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Abstract 

This article presents important constitutive refinements and simplifications in the theory of polar 

elasticity of materials reinforced by a single family of fibres resistant in bending. One of these 

simplifications is achieved by paying attention to forms of the strain energy which are symmetric 

with respect to the symmetric and the antisymmetric parts of the fibre gradient tensor. This leads to 

the identification of a restricted version of the theory that is predominantly influenced by the fibre-

splay mode of deformation. The lack of ellipticity of the governing equations of polar elasticity and 

the anticipation of existence of weak discontinuity surfaces even in the small deformation regime are 

also investigated. The manner in which potential activation of such surfaces is related with the action 

of either the fibre-bending or the fibre-splay deformation mode, as well as with their conjoined 

combination and coupling with their fibre-twist counterpart, is examined. The proposed constitutive 

equations can be simplified via the use of a new set of fourteen independent spectral invariants of the 

deformation. This set serves as an irreducible functional basis of relevant invariants or as an 

irreducible integrity basis of polynomial invariants. For instance, its use here enables identification of 

fourteen classical invariants that emerge as mutually independent from the known set of thirty-three 

in total classical invariants. In the special case of polynomial invariants, this result paves the way for 

identification of a corresponding minimal integrity basis.    

 

Keywords: Cosserat elasticity, Fibre-reinforced materials, Fibres resistant in bending, Polar 

hyperelasticity, Polar elasticity, Spectral invariants, Weak discontinuity surfaces.  

 

  

1. Introduction 

 

In their endeavour to improve the theory of elastic materials reinforced by perfectly flexible fibres 

(initiated by Adkins and Rivlin [1]), Spencer and Soldatos [2] made the constitutive assumption that 

the elastic strain energy depends not only on the deformation and the vector of fibre direction, but 

also on the spatial derivative of the deformed fibre vector, subject to appropriate invariance 

requirements; see also [3]. They thus extended the theory and its region of applicability by making it 

able to model the behaviour of elastic materials with embedded fibres that possess bending stiffness 

[2]. The extended theory requires the inclusion of couple-stress and non-symmetric stress and is 

accordingly classified as a Cosserat-type theory [4].  

            The spatial derivative of the deformed fibre vector is a non-symmetric fibre-deformation 

tensor and enters the strain energy function via its symmetric and anti-symmetric parts, together with 
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the Cauchy-Green deformation tensor and the fibre vector. The standard use of the theory of 

anisotropic tensor representations (e.g., [5]) implies that, for large elastic deformations, the strain 

energy may depend on at most thirty-three “classical” invariants. For self-sufficiency of this 

investigation, these are listed in Appendix A. In what follows, these are referred to as “classical 

invariants” and are quoted from the Appendix of [2], where it is also anticipated that their set is 

complete but may include redundant elements.                                          

Reference [2] presented also a linearised version of the theory, which is applicable in cases 

that both the strains and the relevant fibre deformation measures (termed for simplicity “curvature-

strains”) are infinitesimally small. The polar theory of transversely isotropic linear elasticity 

introduces a new set of seven additional elastic moduli, which complement the standard set of five 

elastic moduli met in conventional (non-polar) transverse isotropic linear elasticity.  Hence, the 

theory is able to capture, and to account for three different modes of fibre deformation response 

which are loosely termed as the fibre-bending, the fibre-splay and fibre-twist mode. It is recalled that 

precisely the same version of transversely isotropic polar linear elasticity was produced later 

independently [6] in an alternative manner, by employing as point of theoretical departure the natural 

consideration of a strain energy function that is quadradic in the small strains and the couple-strains. 

For large elastic deformations, Reference [2] also introduced a restricted version of the 

nonlinear theory, where the strain energy is predominantly influenced by the fibre-bending 

deformation and, inevitably, undermines the effects due to fibre-splay and fibre-twist. This restriction 

is done by replacing the nonsymmetric fibre-gradient tensor with the curvature vector of the 

deformed fibres. It thus led to a considerable reduction of the number of both the invariants involved 

in the nonlinear theory (from thirty-three to eleven) and the additional elastic moduli that enter its 

linearised version (from seven to one). For reasons that will become more evident in what follows, 

this will be referred to as the fibre-bending version of the theory or its restricted version that is 

predominantly influenced by the fibre-bending deformation mode. Due to its relative simplicity, the 

fibre-bending mode version has naturally attracted more attention in boundary value problem 

applications [7-15] that followed the publication of [2].  

The experience gained from this activity [7-15] enables the present study to turn back into 

both the linear and the nonlinear versions of the initial, unrestricted form of the theory and, through 

appropriate refinement, to look for further possible simplifications of its constitutive equations. This 

refinement is achieved by (i) considering that the symmetric and the antisymmetric parts of the fibre 

gradient tensor enters the elastic strain energy in a symmetrical manner; and (ii) showing that only 

fourteen of the aforementioned thirty-three invariants are independent and, hence, that there exist 

nineteen relationships among the thirty-three classical invariants.  

The refinement that stems from the first of these considerations becomes easier to handle and 

understand in the case of the linear theory which is thus considered first, in Sections 3 and 4. Section 

2 serves previously as a proper reminder of the progress made so far in the theory, it further clarifies 

the targets set in this investigation and, where appropriate, provides connections discovered in [14] 

with the generally anisotropic polar linear elasticity due to Mindlin and Tiersten [16].  

Section 3 then produces a further restricted version of the linearised theory described in 

References [2, 6], which now excludes effects due to fibre-bending and fibre-twist, and, hence, 

considers that the strain energy is predominantly influenced by the fibre-splay deformation mode. 

This newly introduced version will accordingly be referred to as the restricted version that captures 

the fibre-splay deformation mode only or the fibre-splay version of the theory.  

An important feature that is common in all three versions of the linearised theory, namely its 

unrestricted and both of its restricted fibre-bending and fibre-splay versions, is that the resulting 

governing differential equations of are not elliptic. This lack of ellipticity is never met in non-polar 

linear elasticity (e.g., [17, 18]) and is discussed afterwards in Section 4. It is recalled that ellipticity of 

the governing equations guarantees that a well-posed boundary value problem has always a unique 

solution in non-polar linear elasticity. Section 4 thus relates the observed lack of ellipticity with the 

existence and identification of a finite number of material surfaces, termed weak discontinuity 
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surfaces, on which the anticipated continuous displacement field may possess discontinuous 

gradients. It is recalled in this context [19-21], that existence of weak discontinuity surfaces in an 

elastic material may cause activation of potential additional solutions that represent certain types of 

fibre damage modes; see also [14].  

The refinement stemming from the second of the afore-mentioned considerations refers to the 

non-linear version of the unrestricted theory and is considered in Section 5. It requires an appropriate 

extension, and application onto the present polar hyperelasticity case, of a spectral analysis method 

introduced and employed in relevant cases met in non-polar hyperelasticity (e.g. [22-25]). The 

analysis presented in Section 5 is mainly based on the most recent relevant developments described in 

[24, 25] and, due to specific challenges met in spectral analysis developments, makes no use of the 

standard summation convention of repeated indices employed previously in Sections 2-4. Section 6 

summarises the main conclusions drawn from the present study and briefly outlines directions of 

future potential development in the general subject of this communication.     

 

 

2. Preliminary theoretical concepts 

 

In this paper, all vector and tensor components are Cartesian components with respect to a fixed 

basis. Consider that a material particle with initial position X and coordinates XR moves during 

deformation of its surrounding hyperelastic solid to the position x with co-ordinates xi (subscripts 

take values 1, 2 and 3) and, in the usual manner, assume that the implied deformation is described by 

the rule 

( )i i Rx x X= .                                                                                                                                    (2.1) 

The material of the solid is assumed locally transverse isotropic, due to the presence of a single family 

of embedded fibres defined by their direction unit vector A(X) or a(x) in the reference or the deformed 

configuration, respectively. The fibres are convected with the material, so that  

CAA
T

SRiRiSiiRiR AAFFbaAF ==== 2   ,  ,                                                                              (2.2) 

where bi are the components of deformed fibre vector, b, λ is the stretch in the fibre direction and 
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are the components of the standard deformation gradient, F, and the right Cauchy-Green deformation 

tensor, C, respectively, and the standard summation convention od repeated indices applies. 

The gradients of the deformed fibre vector are accounted for with the introduction of two  

tensor quantities, G and Ʌ, with components 
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                                                                                   (2.4) 

The resulting non-polar hyperelasticity of fibre-reinforced solids [2] requires consideration of couple-

stress and non-symmetric stress, whose action is coupled due to their simultaneous involvement in 

the equilibrium equations 

0   ,0 ,, =+= jkijkjjijji m  ,                                                                                                       (2.5) 

which are described in terms of the components of the Cauchy stress tensor, σ, the associated couple-

stress tensor, m, and the three-dimensional alternating tensor, ε. 

 

2.1 Constitutive equations of the non-linear theory  
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The constitutive equations formulation is detailed in [2] and requires a split of the resulting non-

symmetric Cauchy stress tensor into its symmetric and antisymmetric parts σs and σa, respectively. 

That formulation process leads to a set of constitutive equations which, in terms of components of 

these tensors, are as follows: 

( )    

( ) ( )

( )

,
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                                                            (2.6) 

where, W(C, Ʌ, A) represents the strain energy density per unit volume,  ρ and ρ0 denote mass density 

in the deformed and undeformed configuration, respectively, and m is the deviatoric part of m.  

 As W is an isotropic invariant of its tensorial arguments, it is expressible in terms of thirty-

three invariants of the tensors C, Ʌs, Ʌa and the vector A, where the appearing symmetric and 

antisymmetric parts of Ʌ are  

 Λs = (Λ + ΛT)/2, Λa = (Λ - ΛT)/2.                                                                                                   (2.7) 

As the relevant list of invariants is read from Tables (e.g., [5]), it will be termed as list of classical 

invariants in what follows. While this is provided in the Appendix of [2], it is also quoted in 

Appendix A of the present study for the sake of self-sufficiency.  

Spencer and Soldatos [2] realised, and made it clear, that this list of thirty-three invariants 

leads to excessively complicated constitutive equations. They, therefore, proposed further simplifying 

assumptions, and these led to (i) the afore mentioned restricted theory that is predominantly 

influenced by the fibre-bending deformation mode ([2], Section 6), and (ii) the linearised version of 

the theory ([2], Section 9) which was later re-derived in an alternative, more direct manner [6].  

Nevertheless, neither of [2] and [6] considered that Ʌs and Ʌa may enter W in the following 

symmetric manner 

( ) ( ) ( )(1) (1), , , , , , , ,s a a sW W W= =C A C A C A     ,                                                            (2.8) 

which emerges through strict consideration of the relationship Λ = Λs + Λa, and is met later in Section 

3. Instead of imposing this restriction on W, Reference [2] employed the more general consideration 

( ) ( ) ( )(2) (2), , , , , , , ,s a a sW W W= C A C A C A     ,                                                            (2.9) 

which is underpinned by postulations of the theory of representations for tensor functions (e.g., [5]). 

In fact, the unrestricted version of the corresponding linear theory, developed in Section 9 of 

Reference [2] and, in an alternative manner, in Reference [6], have also been developed under the 

general considerations that underpin (2.9); see also (2.15) below.    

 

2.2 Brief account of the linear theory and its constitutive equations  

   

In some detail, the linear theory makes naturally use of the displacement vector, u, and the small 

strain and rotation tensors, e and ω, with components  

i i iu x X= − ,    ( ) ( ), , , ,

1 1
,    

2 2
ij i j j i ij i j j ie u u u u= + = − ,                                                           (2.10) 

respectively. Moreover, during the applied linearization process [6], G is replaced by a tensor κ, 

whose components,   

( ), , , ,,ij i k k i jk k i k k jj
u a u a u a = = + ,                                                                                                   (2.11) 

have dimensions of (length)-1 and, for convenience, are accordingly referred to as “curvature-strains” 

of the fibres. It is recalled that, due to the linear form of the resulting infinitesimal strain theory, the 
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initial, X, and final, x, co-ordinate frames are here naturally regarded identical, as also are regarded 

the initial and final fibre direction vectors A and a.   

 In linear elasticity, the strain energy function W is necessarily quadratic in the considered 

principal kinematic variables. In the present theory, these variables include naturally the strains 

(2.10b), which are also involved in the non-polar case, and the curvature-strains (2.11). Hence, 

by considering W quadratic in those sets of kinematic variables, the process followed in [6] concludes 

that W is decomposed into two independent parts as follows:  

( ) ( ) ( )aκκaeaκe ,,,,, as

e WWW += ,                                                                                     (2.12)   

where the components of the symmetric, κs, and anti-symmetric, κa, parts of κ are, respectively, 

( ) ( ) ( ) ( )

  ( ) ( ) ( )

, ,, ,

, ,, ,

1 1
,

2 2

1 1
.

2 2

ij ji i k k j k kij j i

ij ji i k k j k kij j i

u a u a

u a u a

  

  

 = + = +
 

 = − = −
 

                                                                        (2.13) 

Moreover, both We and Wκ are required to be even in a, while, necessarily, We should be strictly 

quadratic in the components of e, and Wκ strictly quadratic in the components of κs and κa.      

 These considerations lead to a form of We which is identical to its counterpart met in non-

polar transverse isotropic linear elasticity, and thus provide the constitutive equation for σs in 

identical form to its well-known non-polar linear elasticity counterpart. On the other hand, and in the 

very context that enables the afore mentioned distinction between (2.8) and (2.9), κs and κa may be 

considered as entering Wκ either in the symmetric manner 

( ) ( ) ( )(1) (1), , , , ,s a a sW W W = =a a a     ,                                                                                     (2.14) 

or in a completely unrestricted manner that considers more generally that  

( ) ( ) ( )(2) (2), , , , ,s a a sW W W = a a a     ,                                                                                    (2.15) 

Reference [6] as well as Section 9 of [2] consider only the more general form (2.15) of Wκ 

which, being necessarily strictly quadratic in the components of κs and κa, is as follows: 

( ) ( ) ( ) ( ) ( ) ( )

        ( )   ( )( )

2

(2) 1 2 3 4

2

5 6 7 3
ˆ          .

nn nn k m k nkm km mk km mn

k n k n k mkm mk km mn km mn km

W a a a a

a a a a a a

           

          

= + + + +

+ + +
                             (2.16) 

The appearing coefficients, β1 to β7, and 
3̂  (denoted as 8  in [6]) are regarded as elastic moduli 

whose values depend on the ability of fibres to resist bending, as well as twist and splay types of 

deformation. This form of Wκ yields the couple-stress constitutive equation 

( ) ( ) ( )( )

   ( )    ( ) ( ) 

1 2 3 4

5 6 7

2 2
2 2

3 3

1
           4 2 2 2 ,

3

r r s s nn km k m ris s ni in

ris s n i s n i ns s ini is sn in

m a a a a a a

a a a a a a a a a a

         

         

= + + + −

+ − − + −

  (2.17) 

which, as is also justified in [6], is not influenced by the coefficient . 

Introduction of (2.17) and its standard σs–counterpart into the equilibrium equations (2.5) 

will then lead to the corresponding set of Navier-type displacement equations, which consist of a set 

of three linear partial differential equations (PDEs) for the three unknown components of the 

displacement vector, u. In its most general form, that set of PDEs is described as follows:   

0ˆ
,,,, =+++ mrqnjmirjnqmrqjmirjqmrjmirjmjmij uuuu BCAA ,                                                             (2.18) 

where, 
mirjqmirjmij C ,A ,Â  and 

mirjnqB  are components of appropriate tensor quantities whose order 

is indicated by the number of associated indices. Explicit forms and values of the implied 
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components depend on the shape of the fibres, namely on the form of a(x), as well as on whether the 

elastic moduli appearing in the constitutive equations are constant or variable in x.  

In principle, the form (2.18) of Navier-type displacement equations is reachable not only by 

the linear theory developed in [6], but also by any Cosserat-type linear elasticity theory. This 

observation thus includes the restricted, fibre-bending version of the present linear theory [2, 6, 8-15] 

and, of course, the generally anisotropic theory of polar linear elasticity due to Mindlin and Tiersten 

[16].  

It is emphasised for later use (see Section 4) that, unlike the present theoretical framework, 

Reference [16] does not consider cases of polar material anisotropy due to fibre presence. Instead, it 

refers to a state of general material anisotropy which, apart from the case of material isotropy, does 

not require consideration of any other type of material symmetry. Rather than using fibre-curvature 

gradients of the type (2.11), Reference [16] thus employs the spin vector, Ω, with components  

1
,   

2
i ijk kj kj ijk i    = =  ,                                                                                                       (2.19) 

and uses its gradients to form an appropriate set of kinematic variables that enter the polar material 

counterpart of the strain energy function (2.12); see also [14].   

 

2.3 Straight fibres  

 

The particular case of straight fibres aligned parallel to the x1-axis enabled Reference [6] to rearrange 

(2.16) in an alternative form which, under the assumption that Wκ, in general, and 
(2)W

, in particular, 

is positive semi-definite, yields a set of inequalities that should necessarily hold by the values of the 

moduli β1 to β7 and 
3̂ . For self-sufficiency of the present study, as well as for later use, that 

alternative form of 
(2)W

 is quoted in Appendix B along with the implied inequalities; see (B.1) and 

(B.3), respectively. Appendix B proceeds further and, also for later use, quotes from [14] the reason 

that makes the present unrestricted version of the theory incompatible with the theoretical 

framework of the Mindlin and Tiersten model [16]. 
As is also shown in Reference [6], the constitutive equation (2.17) simplifies in this case, in 

the sense that only the following couple-stress components are non-zero and they are: 

311
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                                                             (2.20) 

where, the appearing elastic moduli relate as follows to their counterparts involved in (2.16): 
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                         (2.21)  

By noting that the components of the spin vector and the infinitesimal rotation tensor are 

related in accordance with (2.19), it is not difficult for someone to verify that (2.20) is in complete 

agreement with its counterpart obtained in [6] as well as in Section 9 of [2]. The form of (2.20) thus 

shows that the seven couple stress components split into three groups, each one of which interacts 

independently with a corresponding set of kinematic variables. The couple-stresses that appear in 

(2.20a) correspond loosely to the so-called twist-mode met in the mechanics of liquid crystals, while 

the first and the second pair of couple-stresses in (2.20b) to the corresponding splay- and bending-

mode, respectively. Nevertheless, a replacement of rotation gradients with their spin vector 

counterparts is imposed in (2.20), and this facilitates in what follows (see also Section 4 and 

Appendix B) the description of potential relations observed recently in [14] between the different 

versions of the present linear theory with the generally anisotropic polar linear elasticity due to 

Mindlin and Tiersten [16].  

 

 

3. Specialisation of the unrestricted linear theory: The fibre-splay deformation mode 

 

In line with the targets set in the Introduction, this Section aims to simplify the equations of the 

unrestricted version of the present linear theory by looking at the special case in which the symmetric 

and the antisymmetric parts of the fibre gradient tensor enter the elastic strain energy in the 

symmetrical manner implied by (2.14). It will thus be shown that this specialisation leads to a second 

type of a restricted linear theory, the polar elasticity part of which is influenced by the splay 

deformation mode of the fibres only.  

 

3.1. Fibres of general shape  

   

As is already mentioned, (2.16) is the most general form of Wκ that is strictly quadratic in the 

symmetric and antisymmetric parts of κ. In fact, (2.16) is an alternative form of the following 

expression: 
2 2

(2) 1 1 2 1 2 3 2 3 3 4 4 5 5 6 6 7 7
ˆW J J J J J J J J J        = + + + + + + + ,                                           (3.1) 

where 

J1 = tr κs = tr κ, J2 = a κs a = a κ a, J3 = tr κs
2, J4 = a κs

2
 a, J5 = tr κa

2, J6 = a κa
2
 a, J7 = a κs κa a, 

                                                                                                                                                         (3.2)                      
is the subset of invariants that is formed by collecting from the corresponding complete invariant set 

all those elements which are at most quadratic in the curvature-strains [6]. 

 It can readily be verified that upon imposing in the appearing coefficients the relations   

3 5 4 6 7,    / 2    = = = ,                                                                                                          (3.3) 

and taking also into consideration that   

( )     0k mkm mk km
a a  = = ,   

(2.16) reduces to the following quadratic expression for κ:   

( ) ( )
2 2

(1) 1 2 3 4 3
ˆ

nn nn k km m km mk k km mk n k km mW a a a a a a             = + + + + ,                        (3.4) 

which thus is shown a special case of (3.1) and, therefore, of (2.16). 

 However, a combination of (3.3) with the holding inequalities (B.3c-g) imposes on (3.4) the 

restrictions   
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( )
22

3 4 3 4 3 7 3 40,    0,    0,     2 ,    4 2 0           − + +  ,                                           (3.5)  

which can hold only if 

3 4 7 0  = = = .                                                                                                                          (3.6) 

The form (3.4) is then reduced to   

( ) ( )

( )( ) ( ) ( ) ( )( )

2 22 2

(1) 1 1 2 1 2 3 2 1 2 3

2 2

1 2 3

ˆ ˆ

ˆ                                           ,

nn nn k km m k km m

k m k mnn nn km km

W J J J J a a a a

a a a a

          

      

= + + = + +

= + +
                     (3.7) 

and, consequently, the constitutive equation (2.17) simplifies and becomes   

( ) ( ) ( )( )1 2 1 2

2 2
2 2

3 3
r r s s nn km k m r s s k mnn km

m a a a a a a         = + = + .                                 (3.8) 

Clearly, the antisymmetric part of the curvature-strain tensor does not contribute into either 

the curvature part (3.7) of the strain energy function or the couple-stress constitutive equation (3.8). 

Rather than seven [2, 6], only three independent elastic moduli are thus involved in the specialised 

curvature part (3.7) of W and, by combining (3.3) and (3.6) with the inequalities (B.3), one finds that 

positive definiteness of the strain energy function is guaranteed if  
2

1 3 2 1
ˆ0,    / 4 .                                                                                                                       (3.9) 

Nevertheless, only two of these moduli, namely 1  and 2 , are involved actively in the resulting 

couple-stress constitutive equation (3.8). Evidently, this special case of the unrestricted theory 

disregards contributions emerging through action of the infinitesimal rotation tensor (2.19b) or, 

equivalent, the spin vector (2.19a). 

 

3.2 Straight fibres  

   

As a result of the outlined reduction and simplifications, (2.21) yield    

( )2 3 11 1 2 22 33 1 23 32

2 4
0,   2 ,   ,    0,   

3 3
b b d d d d d  = = = + = = = =                                      (3.10) 

and the constitutive equations (2.19) thus reveal that, in the case of straight fibres aligned parallel to 

the x1-axis, the only non-zero couple-stresses are 

( )23 32 11 11,1 22 22,1 33,1+m m d e d e e= − = + .                                                                                       (3.11) 

 This result reveals further that, like its restricted, fibre-bending mode version (e.g. [2, 6] and 

Section 4.1 below), the present version represents a second type of a restricted theory that makes use 

of a different a pair of non-zero couple-stress components. However, unlike its fibre-bending mode 

counterpart, which employs a single active elastic modulus, the present version employs two active 

elastic moduli and relates the involved non-zero pair of couple-stresses (3.11) with the fibre-splay 

deformation mode.  

More importantly, and unlike its fibre-bending mode counterpart [2, 6], the present fibre-

splay mode version  makes no use of spin gradients and, hence, does not have direct connection with 

the anisotropic version of the polar linear elasticity due to Mindlin and Tiersten [16]; see also [14]. 

This observation becomes clearer by further noting that, in this case, the expression (B.1) employed 

in [6] attains the special form  

( )
11,111 12 12

(1) 11,1 22,1 33,1 12 22 22 22,1

12 22 22 33,1

  

,  ,    0,

  

eD D D

W e e e D D D e

D D D e



  
  

=   
     

                                                                   (3.12) 

in which the spin gradients are also absent, and  
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11 1 2 3 22 23 1 12 1 2
ˆ ,     ,   / 2D D D D     = + + = = = + .                                                        (3.13) 

   

 

4. Lack of ellipticity of the polar linear elasticity equations: Weak discontinuity surfaces 

 

In summary, there have now become available three versions of polar linear elasticity for fibrous 

composites that exhibit transverse isotropy due to an embedded family of fibres resistant in 

bending. These are: 

(i) the completely unrestricted version [2, 6], which considers that the symmetric and the 

antisymmetric parts of the curvature-strain tensor enter the strain energy function in the 

independent manner implied by (2.15) and, hence, captures and couples effects due to all 

three, fibre-bending, fibre-splay and fibre-twist deformation modes;   

(ii)  a special/restricted case of the same (Section 3), which considers that the symmetric and the 

antisymmetric parts of the curvature-strain tensor enter the strain energy in a manner that 

satisfies the symmetry restriction implied by (2.14) and, as a result, accounts for the 

fibre-splay deformation mode but neglects effects due to fibre-bending and fibre-twist; 

and  

(iii)  the restricted version presented in [2] and employed afterwards in several applications [7-

15], which neglects effects due to fibre-splay and fibre-twist and, hence, considers that 

the predominant and more influential fibre deformation mode is that of fibre-bending. 

Despite their already outlined differences, all three polar elasticity versions share a common general 

form of Navier-type displacement equations, namely the form of expression (2.18).  

It is now recalled that, in the case of perfectly flexible of fibres, where 
mirjqC  = 

mirjnqB  = 0, 

all three of the implied, different versions of (2.18) reduce to, and meet their common background set 

of elliptic PDEs met in transversely isotropic non-polar linear elasticity. The ellipticity condition that 

prevails in that case (e.g., [21]) guarantees that in non-polar linear elasticity any well-posed boundary 

value problem has a unique solution. It also guarantees that such a unique solution is described in 

terms of continuous displacements whose derivatives of all orders are also continuous.  

However, the set of equations (2.18) is not elliptic in the present, polar elasticity case. This is 

due to the appearance of fourth-order derivatives and, in particular, to the fact that, regardless of the 

employed version of the theory, not all of the non-zero components 
mirjnq  are of the same sign. As is 

detailed elsewhere (e.g., [6, 14, 15, 19-21]), the noticed lack of ellipticity can lead to identification of 

internal material surfaces, known as weak-discontinuity surfaces, on which displacements are still 

continuous but may possess discontinuous derivatives. In this context, the remaining of this Section 

aims to outline the current stage of knowledge regarding the manner that lack of ellipticity of (2.18) 

affects each of the afore mentioned versions of the theory. 

It is accordingly recalled [6] that it is sufficient for the present purposes to temporarily 

consider that fibres are straight and, also, that all fibre resistance moduli are constant. This is because, 

if the fibres are curved or their resistance moduli vary with position, additional terms generated 

through the differentiations shown in (2.5), (2.6b), (2.11) and (2.13) do not affect 
mirjnq  but, instead, 

are assembled within the remaining terms that appear in the left-hand-side of (2.18).  

It is finally briefly recalled [5, 16, 17] that identification of a weak discontinuity surface 

requires determination of its unit normal, n. Accordingly, denote the jump of mrqnju ,  across a surface 

with      

,                                                                                                           (4.1)   

where  are the components of n and k, with components , represents the amplitude of that jump. 

The difference of (2.18) on the two sides of the surface leads to a generalised eigenvalue problem of 

the form 
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0=nqrmjmirjqn nnnnkB  or ( ) 0ij jP k =n .                                                                                   (4.2) 

If at all present, the unit vector n is then required to emerge as a real solution of the characteristic 

algebraic equation 

( )det 0=P n .                                                                                                                               (4.3)     

 

4.1 Version (iii) of the theory: Fibre-bending deformation mode 

  

The fibre-bending mode version is the simplest version of the present linear theory, as it makes 

active use of a single fibre stiffness modulus only. Moreover, this is the only version of the theory 

which is consistent with the generally anisotropic polar elasticity formalism due to Mindlin and 

Tiersten [16]. This is because imposition of certain conditions that suit transverse isotropy (see [14], 

Section 5) enables reduction of the spin-gradient part of W employed in [16] into its curvature-strain 

counterpart, 

( )
2

,

3
,    

8

f

j j j j i i kj k jW d K K a K K u a a = + = ,                                                                 (4.4) 

of the present restricted version.  

 Here, df > 0 stands for the single fibre-bending stiffness that enters actively the 

corresponding couple-stress tensor 
f

r rsi i sm d K a a= .                                                                                                                    (4.5a) 

As the purpose of the present analysis is content with consideration of straight fibres only, 

alignment of the x1-axis with the fibre direction reveals that, in that case, (4.5a) yields only a pair of 

non-zero components, namely  

12 3 3,11 13 2 2,11,    f f f fm d K d u m d K d u= − = − = = .                                                                 (4.5b) 

Evidently, the additional elastic modulus appearing in (4.4), namely   > 0, remains inactive 

in the sense that it does not enter (4.5) or the corresponding Navier-type PDEs.  

 As a result of these observations, all theorems and theoretical results obtained in 

Section 3 of [14] in association with the generally anisotropic polar linear elasticity of 

Mindlin and Tiersten [16] apply also in the present case of the fibre-bending mode version 

of the theory. It follows that there exists only a single solution of the restricted theory PDEs 

that is expressible in terms of continuous displacements that possess continuous derivatives 

of all orders (termed, for simplicity, as continuous solution in [14]). 

 On the other hand, identification of potential weak discontinuity surfaces requires 

initially completion of the calculations implied in the last term of the left-hand-side of 

(2.18). These calculations commence as follows:     

, ,

1

2
mirjnq j mrqn kji mk miu m=B ,                                                                                                            (4.6) 

and, with use of (4.5a) for constant df, lead to  

( ), ,

1

2

f

mirjnq j mrqn j m m j n r tmnrt
u d a u a u a a a= −B .                                                                              (4.7) 

Upon assuming next that, (i) the displacement, u, as well as its up to third-order derivatives 

are all differentiable functions, but (ii) u may possess discontinuous derivatives of the fourth-order on 

a potential weak discontinuity surface having unit normal n, on finds that the generalised eigenvalue 

problem (4.2) attains the form  

( ) 0j m m j m n r t n r ta k a k n n n n a a a− = .                                                                                                 (4.8) 

This evidently admits the triple solution  
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0r rn a = ,                                                                                                                                         (4.9) 

and the additional solution   

( ) 0j m m j ma k a k n− = .                                                                                                                   (4.10) 

 However, a combination of (4.9) and (4.10) reveals that the former is also a solution of the 

latter. This is because, by inserting (4.9) into (4.10), the latter equation reduces to 

0m mk n = ,                                                                                                                                     (4.11) 

thus showing that (i) every surface that contains the fibres is a weak discontinuity surface and, if 

activated during deformation, (ii) the relevant micro-damage mode that corresponds to the 

anticipated mrqnju , -jump takes place on that same surface.  

 The easiest way for one to see an alternative solution of (4.10) is by aligning the x1-axis 

with the fibre direction. As a = (1, 0, 0)T in that case, (4.10) reduces to 

1 1 2 1 3 1,    0m mk n k n k n k n= = = ,                                                                                                    (4.12) 

which can hold non-trivially for non-zero k only if n1 = 0 or k2 = k3 = 0. However, the former case, 

where n1 = 0, satisfies (4.9) and is therefore already discussed. With k2 = k3 = 0 and both k1 and n 

being arbitrary, the second case reveals that a and k are co-axial vectors and, hence, signifies a 

mode of potential micro-damage that takes place along the fibres.  

 

4.2 Version (ii) of the theory: Fibre-splay deformation mode  

 

As is detailed in Section 3, the fibre-splay version of the present model makes active use of two 

fibre stiffness moduli only. Its constitutive relation is accordingly felt marginally more complicated 

than its just discussed fibre-bending counterpart. However, a substantial theoretical difference stems 

from the evident incompatibility of the present version with the Mindlin and Tiersten model [16]. 

The replacement of the spin-gradient kinematic variables employed in [16] with the strain-gradients 

that emerged in (3.11) and (3.12) implies that none of the relevant theorems proved and the 

associated results discussed in [14] are directly applicable in the present fibre-splay polar elasticity 

model. 

 However, identification of potential weak discontinuity surfaces is still possible after (2.13) 

and (3.8) are inserted into (4.6). Upon completing the implied calculations for straight fibres and 

constant elastic moduli, this process yields  

( ) ( ) , 1 , , 2 , ,, ,

1
2

3
mirjnq j mrqn r j m i i m j j m i i m j m nmrj nrj

u a a u a u a u a u a a = − + −B ,                             (4.13) 

and finally leads to the generalized eigenvalue problem 

( )( )1 22 0r r j j i i p m m p pa n n a n a n a n a k − + = ,                                                                          (4.14) 

where n and k still signify the afore mentioned relevant vectors.  

 Evidently, (4.14) admits again the solution (4.9), which has been already discussed, along 

with  

0j j i in a n a− = ,                                                                                                                           (4.15) 

and 

( )1 22 0p m m p pn a n a k + = .                                                                                                       (4.16)  

On the other hand, (4.15) suggests that the unit vectors a and n are coaxial and, therefore, 

necessarily identical. This case thus reveals that surfaces normal to the fibres are weak discontinuity 

surfaces but, unless accompanied with some additional condition, leaves the direction of the 

mrqnju , -jump unspecified and, therefore, arbitrary.  

 On writing (4.16) in a non-component form, one has 

.                                                                                                   (4.17) 
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It is thus seen that the first solution of (4.14), where , is a special case of (4.17).  

Moreover, in the case that a and n are coaxial, (4.17) gives 

1 22 0 + = .                                                                                                                               (4.18) 

Evidently, this particular solution of (4.16) differs from its (4.15) counterpart, which is present 

regardless of the values of 1  and 2 . What makes it though worth of notice is that, in the special 

case that (4.18) holds, (3.9) suggest that the strain energy function can be positive definite only if   

3 1
ˆ 0   .                                                                                                                                 (4.19) 

 

4.3 Version (i) - Unrestricted theory: Full coupling of fibre-bending, -splay and -twist deformation 

modes   

                      

As is detailed in [14] and becomes obvious in either (2.20) or (B.4) - (B.6), the kinematic variables 

employed in the formulation of the unrestricted theory include gradients of both the strain tensor 

and the spin vector. A more detailed discussion of this difference between the unrestricted theory 

and its Mindlin and Tiersten counterpart [16] is presented in Section 6 of [14]. There, it is 

concluded that the evident incompatibility of the two theories require considerable and careful 

consideration, at least because, again, the relevant theorems proved in [14] are not directly 

applicable to the present unrestricted theoretical model. 

 However, Reference [6] has already detailed the manner that potential weak discontinuities 

are identified in cases that boundary value problems are modelled with use the unrestricted version 

of the theory. For self-sufficiency of the present communication, it is accordingly recalled that, in 

this case, the equation that corresponds to either (4.7) or (4.13) is as follows [6]: 

( ) 
( ) ( ) ,ˆˆˆˆ                                                 

ˆˆˆ

,7,6,5,4

,3,2,1,

irmjnrnmjimnirmjmrmmjij

jrnmjrmjjnmnnrjjnirmrqnjmirjnq

ucucaaucuca

ucucaaucaau

+++

+++=B
              (4.20) 

where the appearing elastic moduli are as follows: 

( ) ( ) ( )

( ) ( ).
3

1
ˆ   ,

3

1
ˆ   ,2

3

2
ˆ   ,

3

4
ˆ

,
3

2
ˆ   ,22

3

1
ˆ   ,4

3

2
ˆ

76276651554

76436422311





++−==+−==

+−=++=+=

cccc

ccc

                                  (4.21) 

 The corresponding generalised eigenvalue problem that enables identification of the vectors 

n and k is still of the form (4.3), where [6] 

( ) ( )

( )( ) ( ) 
1 2 3

2

4 6 5 7

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ                                                 .

ij r r j m m j n n j i

s s q q ij j m m j i

P a n c n a n c a c a n n a

a n c c a n c n c a n a n

 = + + +
 

 + + +
  

n

          (4.22) 

Due to appearance of seven independent elastic moduli, potential solutions to the characteristic 

equation (4.3) should, in general, be sought numerically. However, by observing that ( )nijP  is 

proportional to r ra n , it becomes understood that (4.3) admits again the solution (4.9) which revels 

that surfaces containing the fibres are surfaces of weak discontinuity.  

It is finally noted that, by inserting (3.3) and (3.6) into (4.21), one can readily verify that 

1 5 1 2 7 2 3 4 6

2 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ,    ,    0,

3 3
c c c c c c c = − = = − = = = =                                                                 (4.23) 

and, hence, in the particular case of the fibre-splay version of the theory, (4.22) is correctly reduced 

into (4.13). 
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5. Irreducible functional basis of invariants in the unrestricted version of the non-linear theory 

 

The second target set in the Introduction stems from a need for a simplification of the constitutive 

equation of the unrestricted version of the non-linear theory, which ideally requires identification of 

the redundant elements appearing in the complete set of the thirty-three classical invariants listed 

initially in [2] and, for convenience, quoted also in Appendix A. This Section serves as a first step 

towards this target by initially showing that, in general, only fourteen of these invariants are 

independent and, next, by identifying a subset of the fourteen classical invariants (A.1) that may be 

employed as a relevant irreducible functional basis. This result follows a proof of the fact that there 

exist nineteen relationships among the thirty-three classical invariants (A.1), but no attempt is 

presently made towards precise identification of those relationships.  

The summation convention of repeated indices, which was employed systematically in 

previous Sections, is abandoned in this Section due to the complicated form of the employed 

equations. However, indices still take the values 1, 2 and 3, unless it is stated otherwise. 

Moreover, the indices “s” and “a” are excepted from this rule. Due to their strict association 

with  , these assume no numerical values but are instead reserved to denote the symmetric 

and antisymmetric part of that matrix, respectively. 

 

5.1 Spectral invariants 

   

As a starting point, consider the spectral description 
3 3

2

1 1

,    i i i i i i

i i

 
= =

= =  =  F RU Ru u C u u                                                                            (5.1) 

of the deformation gradient and the Cauchy-Green deformation tensor, respectively, where the 

principal stretches, i , and the vectors iu  are respectively the eigenvalues and the orthonormal 

eigenvectors of the symmetric matrix U; R is the corresponding antisymmetric matrix in the implied 

standard, unique polar decomposition of F.  

Using the vector basis iu , the form (2.9) of W, whose general dependency on Ʌs and Ʌa 

undermines the connection (2.7), can take the form 

( ) ( )(2) (3), , , , , ,s a i ij ij iW W s r A=C A  ,                                                                                      (5.2) 

where, like i  and iu , the quantities 

,    ,    0,    ,T T T

ij ji i s j ij ji i a j ii i is s r r r A= = = − = = =u u u u u A                                                     (5.3) 

are all invariants under any orthogonal transformation, Q (
T T =Q Q = QQ I ). This is readily verified 

by noting that 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( )

,

,

. 

T
T T T T T

ij i s j i s j i s j

T
T T T T T

ij i a j i a j i a j

T
T T T

i i i i

s

r

A Q

= = =

= = =

= = =

u u u Q Q Q Q u Qu Q Q Qu

u u u Q Q Q Q u Qu Q Q Qu

u A u Q Q A u QA

  

                                             (5.4) 

 As sij has six, rij  three, and the unit vector Ai only two independent components, (3)W  is 

generally a function of the fourteen spectral invariants {λi, sij, rij, Aα}, where the appearing Greek 

index implies that only two of the components of Ai (say, A1 and A2) are independent. These 

invariants are independent except from a finite number of possible degenerated cases, such as those 

referred to below and in Appendix C. The spectral invariants {λi, sij, rij, Aα} can accordingly serve as 
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an irreducible functional basis of invariants, in general, or as an irreducible integrity basis in the 

particular case of polynomial invariants. 

 

5.2 A set of fourteen independent classical invariants 

   

As (3)W  is regarded a function of the fourteen spectral invariants, its equivalent form (2)W  may be felt 

as function of the same number of independent invariants, thus leading to the conclusion that only 

fourteen of the thirty-three classical invariants (A.1) are functionally independent. Such a subset of 

fourteen independent classical invariants is revealed in what follows where, for the sake of clear 

distinction, its components will be renamed as J1, J2, …, J14. 

 One may thus begin with the well-known relations 

( )
3

22 2 2 2 2 2 2 2

1 1 2 2 1 2 2 3 3 1

1

2 2 2

3 3 1 2 3

1
,   ,

2

det ,

i

i

J I tr J I tr tr

J I

      

  

=

  = =  = − = + +
 

 =

C C C

C =

                           (5.5) 

which, upon inversion yield either  

 

( )

( )

1/2

2

1 1 2

3
21 1 1 2 3

1 23/2
2

1 2

1 1
2 3 cos 2 1 ,

33

2 9 27
arccos ,    3 0,

2 3

j J J J j

J J J J
J J

J J

  



 
= + − + −   

 

 
− + = − 

 −
 

                                                             (5.6a) 

or 

( )
1/2

1/3
3 2

1 3 1 1 2

1 2 2
27 cos 1sin ,    3 0.

3 33
j J J J j j J J  

     
= + − + − −      

     
               (5.6b) 

 The values thus obtained for the principal stretches, i , may be either distinct or degenerated. 

This Section considers only the former case and shows that only fourteen of the classical invariants 

listed in (A.1) are strictly independent. In particular cases that two or more of i  are not distinct, it 

can be shown with no greater difficulty that the number of independent invariants is smaller than 

fourteen, as is exemplified in Appendix C.      

 

5.3 Distinct principal stretches    
 

It is initially noted that 
2 2 2 2 2 2

4 4 1 1 2

2

2 3 3

4 2 4 2 4 2

5 5 1 1 2 2 3 3

2 2 2

1 2 3

 ,

,

1.

J I A A A

J I A A A

A A A

  

  

 = + +

 = + +

+

=

=

=

+

ACA

AC A                                                                             (5.7) 

Hence, by solving this algebraic system of linear equations for 
2

iA , and making further use of (5.6), 

one will obtain  

( )1 2 3 4 5, , , ,i iA A J J J J J= .                                                                                                                       (5.8) 

 It is next seen that as 
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3

6 6

1

3
2

8

2

7 10

1

3
4

11

1

 ,

,

,

s ii

i

i ii

i

i i

i

s

s i

J I s

J I s

J

tr

t

s

r

trI





=

=

=

 =



=

 =

=

=

=







C

C







                                                                                                    (5.9) 

solution of this algebraic system of linear equations for iis  will similarly yield  

( )1 2 3 6 7 8, , , , ,ii iis s J J J J J J= .                                                                                                       (5.10) 

It can be seen that 

( )

( ) ( )

( ) ( ) ( )

2 2 2 2 2 2

9 7 11 22 33 12 13 23

2 2 2 2 2 2 2 2

10 12 1 11 12 13 2 21 22

2

2

2

2

23

4 2 2 4 2 2 2 4 2 2 2

11 13 1 11 12 13 2 21 22 23 3 3

2

31 2 33

 2 ,

,

,

s

s

s

J I s s s s s s

J I s s s s s s

J I s s s s s s s

tr

tr

t s sr

 

  

 = + + + + +

 = = + + + + +

 = = + + + + + + +

=

+

C

C







   (5.11)  

and, by solving this algebraic system of linear equations for 
2 2

ij jis s= , with i j , one will obtain  

( ) ( )1 2 3 6 7 8 9 10 11, , , , , , , , ,   ij ij jis s J J J J J J J J J s i j= =  .                                                           (5.12) 

Finally, as   

( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

12 8 12 13 23

2 2 2 2 2 2 2 2 2

13 14 1 12 13 2 21 23 3 31 32

4 2 2 4 2 2 4 2 2

14 15 1 12 13 2 21 23

2

2

2

3 31 32

2

 2 ,

,

,

a

a

a

J I r r r

J I

r

t

r r r r r r

J I r r r r r

r

tr

tr

  

  

 = = + +

 = = + + + + +

 = = + + + + +

C

C







                                 (5.13) 

solution of this algebraic system of linear equations for 
2 2

ij jir r= , with i j , will provide 

( ) ( )1 2 3 12 13 14, , , , , ,   ij ij jir r J J J J J J r i j= = −  .                                                                         (5.14) 

Each of the nineteen classical invariants remaining unused in the list (A.1) depends explicitly 

on the fourteen spectral invariants , ,i ij ijs r  and iA . By virtue of (5.6), (5.8), (5.10), (5.12) and 

(5.14), each of those nineteen invariants is in principle expressible in terms of J1, J2, …, J14 and, by 

taking the appropriate signs they are single-valued functions of J1, J2, …, J14 and thus functionally 

reducible. Existence of nineteen such relationships among the thirty-three classical invariants then 

implies that, like its spectral counterpart, {λi, sij, rij, Aα}, the functionally basis {J1, J2, …, J14} is 

irreducible. 

It is now noted that each of J1, J2, …, J14 is a polynomial expression of spectral invariants. It 

follows that in the rather unlikely case that each of the afore-mentioned nineteen single-valued 

invariant expressions is still polynomial in the remainder invariants, then the functional basis {J1, J2, 

…, J14} is also an integrity basis which is both irreducible and minimal. However, if some, say n, of 

the implied nineteen relationships are syzygies (0 < n ≤ 19), while the remaining 19 – n relationships 

are polynomials, then n of I9, I16, I17, …, I33 are irreducible polynomial invariants. In that case, the 

minimal integrity basis contains 14 + n invariants, and its first fourteen elements can still coincide 

with those of the irreducible functional basis {J1, J2, …, J14}.  
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6. Conclusions 

 

Constitutive modelling of large elastic deformations of elastic materials reinforced by a single family 

of unidirectional fibres resistant in bending requires use of thirty-three classical invariants of 

deformation [2]. As is shown in Section 6 though, the same constitutive equations may alternatively 

be described with use of fourteen independent spectral invariants. On its own right to serve as an 

irreducible functional basis of relevant invariants, that set of fourteen spectral invariants implies that 

there exist nineteen relationships among the thirty-three classical invariants introduced in [2]. Explicit 

forms of those relationships are not provided here, but a subset of fourteen independent classical 

invariants has indeed been identified. These new findings are expected to underpin further relevant 

progress and thus assist substantially the development and a better understanding of several important 

theoretical and practical issues involved in this non-linear polar theory of elasticity (hyperelasticity), 

as well as in its linearised (infinitesimal strain) counterpart.  

Due its relative simplicity, as compared with its non-linear counterpart, the linear polar 

theory of elasticity has in fact naturally attracted more attention in recent publications [6-15]. 

Investigations regarding features as well as the region as its applicability have, for instance, already 

revealed some of its similarities and differences with the Mindlin and Tiersten theory [16]. Further 

relevant progress will thus feedback valuable information towards better understanding of relevant 

issues involved in the non-linear theory. It is recalled in this context [15] that the Mindlin and 

Tiersten formalism [16] is in remarkable agreement with the restricted, fibre-bending mode version 

of the linear theory. This agreement is based on the fact the polar (couple-stress) part of both 

formalisms employ the spin-gradients as kinematic variables.  

However, the Mindlin and Tiersten framework [16] fails to agree with the unrestricted linear 

version of the present formalism which captures, and couples together effects due to all three fibre-

bending, fibre-splay and fibre-twist deformation modes. This is due to a set of additional, intrinsic 

kinematic variables which, although absent in the Mindlin and Tiersten theory, do appear along with 

their spin-gradient counterparts, and are made use of in the polar part of the present theory [15]. It has 

accordingly been revealing, in Section 3, to find out that this kind of intrinsic kinematic variables are 

employed on their own in the fibre-splay version of the present linear theory, namely in the complete 

absence of their spin-gradient counterparts. This revelation leads to the conclusion that, despite its 

generality, the degree of anisotropy involved in the Mindlin and Tiersten theory is unable to capture 

effects due to potential existence of fibre-splay deformation.  

The existence of the afore mentioned different sets of kinematic variables observed in the 

linear theory, and their distinct association with corresponding, specific fibre deformation modes are 

not expected to be so evidently distinct when dealing with polar hyperelasticity problems. Their 

appearance and clear distinction in the region of applicability of infinitesimal strain theory may thus 

provide valuable feedback when dealing with finite strain problems, where non-linearity is expected 

to reinforce the coupling of, and to make thus indistinguishable the effects due to all three of the afore 

mentioned fibre deformation modes.  

Another advantage of the relative simplicity of the linear theory is associated with the 

influence that the known lack of ellipticity of its governing equations may exert on the solution of 

relevant polar elasticity boundary value problems [19-21]. In this context, Section 4 detailed 

systematically the manner in which potential weak discontinuity surfaces are analytically identified in 

either of the restricted fibre-bending and fibre-splay versions of theory, and also in its unrestricted 

version where both fibre-bending and fibre-splay modes are coupled together with their fibre-twist 

counterpart. Still though, full comprehension of this subject requires considerable further and 

thorough investigation. In this regard, References [14, 15] have initiated a search towards collection 

of thoughts and new ideas regarding the manner in which potential weak discontinuity solutions may 

be sought and, if present in polar elasticity boundary value problems, be found in parallel, as well as 

in competition with their single fully continuous counterpart.            
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Appendix A: List of classical invariants employed in the unrestricted non-linear theory [2] 

 

The thirty-three invariants involved in the unrestricted version of the non-linear theory are also 

listed [2] and are as follows: 

 

I1 = tr C,   I2 = 1/2{(tr C)2 – tr C2},   I3 = det C,   I4 = ACA,   I5 = AC2A, 

I6 = tr Λs = tr Λ,  I7 = tr Λs
2,   I8 = tr Λa

2,   I9 = tr Λs
3,  I10 = tr C Λs = tr C Λ,  

I11 = tr C2 Λs = tr C2 Λ,   I12 = tr C Λs
2,   I13 = tr C2 Λs

2,   I14 = tr C Λa
2,   I15 = tr C2 Λa

2,    

I16 = tr C2 Λa
2 C Λa,   I17 = tr Λs Λa

2,   I18 = tr Λs
2 Λa

2,   I19 = tr Λs
2 Λa

2 Λs  Λa,   I20 = A Λs A  

                                                                                                                                 =A Λ A, 

I21 = A Λs
2 A,   I22 = A Λa

2 A,   I23 = A C Λs A,  I24 = A C Λa A,  I25 = A C2 Λa A, 

I26 = A Λa C Λa
2 A,   I27 = A Λs Λa A,  I28 = A Λs

2 Λa A,  I29 = A Λa Λs
 Λa

2 A,               (A.1)       

I30 = tr C Λs Λa,   I31 = tr C2 Λs Λa,   I32 = tr C Λs
2 Λa,  I33 = tr C Λa

2 Λs Λa, 
                                                                                                                                                   

where the appearing symmetric and antisymmetric parts of Ʌ are defined in (2.7). 

 

 

Appendix B: Positive semi-definiteness of (2.16) and its consequences 

  

In the case of straight fibres direced in parallel to the x1–axis, where a = (1, 0, 0)T, (2.16) can be 

rearranged into the following form [6]:         

( )

( ) ( )

11,111 12 12

2 2

(2) 11,1 22,1 33,1 12 22 23 22,1 3 23,1 5 1,1

12 23 22 33,1

31,166 67

31,1 2,1 12,1 3,1

67 77 2,1

  

,  ,    2 2

  

   
                    ,  ,  

    

eD D D

W e e e D D D e e

D D D e

eD D
e e

D D

  

  
  

= + −  +  
     

 − 
 +     −    

12,166 67

67 77 3,1

   
,

    

eD D

D D

 − 
    −    

             (B.1) 

where the appearing non-zero components of D are given as follows:  

( )

11 1 2 3 4 3 12 13 1 2 23 1

22 33 1 3 44 3 55 5 66 88 3 4

67 89 7 77 99 5 6

ˆ ,    / 2,    ,

,    2 ,    2 ,    2 ,

/ 2,    2 , 

D D D D

D D D D D D

D D D D

       

     

  

= + + + + = = + =

= = + = = − = = +

= = − = = − +

                             (B.2)  

and the components of the spin vector, Ω, are defined in (2.19).  

 In view of the required positive definiteness of both the total stored energy, W, and its strain 

energy counterpart, We, one requires from 
(2)W

 to be at least positive semi-definite ( (2) 0W   ). By 

virtue of this requirement, Reference [6] concluded that the values of the moduli that appear in (2.16) 

should necessarily satisfy the following inequalities: 

( )( )

( )

1 2 3 3 4 5

2

6 5 7 5 6 3 4

2

1 2

1 2 3 4 3

1 3

ˆ0,    0,    0,    0,    0,

2 ,    4 2 2 ,

/ 2ˆ .
/ 2

     

      

 
    

 

 +    

 −  − + +

+
+ + + + 

+

                                                                    (B.3)  

The procedure detailed in Section 6 of [14] observed that (B.1) can be described as 

follows: 
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(2)

EW W W = + ,                                                                                                               (B.4) 

where the parts 

( )2 2 2

55 1,1 77 2,1 3,1W D D =  +  + ,                                                                                     (B.5) 

and 

( ) ( )
11,111 12 12

2 2 2

11,1 22,1 33,1 12 22 23 22,1 44 23,1 66 31,1 12,1

12 23 22 33,1

  

,  ,    ,

  

E

eD D D

W e e e D D D e D e D e e

D D D e

  
  

= + + +  
     

                        (B.6) 

of the internal energy depend on the directional derivatives of the spin and the strain 

components, respectively, along the fibre direction.  

 Being dependent on spin gradients only, WΩ is expressed in terms of kinematic 

variables that were employed explicitly in the development of the polar linear elasticity due 

to Mindlin and Tiersten [16]. However, WE is expressed in terms of the additional 

kinematic variables, ,1ije , which are met neither in the theory presented in [16] nor in its 

generalisation attempted in Section 3 of [14]. It is accordingly noted that WE is the sum of 

three terms that contribute to deformation modes that resemble fibre-splay, fibre-twist and 

fibre-bending, respectively. On the other hand, the first term of WΩ contributes to 

deformation that resembles fibre-twist while the second term to deformations resembling 

the corresponding fibre-bending mode. 

 Due to the presence of WE, Reference [14] thus concluded that the unrestricted 

version of the present theory is generally incompatible with the theoretical framework of 

the Mindlin and Tiersten model [16], and that considerable and careful further investigation 

is required regarding the role that the observed, newly introduced kinematic variables, ,1ije , 

play in the unrestricted theory of polar linear elasticity of fibre-reinforced materials. 
 

 

Appendix C: Example of degenerated principal stretches 

  

Consider for simplicity a special case where (5.6) return a single degenerated principle stretch value, 

namely 

1 2 3   = = = ,                                                                                                                         (C.1) 

and, hence, 
2 3

1 2 3 4 53 3 3 3 3I I I I I= = = = = .                                                                                      (C.2) 

In that case, equation (5.7) are evidently not invertible, and the eigenvectors of C implied in (5.1) 

can be chosen arbitrarily. 

 Let us choose the eigenvectors of C to be identical to those of Ʌs, so that   
3

1

s i i i

i

t
=

=  u u ,                                                                                                                          (C.3) 

and, for simplicity, let us assume that the eigenvalues, it , of Ʌs are all distinct. Then, it can be shown 

in analogy with (5.6), that 
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( )

( )

1/2

2

1 1 2

3
21 1 1 2 3

1 23/2
2

1 2

1 1
2 3 cos 2 1 ,

3 3

2 9 27
arccos ,    3 0,

2 3

jt K K K j

K K K J
K K

K K

 



 
= + − + −   

 

 
− + = − 

 −
 

                                                             (C.4a) 

or 

( )
1/3

3 2

1 3 1 1 2

1 1 2 2
27 cos 1sin ,    3 0,

3 3 3 3
jt K K K j j J J 

    
= + − + − −     

    
                      (C.4b) 

where 

( )2
9 6 7 26 7

1 6 2 3,    ,    
2 2

I I I KI I
K I K K

− −−
= = = .                                                                     (C.5) 

 In the chosen simplicity route, consider only the case that (C.4) return distinct eigenvalues 

for Ʌs, and note that, in that case, the set of algebraic equations (5.7) is replaced by the following:  
2 2 2

20 1 1 2 2 3 3

2 2 2 2 2 2

5 1 1 2 2 3 3

2 2 2

1 2 3

2

,

,

1.

s

s

I A t A t A

I t A t A t A

A A A

t= + +

== + +

+ + =

=A A

A A



                                                                                           (C.6) 

Hence, solution of this algebraic system for 
2

iA  and use (C.4) reveals that 

( )6 7 9 20 21, , , ,i iA A I I I I I= .                                                                                                                       (C.7) 

In the same context, the set of equation (5.13) is replaced as follows:   

( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

8 12 13 23

2 2 2 2 2 2

17 1 12 13 2 21 23 3

3

2

2

2 2

31 32

2 2 2 2 2 2 2 2 2

18 1 12 1 2 21 23 3 31 32

2 ,

,

,

a

s a

s a

I r r r

I t r

t

t

r t r r t r r

I t r r t r r r r

r

tr

tr

= = + +

= = + + + + +

= = + + + + +



 

 

                                                 (C.8) 

and its solution for 
2 2

ij jir r=  will provide 

( ) ( )6 7 8 9 17 18, , , , , ,  ij ij jir r I I I I I I r i j= = −  .                                                                               (C.9) 

It thus becomes clear that the remaining, unused classical invariants listed in (A.1) are 

redundant. This is because each of them can be expressed in terms of the nine spectral invariants 

1, , ,i ijt r A  and 2A , and, by virtue (C.2), (C.4), (C.5), (C.7) and (C.9), in terms of the nine 

independent invariants I1, I6, I7, I8, I9, I17, I18, I20, I21. The later thus form a minimal set of independent 

invariants in this special case. 

A number of additional similar examples may be formed by combining different cases of 

degenerated C- and/or Ʌs-eigenvalues, and each of them can be handled by some similar, though 

different manner. 
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