain, diarrhoea duration, 266 

24-hour stool count and dehydration. Each clinical symptom was handled by building a dedicated 267 

symptom prediction model, operating using genetic elements as inputs. Two symptoms (vomit and 268 

abdominal pain) were encoded as binary (presence vs absence). The other three symptoms – diarrhoea 269 

duration, 24-hour stool count, and dehydration – were encoded as multi-class: dehydration as None, 270 

Moderate and Severe; diarrhoea duration as < 1 day, 1-3 days, 4-6 days, and 7-9 days; and stool count 271 

in 24 hours as 3-5 times, 6-10 times, 11-15 times, 16-20 times, and 21+ times. We handled the prediction 272 

of multi-class symptoms via the implementation of binary predictors.  273 

The symptom prediction models were developed with built-in robustness to potential confounding 274 

factors. Specifically, the following list of variables was initially considered as potentially having 275 

confounding effects: year of collection, location of patient, sex of patient, age of patient and serology 276 

of V. cholerae. Each potential confounder was tested for correlation to the symptom being targeted by 277 

the prediction model. If the potential confounder was found correlated to the symptoms (hence moving 278 

from potential to proven confounder), then any other input variable also found correlated with the same 279 

confounder would be eliminated from the prediction model.  All the correlation tests between inputs 280 

and symptoms, as well as between inputs themselves, were run using two-sided Chi-square tests. 281 

Further, possible confounding effects related to random initialisation parameters of SMOTE (see 282 

methods) were contained by running SMOTE multiple times. 283 

The development and optimisation of each symptom prediction model powered by machine learning 284 

was based on running a comparative analysis of the predictive performances of different machine 285 

learning algorithms, namely: linear support vector machine (linear SVM), non-linear SVM with radial 286 

basis function (RBF SVM), random forest, extra-tree classifier and logistic regression) and two meta-287 

methods (Adaboost and XGBoost). For each algorithm, multiple configurations of the hyperparameters 288 

of the learning algorithms were tested. A nested cross validation approach was used to select the best 289 

hyperparameters, based on randomly selecting different training and test sets, and using stratified k-290 
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fold cross validation metric. Finally, Friedman and Nemenyi tests were used to statistically compare 291 

and select the best performing algorithm for each prediction model (see Methods section). 292 

In the end, based on a two-sided Chi-square test of independence (p-value < 0.01), the models for 293 

abdominal pain, vomit, number of stools 11-15 times vs. 21+ times, number of stools 11-15 times vs. 294 

16-20 times, dehydration moderate vs severe were found immune to confounding effects due to year of 295 

collection, location of patient, sex of patient, age of patient and serology of V. cholerae. The prediction 296 

model: diarrhoea duration <1day vs 1-3 days was found immune to confounding effects due to age of 297 

patient, sex of patient, location of patient, and serology of V. cholerae. However, the prediction model 298 

was found to be influenced by year of collection; therefore, the inputs that were also correlated to year 299 

of collection were removed from the analysis (Supplementary Data 13). Moreover, we were able to 300 

successfully develop six binary symptom prediction models featuring adequate prediction performance 301 

levels. These were dedicated to predicting the following binary phenotypical outcomes: i) stools 11-15 302 

times vs. 16-20 times; ii) stools 11-15 times vs. 21+ times; iii) moderate vs. severe dehydration; iv) 303 

diarrhoea duration <1 day vs. 1-3 days; v) presence vs absence of vomit; and vi) presence vs absence 304 

of abdominal pain (Supplementary Data 14). The remaining binary predictors were discarded for not 305 

performing adequately, either because of unbalanced available sets of observations (needed for training 306 

the supervised ML models), or because of more challenging separability of the phenotypes given the 307 

selected inputs (no features were statistically significant based on the Fisher exact test). Among the 308 

tested pipeline technologies mentioned earlier, logistic regression was identified by the Friedman F-test 309 

and the Nemenyi post-hoc analysis as the best performing one (Fig. S18). Of the six binary prediction 310 

models, four had an AUC greater than 0.9, Fig. 4. Supplementary Data 15 indicates the performance 311 

metrics obtained by all binary predictors for each clinical symptom. Figs. 4 and S19 show the 312 

performance results for the Logistic regression classifier.  313 

Analysis of the best-performing symptom prediction models allowed us to identify the input features 314 

(core genome coding and intergenic SNPs and accessory genes) most strongly correlated to each 315 

phenotype (Supplementary Data 16). Seventy-nine different features in total were selected as 316 

significantly correlated to at least one of the six symptom prediction models, with 68% being selected 317 
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in two or more models (Fig. 5). No features were selected for all symptoms. All features associated with 318 

number of stools 11-15 times vs. 21+ times were found associated to at least one of the other five 319 

symptom prediction models. Forty-five accessory genes (nine known genes, tufB_2, blc, pckA, luxR_2, 320 

hcpA_1, rpoS, dcuA, hpt, luxR, and 36  hypothetical genes) and 28 core SNPs over 23 genes (14 known, 321 

clpS, gshB, dapF, fabV_1, add, tufB, lpoA, phrB, yjcS, fabH1, cysG_2, padC, pepN, tadA_2, and nine 322 

hypothetical genes) were identified as strongly associated to at least one of the symptoms. From the 323 

nine known accessory genes: four (rpoS, hpt, luxR and pckA) were found in the vomit model; dcuA was 324 

found in the abdominal pain model; hcpA_1 was found only in the number of stools 11-15 times vs. 16-325 

20 times; luxR_2 was found in two models (vomit and dehydration moderate vs severe); blc and tufB_2 326 

were found in three models (vomit, number of stools 11-15 times vs. 16-20 times and number of stools 327 

11-15 times vs. 21+ times) with tufB_2 also found in  abdominal pain and diarrhoea duration <1 day 328 

vs. 1-3 days models. Six SNPs from the genes tufB, dapF, clpS, gshB and fabV were associated to three 329 

symptom prediction models (vomit, number of stools 11-15 times vs. 16-20 times and number of stools 330 

11-15 times vs. 21+ times) with the SNPs from the genes dapF and fabV also associated with abdominal 331 

pain and diarrhoea duration <1 day vs. 1-3 days and the SNP from the gene tufB associated with 332 

dehydration moderate vs severe. 333 

Among the 45 accessory genes linked to clinical symptoms, six hypothetical genes were also 334 

statistically significant in distinguishing the two lineages. Among the other accessory genes selected, 335 

four (blc, pckA, luxR and rpoS) have important biological functions. In particular, Blc, also known as 336 

VlpA, is a lipocalin, that is correlated to acquisition of drug resistance in V. cholerae31. PckA 337 

(phosphoenolpyruvate carboxykinase) is important for gluconeogenesis, a highly conserved pathway in 338 

bacteria and humans. Interfering with gluconeogenesis pathway impacts V. cholerae colonization in 339 

mouse models, highlighting its crucial role in sustaining V. cholerae growth and viability within the 340 

intestines32. LuxR plays a key role in regulating biofilm production and secretion in V. cholerae33. RpoS 341 

is a sigma factor that facilitates physiological adaptation to general starvation and stationary phase 342 

growth in different species. V. cholerae strains lacking the gene rpoS are impaired in the ability to 343 
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survive in different environmental stresses. RpoS was also shown to be important in V. cholerae for 344 

efficient intestinal colonization34.   345 

Out of the 28 core SNPs associated to the clinical symptoms, 11 were also found previously as 346 

statistically significant in differentiating the BD-2 and BD-1.2 lineages (see above), Supplementary 347 

Data 16. These 11 SNPs mapped to 11 genes (clpS, gshB, dapF, fabV_1, add, and six hypothetical).  348 

Among the SNPs mapping to known genes (clpS, gshB, dapF, fabV_1, add), three are non-synonymous 349 

SNPs mapping to clpS, gshB and fabV. In V. cholerae ClpS regulation involves cAMP receptor protein 350 

(CRP)31. CRP is important in intestinal colonization35.  GshB, encodes a glutathione synthetase (GSH), 351 

a gene associated to resistance to oxidative stress. V. cholerae fabV is one of the several triclosan-352 

resistant ENR encoding genes36.  353 

As in our previous lineage analysis, we sought to better understand the importance of the genes which 354 

had been found to better correlate with the severity of the symptoms. We examined for those genes that 355 

were metabolic, through FVA and FBA, the effects of such genes on growth rate (gene essentiality), 356 

and beyond that, their influence on metabolite yield and reaction flux. Nine symptoms-related genes 357 

were identified as metabolic genes in the iAM-Vc960GSM model (Fig. 6). Eight of these genes were 358 

associated to five metabolic systems Supplementary Data 17).  FabH1 and gshB associated with 359 

cofactor and prosthetic group metabolism; pckA is associated with carbohydrate metabolism; dcuA 360 

plays a crucial role in C4-dicarboxylate transport; dapF, pepN and gshB are significant in amino acid 361 

metabolism; add and pckA are relevant to nucleotide metabolism; oppA and fabH1 are involved in cell 362 

wall metabolism, with fabH1 relevant for fatty acid biosynthesis (Supplementary Data 17).  363 

Using FBA and FVA analysis, the knockouts of the genes dapF and gshB were found to halt production 364 

of several metabolites. The genes pckA, add, dapF, oppA, gshB were found to significantly change the 365 

reaction flux span, Supplementary Data 17.  Both FBA and FVA analysis can infer if potential metabolic 366 

adaptation mechanisms for V. cholerae can lead to alterations in bacterial virulence, potentially leading 367 

to worst symptoms, if genes significantly affect pathways which are associated to important functions 368 

such as colonization, biofilm production and cell wall synthesis. For example, the gshB gene, a 369 
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glutathione reductase, contributes to V. cholerae intestinal colonization37 and has a role in acid tolerance 370 

response38. Similarly, dapF was found as an essential gene in minimal media and leading to auxotrophic 371 

behaviour to the amino-acid lysine. As Pearcy et al.39 indicated, an auxotrophic behaviour of a gene 372 

connected to amino-acid biosynthesis is important because it can provide competitive fitness advantage 373 

against commensal bacteria. During the infection stage V. cholerae engage and compete with 374 

commensal bacteria for nutrient acquisition to support rapid growth and multiplication40. Moreover, the 375 

lysine pathway plays a central role in eubacteria cell wall biosynthesis, since meso-diaminopimelate is 376 

the immediate precursor for the biosynthesis of its main component, peptidoglycan, with dapF 377 

responsible for the creation of meso-diaminopimelate in the lysine pathway41,42. The proper synthesis 378 

and maintenance of peptidoglycan is essential for bacterial virulence and its viability43.  379 

To further investigate the link between metabolic gene variations and the clinical symptoms observed 380 

in different strains, we utilized draft strain-specific models generated with CarveMe27. The gene 381 

essentiality analysis results were largely consistent with those of the general model (iAM-Vc960), with 382 

only a few differences noted (Supplementary Data 18). The effect of dapF gene knockouts varied 383 

between models with the gene being essential in 93% (n=20) and non-essential in 7% (n=9) of the 384 

models. Comparing symptoms between the ‘essential’ and ‘non-essential’ groups, dehydration was 385 

significantly more severe in the ‘non-essential’ group (Fisher exact test p value =0.05). All strains in 386 

this group exhibited severe dehydration, suggesting a link between non-essentiality of the dapF gene 387 

and the severity of V. cholerae symptoms. In relation to this, the flux balance analysis revealed changes 388 

in metabolite yields associated with the genes dapF and cysG_2 across all strain-specific models. For 389 

dapF, altered metabolite yields were predominantly observed in strains where dapF was essential, while 390 

knocking out dapF in non-essential models had minimal impact on the metabolite yields of murein-391 

related metabolites. This indicates metabolic adaptations linked to bacterial survival in these strains, 392 

potentially contributing to more severe disease outcomes. Additionally, knocking out the padC gene 393 

resulted in significant changes in metabolite yields only in the NGICDV-066 strain. Although 394 

conclusions drawn from a single strain are limited, it is notable that this isolate exhibited the most severe 395 

clinical symptoms across all measured symptoms, except for the duration of diarrhoea (presence of 396 
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vomiting, presence of abdominal pain, number of stools (21+ times), presence of severe dehydration, 397 

duration of diarrhoea 1-3 days). Flux variability analysis in individual models indicated consistent 398 

behaviour across all strain-specific models regarding gene knockouts associated with clinical 399 

symptoms. Specifically, five gene knockouts (add, dapF, gshB, padC, pckA) showed significant flux 400 

span changes in all models. 401 

In summary, in relation to gene essentiality, reaction flux and metabolite yield, our results show that 402 

gshB and dapF make interesting candidates for further analysis, as knockout models of these genes 403 

predict significant changes to the bacterial metabolic function. 404 

To delve deeper into understanding the functional mechanisms underlying clinical symptoms, we 405 

explored the interactome of the proteins associated to the clinical symptoms. The protein-protein 406 

interaction network (PPI) analysis revealed the interactome of 36 proteins, selected by the machine 407 

learning pipeline, with 109 other proteins, Fig. S20. The KEGG analysis indicated enrichment in 408 

ribosome proteins (e.g., RpoS) and fatty acid biosynthesis (e.g., FabH1, FabV) (Fig. S21). The 409 

colonization in the human intestine and virulence of V. cholerae is intricately connected to both fatty 410 

acid metabolism44 and the ribosome pathway45. The GO analysis highlighted enrichment in translation, 411 

peptide biosynthetic processes, and gene expression, featuring TufA, TufB, RpoS, GshB 412 

(Supplementary Data 19 and 20). The peptide biosynthetic pathway plays a vital role in V. cholerae 413 

biofilm formation and colonization23. 414 

None of the six intergenic SNPs selected by the machine learning pipeline were in TFBs or promoters. 415 

These SNPs were located in a region without any functional annotations within 2 kbps upstream or 0.5 416 

kbps downstream of a gene, adhering to the standard database dbSNP cutoffs for SNP-to-gene 417 

mapping46,47. See Supplementary Data 16 for additional information about the location of these SNPs. 418 

 419 
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Structural analysis suggests evolutionary drivers of selection, mechanistic bases for BD-2 and BD-420 

1.2 lineages evolution, and associations to clinical symptoms 421 

To further understand whether the identified alleles play a causal role in the evolution of lineages and 422 

clinical symptoms, we selected two of the top-ranked non-synonymous SNP candidates, prioritizing the 423 

following aspects in relation to the associated genes: (i) have significant difference of allelic distribution 424 

between BD1-1.2 and BD-2; (ii) have a significant correlation, as detected by the ML pipeline, with the 425 

selected clinical symptoms; (iii) are characterised as functionally important for V. cholerae metabolisms 426 

(i.e. significantly impacting reaction flux when knocked out, as highlighted by the GSM model) and/or 427 

interactome (i.e. enrichment of the functions and mechanisms related to pathogenesis); (iv) 3D 428 

structural mutation analysis could be benchmarked with experimental evidence. This resulted in three 429 

genes, all top-ranked by both the Fisher Exact test for BD-1.2 and BD-2 lineage evolution and the ML 430 

analysis for the underlying clinical symptoms, namely: fabV, gshB and clpS. We mapped the alleles of 431 

fabV, gshB and clpS to their protein structures using both experimental crystal structures and predicted 432 

homology models. However, the 3D-structure could be utilised to infer the mechanistic basis only for 433 

fabV and gshB. 434 

In all BD-2 isolates FabV had a proline at position 149 (Pro149) whereas, in BD-1.2 isolates, the Pro149 435 

was found in only 40.5% of cases, with the remaining 59.5% isolates exhibiting histidine at position 436 

149 (His149). The BD-1.2 isolates with His149 showed a higher duration of diarrhoea (1-3 days) and a 437 

higher number of stool score (16-20 times and 21+ in 24 hours) compared to the BD-1.2 isolates with 438 

Pro149, featuring a lower diarrhoea duration (<1 day) and lower number of stools score (11-15 times). 439 

The amino acid 149 was located in the trans-2-enoyl-CoA reductase catalytic domain (Fig. 7A-E), when 440 

Pro149 is present, it interacts with Lys148, Ser151, Trp159 through Van der Waals (VDW) interactions, 441 

whereas His149 not only forms the aforementioned interactions but also creates an extra VDW 442 

interaction with Lys148. Furthermore, His149 interacts with an additional amino acid, Arg150, through 443 

a VDW interaction. These additional interactions in the presence of the His149 cause an increase in the 444 

stability of the structure (ΔΔG = 0.101 kcal/mol >0) and a decrease of the molecule flexibility (ΔΔSVib 445 

ENCoM: -0.053 kcal.mol-1K-1), which is usually linked to a stronger binding affinity48,49. Moreover, the 446 
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presence of His149 increased the positive charge of the surrounding area (Lys148, His149, Arg150) 447 

(Fig. S22), with an overall electrostatic energy increasing from 7.3E+03 kJ/mol (Pro149) to 7.48E+03 448 

kJ/mol (His149) within the 5Å region and with an overall protein total electrostatic energy rising from 449 

2.1E+05 kJ/mol (Pro149) to 2.52E+05 kJ/mol (His149). Exposed, positively charged amino acids are 450 

suggested to promote interactions with negatively charged cellular systems50. The enhanced positive 451 

charge of FabV in the presence of His 149 might support its role in participating in the breakdown of 452 

the negatively charged fatty acids. 453 

 454 

 455 

GshB, a glutathione reductase, has been shown to contribute to V. cholerae intestinal colonization37 and 456 

to have a role in the ability of V. cholerae to mount an acid tolerance response38. In all BD-2 isolates 457 

GshB had a threonine at position 93 (Thr93), whereas in the BD-1.2, the Thr93 was only found in 21.5% 458 

of the cases, with most (78.5%) of the BD-1.2 isolates exhibiting an isoleucine (Ile93) at this position. 459 

The BD-1.2 isolates with Ile93 are associated to a higher duration of diarrhoea (1-3 days) and a higher 460 

number of stool score (16-20 times and 21+ in 24 hours) compared to the BD-1.2 isolates with Thr93. 461 

Thr93 interacts with Asp92, Ile96, Tyr97 through 13 VDW interactions and 1 H-bond; whereas Ile93 462 

not only forms the aforementioned interactions but also creates extra VDW interactions with Tyr97 463 

(Fig. 8A-E). These additional bonds in the presence of Ile93 cause an increase in the stability of the 464 

structure (ΔΔG = 0.384 kcal/mol >0) and a decrease of the molecule flexibility (ΔΔSVib ENCoM: -465 

0.055 kcal.mol-1.K-1), which is usually linked to a stronger binding affinity48,49. Moreover, the presence 466 

of Ile93 increased the negative charge of the surrounding area (<5Å) (Fig. S23A-B), with an overall 467 

electrostatic energy decreasing from 7.93E+03 kJ/mol (Thr93) to 7.4E+03 kJ/mol (Ile93) within the 5Å 468 

region and with an overall protein total electrostatic energy varying from 2.1E+05 kJ/mol (Thr93) to 469 

1.8E+05 kJ/mol (Ile93). A decrease in total electrostatic energy is often associated to folding51, protein 470 

folding stability is largely dependent on the hydrophobic interactions of nonpolar residues52. The 471 

surface, on average, has become more hydrophobic, indicating a possible reorientation of residues or a 472 

change in the surface's exposure to the solvent (Fig. S23C-D).  473 
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 474 

Discussion 475 

Bangladesh has witnessed the continual genomic evolution of V. cholerae lineages, with increased 476 

virulence, resistance, global spreading ability and disease severity. The potential of a V. cholerae isolate 477 

to have a global spreading ability and cause disease is mostly approached by studying its genomics via 478 

bioinformatics analysis. Two recent studies9,10 explored the genomics attributes of the lineage BD-2 479 

predominant between 2004 and 2018 and the emergent lineage BD-1.2 appearing from 2016 onwards 480 

and responsible for the 2022 outbreak9,10. By comparing these lineages, the authors revealed mutations 481 

in ctxB allele, SXT/ICE, VSP-II, VPI-1 and gryA allele10 potentially explaining the recent shift in 482 

lineage predominance. Despite these knowledge advances, gaps persist in understanding the entire 483 

genomic repertoire associated to transmission ability and different disease severity patterns. 484 

Here, we developed an analysis approach that combines, ML-powered data mining, whole-genome 485 

sequencing, genome-scale metabolic modelling and 3D structural analysis to uncover, on a finer scale, 486 

unknown associations between lineage transmission dynamics, diseases severity and the genomic make-487 

up of V. cholerae isolates. Machine learning offers a powerful opportunity to analyse entire genomes 488 

efficiently against selected phenotypes (lineages, clinical symptoms), allowing for the identification of 489 

genomic features ranked on strength of correlation with the phenotype. This provides a significant 490 

advantage to conventional genomics-only methods based on checking for presence/absence or based on 491 

similarity searches of known manually chosen determinants. Moreover, our approach allowed various 492 

genetic determinants (accessory genes, and core coding and intergenic SNPs) to be analysed 493 

simultaneously to capture the co-occurrence, synergism and additive effect of multiple mechanisms and 494 

determinants (mutations, accessory genes, horizontal gene transfer, functional, metabolic, and 495 

regulatory variants). Determinants identified by ML may contain genes with a known functional 496 

relationship with the phenotype as well as genes with no previously known association with that specific 497 

phenotype. Altogether, our reference-agnostic approach overcomes limitations of previous genomics 498 
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studies that only considered one feature type (SNPs, accessory genes) at a time and known genetic 499 

elements associated to Vibrio transmission. 500 

Using our method, in addition to confirming the aforementioned mutations identified in recent genomics 501 

studies10, we found further mutations in VSP, VPI, and PLE, exclusive to one lineage and absent in the 502 

other, supplementing those previously found by Monir et al.10. Moreover, our findings expand known 503 

mutations to a wider range of genomic determinants, including 115 accessory genes, 1225 core coding 504 

SNPs, and 160 intergenic SNPs crucial for explaining at a more-in depth scale BD-1.2 and BD-2 recent 505 

shift. Supplementing the previous knowledge on the type, number and functions of genomics 506 

determinants differentiating BD-1.2 and BD-210.  507 

For example, five core genes (skp, tamA, clcA, cysG, and valS) with a unique non-synonymous variant 508 

in BD-1.2 and playing key roles on toxin transport and acid tolerance, shed new light on functions and 509 

may help clarify their contribution to the recent prevalence of BD-1.2 over BD-2. In addition, non-510 

synonymous SNPs, found uniquely in BD-1.2, were mapped to genes with functions such as 511 

colonization, toxins export, virulence, growth, response to pH and temperature, and phage resistance. 512 

For example, the mutation G325D in ompU conferring bacteriophage resistance29, was found in this 513 

work to be statistically important to differentiate the two lineages. OmpU a pore-forming protein of the 514 

outer membrane of V. cholerae has adhesive properties which may play a role in the pathogenesis of 515 

cholera53, is critical for vibrio fitness54,55, for dissemination54, for protection against the bactericidal 516 

effect of bile salts56, cationic peptides57 and intestinal organic acids58. The G325D mutation is located 517 

within the L8 loop, which has been reported to be crucial for neutralizing infection and conferring 518 

resistance against phages59,60. Seed et al.60, showed that in presence of the bacteriophage ICP2 519 

(bacteriophage that preys on V. cholerae and was first isolated from cholera patient stool samples61) the 520 

OmpU virulent mutant (G325D) had a 10,000-fold enrichment over the wild-type, indicating that strong 521 

selective pressure is imposed by phage predation during V. cholerae infection. 522 

Out of the twelve accessory genes found statistically significant to differentiate the two lineages, five 523 

(lon_3, endA, adh, hdfR_4 and bcr_2) were present uniquely in BD-1.2 with functions such as antibiotic 524 

resistance and biofilm formation. Increasing evidence indicates that V. cholerae has the capability to 525 
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develop biofilm-like aggregates during infection, potentially serving as a function in pathogenesis and 526 

disease transmission. Nonetheless, the composition, control mechanisms governing the formation of 527 

these biofilms during infection, and their significance in intestinal colonization and virulence remain 528 

yet to be elucidated62. 529 

In addition to the coding genome, we found that regulatory networks are associated to lineage 530 

differentiation. Among the most relevant intergenic SNPs exhibiting significant allelic distribution 531 

between the two lineages is the one mapping in the TFBs of ToxT. This TF plays a crucial role in the 532 

development of V. cholerae-related symptoms60 and selectively regulates the expression of virulence 533 

genes found in toxin-coregulated pilus (TCP) and cholerae toxin (CT)63,64. Environmental conditions 534 

within the intestinal tract, such as the presence of bile, bicarbonate, reduced oxygen levels, and 535 

unsaturated fatty acids, play a significant role in promoting the simultaneous expression of genes 536 

responsible for the production of Tcp, CT, and various other genes linked to colonization12,63. The 537 

activation of the ToxT regulon is also influenced by metabolic cues and quorum sensing12,63. Although, 538 

transcription factor binding site prediction algorithms tend to over-predict sites. The correlation of 539 

experimentally determined SNPs with the predicted sites and their different nucleotide frequency 540 

provides a reasonable certainty that the observation reflects the phenomenon. The fact that we found 541 

significant intergenic SNPs in TFBs of 11 TFs and not in promoters, suggests a possible important role 542 

in such scenario. Higher frequency of SNPs close to transcriptional start sites is related to subtle 543 

alteration of gene expression which might results in lineage diversity. In addition to a wider range of 544 

genomic determinants found in this study, we also found 23 genes with mapped SNPs (tyrA, gyrA, ctxB, 545 

glmM, tamA, valS, czcA, licH, mutL, kbl, cobB, mak, znuC, phhA, nagA_1, argG, cysG_1, murI, appC, 546 

putA, suhB, fadJ and recD) in common between our analysis and Monir’s comparison of BD-1 vs BD-547 

29 and nine genes with SNPs (rstA, ubiA, dsbD, clcA, thiG, rtxA, mltD, fadJ and recD) in common 548 

between our analysis and Monir’s comparison of BD-1.1 vs BD-1.210. 549 

Roughly 20% of people who contract toxigenic V. cholerae show cholera symptoms12. Among 550 

symptomatic cases, approximately 5% are mild, 35% are moderate, and about 60% are severe. The 551 

disease's severity depends on pathogenic factors on the bacteria, and the host, including age, nutrition, 552 
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and immune system12.  Here, we revealed the existence of correlations between a core set of genetic 553 

determinants in V. cholerae and clinical symptoms (diarrhoeal duration, number of stools, abdominal 554 

pain, vomit, and dehydration). A recent study65 investigated these correlations, using machine learning, 555 

by analysing gene families in the gut microbiome of household members of Cholera patients to predict 556 

disease severity. In such study, associations were found in gene families like ribosomal proteins, RNA 557 

polymerases, and the sugar phosphotransferase system with symptomatic disease. However, the 558 

computational pipeline adopted in such work65  did not produce high-performance metrics for predictive 559 

models. Our pipeline, in contrast to Levade et al65, achieved superior performance metrics, and 560 

encompassed accessory genes, core genome SNPs, and intergenic SNPs. It considered variants in both 561 

functional protein-coding and regulatory forms, revealing their additive effect on diverse clinical 562 

symptoms.  563 

Moreover, mechanistic insights were derived through GSMMs and protein-protein interaction 564 

networks. Notably, we identified genes crucial for pH homeostasis, host adaptability, colonization, 565 

virulence, motility, acid tolerance, toxin transport, biofilm formation, and bacteriophage resistance. 566 

Important pathways were found underlying these roles, such as the fatty acids biosynthesis which is 567 

important for V. cholerae since unsaturated fatty acids present in bile inhibit the expression of virulence 568 

factors and both cholesterol and unsaturated fatty acids can enhance the motility of V. cholerae66; and 569 

biofilm production which plays a crucial role in the cholera pathogenesis and dissemination of disease62. 570 

Furthermore, our ML analysis identified genes associated to abdominal pain that were also found 571 

important for colonization in V. cholerae. It is known that colonization of pathogenic bacteria can 572 

present clinical symptoms such as abdominal pain67.  573 

Three non-synonymous SNPs associated to the clinical symptoms were also found as statistically 574 

significant in differentiating the BD-1.2 and BD-2 lineages. These SNPs mapped to clpS, gshB and 575 

fabV. In V. cholerae ClpS regulation involves cAMP receptor protein (CRP)35. CRP is important in V. 576 

cholerae gene regulatory network lifestyle switching, adapting gene expression for quorum sensing, 577 

intestinal colonization, and toxin production to its environment35. GshB, encodes a glutathione 578 

synthetase (GSH), a gene associated to resistance to oxidative stress. It is part of the σ32 regulon, 579 
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contributing to V. cholerae intestinal colonization37. Glutathione controls the potassium efflux system, 580 

Kef, and pH homeostasis involved in Na+ and K+ transport68. Impaired glutathione production may 581 

affect the stress response68. GshB was additionally shown to have a role in the ability of V. cholerae to 582 

mount an acid tolerance response38.  V. cholerae fabV is one of the several triclosan-resistant ENR 583 

encoding genes36. Resistance to triclosan also affects resistance to other antibiotics, showing cross-584 

resistance to a wide range of antibiotics (including chloramphenicol and tetracycline)69. Moreover, fabV 585 

exhibits pleiotropic effects controlling pathogenicity in P. aeruginosa via modulation of fatty acids 586 

synthesis, production of virulence factors and motility70. 587 

Analysing the 3D structure based on non-synonymous mutations can provide insights into the 588 

mechanisms by which these mutations can cause disease71-74.  Changes in the stability of proteins can 589 

lead to manifestation of diseases73 or symptom variations71,74. Among all types of mutations, non-590 

synonymous SNPs have the greatest impact on protein structure and function75. In this work we found 591 

that different SNPs accumulated in BD-1.2 isolates compared to BD-2 isolates, suggesting different 592 

evolutionary dynamics possibly explaining the temporal shift of the two lineages. Our analysis of top-593 

ranked non-synonymous SNPs in protein-coding regions, identified by machine learning as linked to 594 

both BD-1.2 lineage evolution and clinical symptoms, specifically FabV and GshB, unveiled that SNPs 595 

present in BD-1.2, associated with more severe cholera, led to increased protein stability. That protein 596 

stability might be relevant for disease severity is also supported by the fact that no SNPs associated to 597 

clinical symptoms were found in any TFBs or promoter signature but only in protein-coding sequences. 598 

In this study, we have identified promising targets related to metabolism (clcA, cysG, adh), 599 

antimicrobial resistance (i.e. bcr, blc), and virulence (i.e. ompU, skp, tamA, valS). These targets show 600 

significant potential for further investigation through experimental studies. 601 

We are aware of the limitations of our current study. Several host factors (retinol deficiency, blood 602 

group, genetic factors, innate immune system) confer susceptibility to cholera with higher risk of 603 

symptomatic disease76. These factors have not been considered in this study due to lack of data. A 604 

further limitation of this study was the inability to consider the potential impact of co-infections with 605 

either multiple V. cholerae lineages/strains or other pathogens. Whilst the presence of more than one V. 606 
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cholerae strain or lineage in a host has recently been shown to be unlikely 77-79, co-infections with other 607 

bacteria can occur in diarrheal patients. A study of 10,351 confirmed clinical V. cholerae cases from 608 

2000-2021 in Bangladesh found that Campylobacter spp,, enterotoxigenic E. coli (ETEC) and rotavirus 609 

were the most frequently found co-pathogens, with co-infection rates of 6.7%, 5.7% and 2.4% 610 

respectively80.  Although the effects on the host of co-infection of V. cholerae with Campylobacter spp. 611 

or rotavirus have not been studies, co-infection with enterotoxigenic E. coli (ETEC) has been studied. 612 

Chowdhury et al 201081 showed that coinfection with ETEC results in an increased host immune 613 

response, and so could potentially affect observed symptoms. The authors have also observed a higher 614 

co-infection rate (13%) between V. cholerae O1 and ETEC in their cohort. However, for future research 615 

will aim to incorporate these variables to provide a more comprehensive understanding of the 616 

interactions between host and pathogen, as well as between different pathogens, in the context of 617 

cholera. This study should be considered a proof-of-principle to be further investigated and validated 618 

with larger sample sizes and different geographical areas. With the advent of modern technologies, by 619 

strengthening bespoke analytical methods and by performing wider comparisons (asymptomatic vs. 620 

symptomatic, patients vs. households, environmental vs stool vibrio) we can potentially disentangle the 621 

intricate network of correlations between the genetic underpinnings of cholera symptoms and 622 

epidemiological transmission risk, uncovering regulatory, metabolic and signalling networks 623 

interconnectivity that might help to inform future interventions.  624 

 625 

Methods 626 

Ethics Statement 627 

Informed written consent was obtained from all adult patients, or guardians on behalf of children. Upon 628 

receiving consent, the physician collected the patient’s sociodemographic characteristics and medical 629 

histories. For the icddr,b isolates, the study protocol was approved by the Institutional Review Board 630 

of icddr,b (PR-15127). For the IEDCR isolates, the study was performed in accordance with protocols 631 
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approved by the Institutional review board of IEDCR (IEDCR/IRB/09 and IEDCR/IRB/26). Ethics 632 

approval was also obtained from the University of Nottingham (2811 110724).  633 

Experimental Design 634 

For the study we used 129 V. cholerae bacterial isolates obtained from distinct stool samples of patients 635 

between 2014 and 2021 from the ongoing Nationwide Cholera Surveillance82, jointly conducted by 636 

IEDCR and icddr,b. The isolates were collected from admitted patients from six divisions of Bangladesh 637 

(Barisal n=11, Chittagong n=6, Dhaka n=99, Khulna n=2, Rajshahi n=4, and Sylhet n=7). The isolates 638 

included in the study were gathered from patients meeting the case definition of diarrhoea and 639 

consenting to be included in the surveillance study. The case definition was used and defined as: i) 640 

Diarrhoea (patient age > 2 months): any patient attending hospital with 3 or more loose or liquid stools 641 

within 24 hours or less than 3 loose / liquid stools causing dehydration; ii) Diarrhoea (patient age < 2 642 

months): changed stool habit from usual pattern in terms of frequency (more than the usual number of 643 

purging) or nature of stool (more water than faecal matter). The case definition of diarrhoea was 644 

standardized to ensure consistency across different regions and over the collection timeline. Stool 645 

samples were processed by either IEDCR or icddr,b research institutes. For the identification of V. 646 

cholerae, specimens were streaked onto taurocholate-tellurite gelatin agar (TTGA) and incubated 647 

overnight at 37°C. Specimens were also inoculated in alkaline peptone water for enrichment and 648 

incubated for an additional 18–24 hours83 and plated on TTGA. Suspected colonies were serotyped with 649 

monoclonal antibody specific to V. cholerae O1 (Ogawa and Inaba) and O139 serogroups84 for the 650 

icddr,b isolates, while for the IEDCR isolates serotyping and biotyping was carried out by slide 651 

agglutination and PCR using primers in Supplementary Data 21. Further confirmation of the isolates 652 

being V. cholerae was obtained by whole genome sequencing. Confirmed isolates were tested for 653 

antimicrobial susceptibility using disk diffusion methods in accordance with CLSI protocols85 to 654 

antibiotics: ampicillin, azithromycin, ciprofloxacin, ceftriaxone, cefixime, doxycycline, erythromycin 655 

and meropenem, using commercially available antibiotic discs (Oxoid, Basing- stoke, United 656 

Kingdom). Escherichia coli American Type Culture Collection 25922 susceptible to all antimicrobials 657 

was used as a control strain for susceptibility studies.  658 
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Clinical metadata was collected from patients corresponding to 104 isolates for the 129 isolates in our 659 

cohort. Clinical data covered 5 categories (duration of diarrhoea, number of stools, abdominal pain, 660 

vomiting, and dehydration), in addition the age and sex of the patient and location of the patient was 661 

recorded. Clinical symptoms data (Supplementary Data 14) were binned into categories and ranked in 662 

order of increasing severity for data analysis.  663 

• Duration of diarrhoea: number of days the diarrhoea persisted was recorded. Data were binned as a 664 

duration score ranging from 1-3, with 1 = <1 day; 2 = 1-3 days; 3 = 4-6 days. 665 

• Number of stools in 24 hours: The number of stools recorded in a 24-hour period during the hospital 666 

admission was recorded. Data were binned as a number of stools score ranging from 1-5 with 1= 3-5 667 

times; 2= 6-10 times; 3=11-15 times; 4=16-20 times; 5=21+ times. 668 

• Abdominal pain: the presence or absence of abdominal pain was recorded as a 0 for absence and 1 for 669 

present.   670 

• Vomit: The presence or absence of any vomiting in the 24 hours prior to admission was recorded with 671 

0 denoting no vomiting and 1 denoting the occurrence of vomiting 672 

• Dehydration: clinical assessment of dehydration was recorded as none, moderate or severe by the 673 

clinician. 674 

DNA purification and extraction 675 

DNA extraction was performed at North South University. All the V. cholerae isolates were subjected 676 

to genomic DNA extraction in accordance with the manufacturers protocol of QIAamp DNA Mini Kit 677 

(Qiagen). 678 

Library construction and whole-genome sequencing 679 

The library preparation and sequencing of the 129 selected strains were carried out at NGRI (NSU 680 

Genomics Research Institute, North South University). To prepare the Illumina libraries, approximately 681 

1 μg of high molecular weight V. cholerae genomic DNA was utilized. Barcoded libraries were prepared 682 

using the Illumina DNA Prep Kit (product code 20060059, NEB, USA) following the manufacturers 683 

protocol. Nextera DNA CD index codes were added to attribute sequences to each sample. Following 684 
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that, paired-end sequencing with 2 × 151 cycles was performed on the Illumina MiSeq platform at 685 

NGRI.  686 

Genome assembly and annotation 687 

All sequences were pre-processed to using the Illumina BaseSpace sequencing hub. To clean the data 688 

adapters were trimmed and unidentified bases were removed. Genomes were assembled using SPAdes 689 

(v3.12)86 with default parameters and a coverage cut off value of 20. Genomic contamination was 690 

assessed using ContEst16S87 with only genomes identified as V. cholerae retained for further analysis. 691 

Contigs with length shorter than 500 nucleotides were filtered out of the final assemblies. Genomes 692 

were annotated with Prokka (v1.14.6)88 , using default settings with –addgenesz--usegenus.  693 

Screening of annotated genes against ABR databases, virulence and plasmid databases and in silico 694 

subtyping. 695 

The whole-genome sequences were screened against the CARD89 database (accessed 05-06-2022) using 696 

Abricate90 with a minimum coverage of 70% and minimum identity of 90% to identify known AMR-697 

associated genes in the isolate cohort. Genomes were also screened against the VFDB91 database using 698 

Abricate90 to find virulence associated genes, with 70% coverage and 90% identity) (accessed 05-06-699 

2022). Plasmids screening was conducted using the PlasmidFinder92 database in Abricate90, with 70% 700 

coverage and 90% identity) (accessed 05-06-2022); no plasmids were identified in the genome 701 

sequences. Sequence types were identified through MLST93 which mapped the sequences to the 702 

PubMLST94 database.  703 

Pangenome analysis and generation of genetic features input files 704 

All annotated genomes we used as input for pangenome analysis using Roary v3.1395. The core genome 705 

alignment was taken as input to produce a file of core gene SNPs present in the cohort using SNP sites 706 

2.5.196. SNPs within intergenic regions (IGRs) were extracted using piggy v1.597 to generate an 707 

alignment of core intergenic clusters. Variants in this alignment were then called using SNP sites 2.5.1. 708 

The presence-absence of accessory gene was found from the output of Roary.  709 
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In addition, a further pangenome alignment was created consisting of the 129 isolates in our cohort 710 

together with 218 isolates collected in Bangladesh from 2004 to 2022 (The European Nucleotide 711 

Archive-ENA (http://www.ebi.ac.uk/ena), accession codes: PRJDB8664, PRJDB12727, PRJDB13928, 712 

PRJNA723557).  713 

Phylogenetic analysis of V. cholerae isolates in our cohort in Bangladesh 714 

For both our cohort alone and our cohort together with publicly available Bangladeshi isolates (as 715 

detailed above) maximum likelihood phylogenies were reconstructed. Using the core genome 716 

alignments generated in Roary v3.1395, the phylogenies were reconstructed in IQ Tree (v2.2.0.3)98 with 717 

10000 ultrafast bootstrap replicates and best fitted evolutionary model (HKY+F+I for our cohort only 718 

and K3Pu+F+I for the combined Bangladesh alignment) was selected using ModelFinder99. The 719 

alignment length of the core genome of our cohort was 3459819 nucleotide sites of which 1486 were 720 

informative. For the core genome of the combined Bangladeshi isolates, the alignment length was 721 

2086397 nucleotide sites with 844 informative sites. The resulting consensus trees were visualised using 722 

iTol v6100, and branches with less than 95% ultrafast bootstrap support were deleted.  723 

Phylogenetic relations between V. cholerae isolates worldwide  724 

We used WGS data from 1140 V. cholerae isolates collected from India, Africa, Haiti, Yemen together 725 

with our Bangladesh samples (see Supplementary Data 2 and 3).  To generate the input for a 726 

phylogenetic tree, SNP variants were called from each isolate against the reference genome VC N16961 727 

(NC_002505.1; NC_002506.1) using Snippy v4.6.0101 (https://github.com/tseemann/snippy). The 728 

cleaned alignment files from Snippy were concatenated via the SeqIO function of biopython v1.83102 729 

then recombination was masked using Gubbins (v.2.3.4)103. The filtered polymorphic sites output from 730 

Gubbins was further filtered using SNP-sites96. The final SNP input contained 4033464 nucleotide sites 731 

with 26995 informative sites. This recombination-free SNP output was then used as input to reconstruct 732 

the phylogeny using IQtree (v2.2.0.3)98 with 1000 ultrafast bootstrap replicates and best fitted model 733 

(K3Pu+F+I+G4) was selected by ModelFinder99. The sequence ERR025382 (Indonesia-1957) was used 734 

as an outgroup, and the tree was rooted here. The resulting consensus tree was visualised using iTol 735 

v693, and branches with less than 95% ultrafast bootstrap support were deleted.  736 

http://www.ebi.ac.uk/ena
https://github.com/tseemann/snippy
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Transcriptional binding motifs  737 

Motif searches were conducted using FIMO (Find Individual Motif Occurrences104 within the MEME 738 

(Multiple Em for Motif Elicitation)105 suite (https://meme-suite.org/meme/tools/fimo). Reference 739 

sequences of intergenic regions of DNA from our isolates were generated in Piggy as described above; 740 

these were used as input for FIMO.  To predict the TFBs the following databases were used: CollecTF 741 

(Bacterial TF Motifs); Prokaryotes (Prodoric Release 8.9); Prokaryotes (RegTransBase v4); Combined 742 

Prokaryotes. Intergenic regions where motifs were found were variant called using SNP-sites96 and then 743 

aligned to the motif sequences using Clustal Omega v1.2.4106. For visualisation of intergenic regions, 744 

alignment maps of the intergenic regions were created using Jalview 2.11.3.2 with easyfig python 745 

genome figure package107. 746 

Promoter analysis for Intergenic SNPs 747 

BPROM/softberry108 was used to predict promoter region and oligonucleotides from known TF binding 748 

sites close to the promoter region. 749 

Genome-scale metabolic model  750 

All simulations were performed using the Python cobra toolkit v0.26.2. The analysis was conducted on 751 

both a manually curated and validated model of V. cholerae O1 N16961, iAM-Vc960, taken from 752 

Abdel-Haleem et al19 and on automatically generated draft strain-specific GSM models. The strain-753 

specific draft models were generated using CarveMe 27. CarveMe was run using the CPLEX solver and 754 

gram negative template, with gap filling for LB and M9 media using the command: ‘carve input.faa --755 

gapfill M9,LB -u gramneg --solver cplex --output model.xml’. Gene essentiality, FVA and FBA 756 

analyses as described below were conducted on genes of interest in the generalised iAM-Vc960 and in 757 

each of the 129 draft strain-specific models, based on the analysis pipeline in Pearcy et al39. 758 

For all gene essentiality, FBA and FVA analyses, a knockout model for each gene of interest was 759 

constructed by blocking all corresponding reactions to zero, given that the reaction is not catalysed by 760 

an isozyme. We considered the essentiality of a gene under both rich medium conditions and M9 761 

minimal medium conditions. To mimic rich medium conditions, the model was constrained to allow all 762 

carbon sources into the system, with a fixed uptake rate of 1 mmol/gDCW/h. If a feasible solution exists, 763 

https://meme-suite.org/meme/tools/fimo
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while maximizing the biomass equation as the objective function, then the knockout of the gene was 764 

not essential. To mimic M9 minimal medium conditions, the model was constrained so one individual 765 

carbon source had a maximum uptake of 10 mmol/gDCW/h. This simulation (minimal medium 766 

condition) was repeated for each carbon source in the model. The genes whose corresponding knockout 767 

model achieved a growth rate of 0.0001 h−1 or less were considered essential. Flux variability analysis 768 

(FVA) was applied to the wild-type model and each knockout model using the cobra toolbox in 769 

python109. FVA calculates the minimum and maximum flux through each reaction in the model, given 770 

a set of constraints, resulting in the range of possible fluxes for each reaction (flux span). FVA was 771 

simulated using glucose as the only carbon source in aerobic minimal M9 medium conditions. Note that 772 

reaction loops in the solution were not allowed. A gene knockout was considered to significantly affect 773 

the flux if the flux span of at least one reaction was changed by greater than 10% compared to the 774 

wildtype solution. For the FBA analysis, a drain reaction (i.e., a reaction that consumes the metabolite 775 

of interest) was added to the GSM model for each metabolite. The maximum theoretical yield of each 776 

metabolite was calculated by setting its corresponding drain reaction as the objective function, with 777 

glucose as the only carbon source in aerobic minimal M9 medium conditions. All metabolites contained 778 

within the model were considered in the FBA analysis. In iAM-Vc960 this was 1,741 different 779 

metabolites, whilst in the draft strain-specific GSM models the number of metabolites spanned the range 780 

1321-1433. The simulations were carried out for the wild-type model and each gene knockout model. 781 

A gene knockout was considered to significantly affect metabolite yield if the yield of at least one 782 

metabolite was reduced to zero, given that it was non-zero in the wildtype. For each of the selected 783 

genes of interest, molecular function, pathways and biological processes were taken from the BioCyc 784 

database110 using the SMART tables for Vibrio cholerae O1 biovar El Tor strain N16961. These were 785 

added to Supplementary Data 11, 12, 17 and 18 to give context to the analysis results.  786 

Network analysis based on core genome SNPs 787 

Network of our cohort of 129 V. cholera isolates was created using a pairwise hamming distance 788 

comparison based on core genome SNPs in python (NetworkX v2.8.4111 and Matplotlib v3.6.2112). Each 789 

node represents an isolate while the edge represents the hamming distance between two isolates 790 
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multiplied by the total number of SNPs found in our cohorts (2,382 SNPs). A threshold of 15 or less 791 

SNPs difference was used to filter the edges in the network as suggested by Ludden et al (2019)113 and 792 

used by us previously17,18. 793 

Statistical analysis and machine learning of genomic features correlated to a specific lineage or 794 

clinical symptoms 795 

To assess if the genomic features were associated with a lineage or to a clinical symptom, we employed 796 

a fisher exact test9,10. Furthermore, to analyse the relationship between genomic features of the BD-1.2 797 

lineage and clinical symptoms a machine learning pipeline was employed. Clinical data were collected 798 

from 104 out of 129 V. cholerae isolates of which 63 belonged to the BD-1.2 lineage. These clinical 799 

symptoms were be divided into two groups: binary (vomit and abdominal pain) and multi-class 800 

(dehydration, number of stools and duration of diarrhoea), with the binning within each group described 801 

above. In the multiclass group, we applied a one-vs-one approach, i.e., each class is compared 802 

individually to another class. For example, dehydration class Moderate is compared against class 803 

Severe. For both binary and multiclass groupings, as the classes were unbalanced, we oversampled the 804 

minority class as a pre-processing step using a Synthetic Minority Over-sampling Technique approach 805 

(SMOTE)114. The Python package Scikit-learn version 1.2.1115 was used to make the classification and 806 

the package Scipy version 1.9.3116,117 was used to select the most important features based on a Fisher 807 

exact test.  808 

The pipeline first removes features that are either present or absent in all the samples. Second, to 809 

measure the influence of confounding effects in the data, it uses a two-sided chi-square test of 810 

independence to measure the dependency between the confounding effects (sex of patient, age of 811 

patients, year of collection, location of patient, serology of V. cholerae) and the phenotype classes (p-812 

value < 0.01 with Bonferroni correction); if the null hypothesis is rejected (i.e. there is a dependency 813 

between the confound effect and the phenotype) the pipeline checks if there are features that are 814 

dependent on the confounding effect again based on a two-sided chi-square test of independence (p-815 

value < 0.01 with Bonferroni correction); if there are features where the null hypothesis is rejected, 816 

these features are removed from the analysis. Next, the pipeline oversamples the minority class using a 817 
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SMOTE approach. Then, based on the oversampled data, it selects the most important features using a 818 

two-sided Fisher exact test (p-value < 0.1). This process is done in two parts: i) to improve 819 

randomization in the pipeline and avoid confounding effects, a loop over 1000 different random seeds 820 

is used for the SMOTE approach in order for it to have different initializations; for each loop the most 821 

important features are selected based on the Fisher exact test; ii) then, the features that are selected in 822 

over 75% of the different initializations are deemed important and a random initialization is selected 823 

that contains all these important features to be used for the prediction models. Next, a panel of machine 824 

learning methods (logistic regression (LR), linear support vector machine (L-SVM), radial basis 825 

function support vector machine (RBF-SVM), extra-tree classifier, random forest, Adaboost and 826 

XGboost) was used to predict the clinical symptoms classes based on the pre-selected features described 827 

above. The hyperparameters used were:  828 

• Logistic Regression: inverse of regularization strength C = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 829 

1000, 10000]; 830 

• Linear SVM: penalty parameter of the hinge loss error C = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 831 

1000, 10000]; 832 

• Random Forests, Extra Trees and Adaboost: Number of estimators = [2, 4, 8, 16, 32, 64, 128, 833 

256]; 834 

• Non-linear SVM with RBF kernel: γ (RBF kernel coefficient) = [0.0001, 0.0001, 0.001, 0.01, 835 

0.1, 1] and C (L2 penalty parameter) = [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000]; 836 

• XGBoost: Number of estimators = [2, 4, 8, 16, 32, 64, 128, 256] and learning rate = [0.0001, 837 

0.001, 0.01, 0.1, 1]. 838 

As per previous works17,18,29,30: (i) nested cross-validation118,119 was employed to assess the performance 839 

and select the hyper-parameters of the proposed classifiers and to compare the results obtained by the 840 

seven different classifiers used; (ii) a Friedman Statistical F-test (FF) with Iman-Davenport correction 841 

was used for statistical comparison of multiple classifiers across multiple analyses120; (iii) a post-hoc 842 

Nemenyi test was employed to find if there is a single classifier or a group of classifiers that performs 843 

statistically better in terms of their average AUC rank after the FF test has rejected the null hypothesis 844 
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(stating that the performance of the comparisons on the individual classifiers over the different datasets 845 

is similar)120; (iv) an undirected graph was created using NetworkX111 to visualize how the features 846 

(accessory genes, core genome SNPs and intergenic SNPs) correlate with different clinical symptoms. 847 

Protein-protein interaction network and building protein 3D structures 848 

Protein-protein interaction networks of the protein encoded of the genes associated with clinical 849 

symptoms were obtained using STRING database v12.0 (using reference genome V. cholerae O1 biovar 850 

El Tor str. N16961) and analysed in Cytoscape 3.10.1121. Eighty-one accessory and core genes selected 851 

by machine learning were used as input for the PPI, of these only 60 could be mapped to the STRING 852 

database. The interactome was constructed using first and second neighbour proteins. Disconnected 853 

nodes and nodes with interaction scores lower than medium confidence level (interaction scores 854 

<0.400), according to StringDB122, were filtered out.  Functions of the protein in the network were 855 

annotated with Gene Ontology terms (biological process, molecular function, cellular component and 856 

KEGG pathways) in StringDB122.  Three-dimensional AlphaFold123 predicted models were obtained by 857 

aligning the protein FASTA sequence to reference sequences from the Uniprot database124 to find a 3D 858 

protein structure. 3D protein structures were then visualised using UCSF Chimera125 and UCSF 859 

ChimeraX126. Protein stability analysis and the effect of each mutation were performed with DUET127, 860 

DynaMut128 and SIFT129. The electrostatic potential was analysed and visualised using PDB2PQR and 861 

APBSaccessed online130, UCSF ChimeraX126 and APBS Coloring130. 862 

Statistical Analysis 863 

Statistical comparisons were made using the SciPy package implementing: 1. A two-sided chi-squared 864 

test with Bonferroni correction to evaluate the similarities between the serotypes and the collection year 865 

and location of the isolates (p-value < 0.005); 2. A two-sided Mann Whitney U test to evaluate the 866 

distribution of the counts of accessory genes, coding and non-coding SNPs in BD-1.2 and BD-2 lineages 867 

and along the different collection years (p value < 0.005); 3. A two-sided Fisher exact test, with 868 

Bonferroni correction, to assess the relationship between the BD-2 and BD-1.2 lineages and different 869 

genomic features - core and intergenic SNPs and accessory genes (p value < 0.005); 4. A two-sided 870 

hypergeometric enrichment tests (two-sided) with false discovery rate (FDR) for the GSM analysis (p-871 
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value < 0.01); and 5. A two-sided chi-square test of independence  to test if there are symptoms/features 872 

that are dependent on the confounding effect (p-value 0.01 with Bonferroni correction); 6. A two-sided 873 

Fisher exact test to select the most important features in the machine learning pipeline (p-value < 0.1); 874 

7.  A two-sided Friedman Statistical F-test (FF) with Iman-Davenport correction for statistical 875 

comparison of multiple datasets over the seven different classifiers used (p-value < 0.05). With 7 876 

classifiers and 6 clinical symptom models, the Friedman test is distributed according to the F 877 

distribution with 7−1 = 6 and (7−1)×(6−1)=30 degrees of freedom. Therefore, the critical values  for 878 

F(6,30) using a p-value = 0.05 is 2.42052319. The post-hoc Nemenyi test was used to find if there is a 879 

single classifier or a group of classifiers that performs statistically better in terms of their average rank 880 

after the FF test has rejected the null hypothesis (stating that the performance of the comparisons on the 881 

individual classifiers over the different datasets is similar); 8. A two-sided Mann Whitney U test was 882 

used to assess for lineage differences in the numbers of genes, reactions and metabolites in the generated 883 

draft strain-specific GSM models. 9. A two-sided Mann Whitney U test was used to assess the number 884 

of affected reactions and metabolites in knockouts of genes discriminating lineages, compared to 885 

randomly selected genes. 886 

Data Availability  887 

Short-read sequence data for all 129 isolates used in this study are deposited in the NCBI SRA and can 888 

be found associated with BioProject number PRJNA1021874 889 

[https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1021874]. All previously published public V. 890 

cholerae sequences used in this study are held in European Nucleotide Archive-ENA or NCBI 891 

repositories under accession numbers supplied in Supplementary Data 2. Reference sequences are 892 

available from NCBI under accessions: NC_002505.1 893 

[https://www.ncbi.nlm.nih.gov/nuccore/NC_002505.1], NC_002506.1 894 

[https://www.ncbi.nlm.nih.gov/nuccore/NC_002506.1] and European Nucleotide Archive-ENA   under 895 

accession: ERR025382 [https://www.ebi.ac.uk/ena/browser/view/ERR025382]. Clinical data used in 896 

this study is given in Supplementary Data 14. 897 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1021874
https://www.ncbi.nlm.nih.gov/nuccore/NC_002505.1
https://www.ncbi.nlm.nih.gov/nuccore/NC_002506.1
https://www.ebi.ac.uk/ena/browser/view/ERR025382
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Code Availability 898 

The code used in this study and draft strain-specific GSMMs are available in the following GitHub 899 

repository: https://github.com/tan0101/VibrioCARE under 900 

https://doi.org/10.5281/zenodo.13325928131. 901 
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Figure 1. Maximum likelihood phylogenetic tree of the whole cohort based on the core genome of 1248 

129 isolates cultured from in-patients admitted to hospitals in six districts (Barisal, Chittagong, 1249 

Dhaka, Khulna, Rajshahi and Sylhet) of Bangladesh.  The two distinct BD-1.2 and BD-2 lineages are 1250 

shown in the inner ring. The outer rings display additional information including serotypes, year of 1251 

collection, presence of Vibrio pathogenicity island VPI2 variants, presence of Vibrio seventh 1252 

pandemic island II (VSP2) variants, presence of phage-inducible chromosomal island-like elements 1 1253 

and 2 (PLE) and region of collection. A map of Bangladesh132 showing the proportion o samples 1254 

included from each regional division is also shown. 1255 

Figure 2. SNP network analysis of highly connected isolates. Network diagram showing pairwise 1256 

connections between isolates in our cohort with less than 15 pairwise single nucleotide polymorphisms 1257 

(SNP) differences. The panels show the same network with the nodes colour-coded according to (A) 1258 

lineages, (B) year of collection, (C) serotypes and (D) location of collection. The lines between pairs of 1259 

isolates are colour-coded by single nucleotide SNP number. 1260 

Figure 3. An overview of the metabolic pathways associated to the core genes underlying the BD-1.2 1261 

and BD-2 lineages separation. All genes annotated were found to have reduced flux span through the 1262 

metabolic system when knocked out. Genes coloured in blue have a significant different allelic 1263 

distribution between BD-1.2 and BD-2, associated metabolic pathways are labelled in purple. All 3D 1264 

protein structures were generated in Alphafold123 under a Creative Commons Attribution 4.0 license 1265 

(CC-BY 4.0), no changes were made. 1266 

Figure 4. Supervised machine learning pipeline accurately predicts the clinical manifestations of 1267 

hospitalized patients from the genomic determinants extracted from BD-1.2 isolates, collected among 1268 

the same hospitalised patients. (A) Flow diagram showing machine learning pipeline including data 1269 

(green), pre-processing steps (yellow) and classification (blue). (B) Machine learning performance 1270 

results measured by the area under the curve (AUC) from 30 training runs for clinical symptom 1271 

combination. The results shown are for the best classifier Logistic Regression, as defined by the 1272 

Nemenyi test (Fig. S18). The violin plots show the distribution of the data, with each data point 1273 

representing one classification model. Inside each violin plot is a box plot, with the box showing the 1274 
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interquartile range (IQR), the whiskers showing the rest of the distribution as a proportion of 1.5 x IQR 1275 

and the white circle representing the median value.  (C) Number of features (accessory genes, core 1276 

genome SNPs and intergenic SNPs) selected for each symptom. Predictive models were generated for 1277 

six different clinical symptoms (X axis): abdominal pain; dehydration Moderate vs Severe; duration of 1278 

diarrhoea <1 day vs. 1-3 days; number of stools 11-15 times vs. 16-20 times; number of stools 11-15 1279 

times vs. 21+ times; and vomit.  1280 

Figure 5. Undirected graph network illustrating the genomic features associated with clinical symptom 1281 

models for V. cholerae. Node colour denotes the genomic determinant category, (i.e. accessory genes 1282 

and/or core genome coding, and intergenic SNPs) identified by machine learning. Nodes are labelled 1283 

with numbers corresponding to specific genes associated with each genomic determinant, as detailed in 1284 

the Genes legend, while unnumbered nodes are related to unannotated (hypothetical) genes. The clinical 1285 

symptom models are highlighted in different colours and explained in the legend Symptoms legend 1286 

featuring abdominal pain; dehydration Moderate vs Severe; duration of diarrhoea <1 day vs. 1-3 days; 1287 

number of stools 11-15 times vs. 16-20 times; number of stools 11-15 times vs. 21+ times; and vomit.  1288 

Figure 6. An overview of the metabolic pathways impacted by statistically significant genes underlying 1289 

clinical symptoms. All genes annotated were found to have reduced the flux span through the metabolic 1290 

system when knocked out. Genes coloured in pink and purple carried mutations or are accessory genes 1291 

associated to the clinical symptom, respectively, and connected metabolic pathways (labelled in blue). 1292 

The genes coloured in purple were also found as statistically significant in differentiating the BD-2 and 1293 

BD-1.2 lineages (see previous sections).  All 3D protein structures were generated in Alphafold123 under 1294 

a Creative Commons Attribution 4.0 license (CC-BY 4.0), no changes were made. 1295 

Figure 7. 3D protein structure analysis of FabV allelic variants underlying BD-1.2 and BD-2 lineage 1296 

evolution and clinical symptoms. (A) Violin plot indicating the distribution of the diarrhoea duration 1297 

score (0: no diarrhoea, 1: <1day, 2: 1-3 days, 3: 4-6 days and 4: 7-9 days) for the isolates containing 1298 

either Pro149 (P) or His149 (H). Statistical significance was tested with a two-sided Mann Whitney U 1299 

test, p-value is shown. (B) Violin plot indicating the distribution of the number of stools score (0: <3 1300 
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times, 1: 3-5 times; 2: 6-10 times; 3: 11-15 times; 4: 16-20 times; 5: 21+ times) for the isolates 1301 

containing either Pro149 (P) or His149 (H). Statistical significance was tested with a two-sided Mann 1302 

Whitney U test, p-value is shown. (C) The bar graph displays the number of isolates in the two BD 1303 

lineages associated with Pro149 (P) and His149 (H). (D) 3D structures of FabV (AlphaFold) with 1304 

Pro149 and coloured by functional domains. Amino acid residues (Lys148, Ser151, and Trp159) 1305 

interacting with Pro149 (green) are shown in sticks models. (E) 3D structures of FabV (AlphaFold) 1306 

with His149 and coloured by functional domains. Amino acid residues (Lys148, Arg 150, Ser151, and 1307 

Trp159) interacting with His149 (orange) are shown in sticks models.  1308 

Figure 8. 3D protein structure analysis of GshB allelic variants underlying BD-1.2 and BD-2 lineage 1309 

evolution and clinical symptoms. (A) Violin plot indicating the distribution of the diarrhoea duration 1310 

score (0: no diarrhoea, 1: <1day, 2: 1-3 days, 3: 4-6 days and 4: 7-9 days) for the isolates containing 1311 

either Thr93 (T) or Ile93 (I). Statistical significance was tested with a two-sided Mann Whitney U test, 1312 

p-value is shown. (B) Violin plot indicating the distribution of the number of stools score (0: <3 times, 1313 

1: 3-5 times; 2: 6-10 times; 3: 11-15 times; 4: 16-20 times; 5: 21+ times) for the isolates containing 1314 

either Thr93 (T) or Ile93 (I). Statistical significance was tested with a two-sided Mann Whitney U test, 1315 

p-value is shown. (C) The bar graph displays the number of isolates in the two BD lineages associated 1316 

Thr93 (T) or Ile93 (I) (D) 3D structures of GshB (AlphaFold) with Thr93 and coloured by functional 1317 

domains. Amino acid residues (Asp92, Ile96, and Tyr97) interacting with Thr93 (green) are shown in 1318 

sticks models. (E) 3D structures of GshB (AlphaFold) with Ile93 and coloured by functional domains. 1319 

Amino acid residues interacting with Ile93 (orange) are shown in sticks models.  1320 

 1321 


