
 

Spontaneously breaking non-Abelian gauge symmetry
in non-Hermitian field theories

Jean Alexandre ,1,* John Ellis ,1,2,3,† Peter Millington ,4,‡ and Dries Seynaeve 1,§

1Department of Physics, King’s College London, London WC2R 2LS, United Kingdom
2National Institute of Chemical Physics & Biophysics, Rävala 10, 10143 Tallinn, Estonia

3Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland
4School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

(Received 18 October 2019; accepted 11 December 2019; published 7 February 2020)

We generalize our previous formulation of gauge-invariant PT -symmetric field theories to include
models with non-Abelian symmetries and discuss the extension to such models of the Englert-Brout-Higgs-
Kibble mechanism for generating masses for vector bosons. As in the Abelian case, the non-Abelian gauge
fields are coupled to nonconserved currents. We present a consistent scheme for gauge fixing,
demonstrating Becchi-Rouet-Stora-Tyutin invariance, and show that the particle spectrum and interactions
are gauge invariant. We exhibit the masses that gauge bosons in the simplest two-doublet SUð2Þ × Uð1Þ
model acquire when certain scalar fields develop vacuum expectation values: they and scalar masses
depend quartically on the non-Hermitian mass parameter μ. The bosonic mass spectrum differs
substantially from that in a Hermitian two-doublet model. This non-Hermitian extension of the Standard
Model opens a new direction for particle model building, with distinctive predictions to be explored further.
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I. INTRODUCTION

Recent years have seen increasing interest in quantum-
mechanical models with non-Hermitian, PT -symmetric
Hamiltonians [1–3], which have been shown to possess
real energy spectra that are bounded below, and have
extensive applications in photonics and other fields [4–6].
This interest has extended to PT -symmetric quantum field
theories with non-Hermitian Lagrangians, such as a scalar
field theory with an iϕ3 interaction [7–10], which has been
shown to possess a physically meaningful effective poten-
tial, a PT -symmetric −ϕ4 scalar field theory [11], and a
fermionic model with a non-Hermitian mass term ∝ψ̄γ5ψ
that is unitary and has a conserved current [12,13]. Such
non-Hermitian quantum field theories have been applied to
describe neutrino masses and oscillations [14–17] (for a
similar lattice fermion model, see Ref. [18]), and have also
been considered in connection with dark matter [19] and
decays of the Higgs boson [20]. We also note that effective

non-Hermitian Hamiltonians can also be used to describe
unstable systems with particle mixing [21].
The formulation of PT -symmetric quantum field theo-

ries was extended in Refs. [15,22] to include an Abelian
gauge symmetry. A particularity of this formulation is that
the gauge field is coupled to a nonconserved current. The
next step was to study spontaneous symmetry breaking and
the Goldstone theorem [23–25] in a non-Hermitian, PT -
symmetric quantum field theory, which was done in
Ref. [26] (cf. the alternative approach of Refs. [27,28]),
where we exhibited a specific example with two complex
scalar fields and a non-Hermitian bilinear scalar coupling
μ2, in which there is a massless boson at both the tree and
one-loop levels.1 We note that physical observables depend
only on μ4 and are therefore independent of the ambiguity
in the sign of μ2 that arises from the non-Hermiticity of the
model. We subsequently explored in Ref. [29] the PT -
symmetric extension of the Englert-Brout-Higgs mecha-
nism [30,31] for generating a mass for the Abelian gauge
boson in a manner consistent with renormalizability of the
quantum field theory. For a summary of these works,
see Ref. [32].
In this paper, we further develop the formulation of PT -

symmetric gauge theories to include a non-Abelian gauge
symmetry and Kibble’s non-Abelian generalization [33] of
the Englert-Brout-Higgs mechanism. We study a minimal
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1The behaviors of Goldstone modes in different phases of PT
symmetry have also been studied in Ref. [28].
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extension of the model considered in Refs. [26,29] that
contains two complex scalar doublets and admits the same
SUð2Þ × Uð1Þ gauge symmetry as the Standard Model.
We show how the gauge can be fixed in a consistent
manner and demonstrateBecchi-Rouet-Stora-Tyutin (BRST)
invariance [34]. We explore the scalar vacuum expectation
values (VEVs) and tree-level spectra of the gauge and scalar
boson masses in a simple version of the model with a single
quartic coupling. They depend quartically on the non-
Hermitian coupling μ2 and differ significantly from the
masses in the conventional Hermitian two-Higgs-doublet
model (2HDM, see Ref. [35]). Thus, this non-Hermitian
extension of the Standard Model offers prospects for dis-
tinctive experimental predictions thatmaybe explored further
in a systematic program of PT -symmetric phenomenology.

II. SCALAR LAGRANGIAN

In this section, we extend the non-Hermitian model of
Ref. [22] to include two complex scalar doublets, giving the
non-Hermitian 2HDM on which we base the discussion
of non-Abelian gauge symmetry and its breaking in the
next section.

A. Lagrangian

Here we follow similar steps to those described in
Ref. [22], starting with the Lagrangian

L ¼ ∂αΦ†
1∂αΦ1 þ ∂αΦ†

2∂αΦ2 −m2
1jΦ1j2 −m2

2jΦ2j2

− μ2ðΦ†
1Φ2 −Φ†

2Φ1Þ −
κ

4
jΦ1j4; ð1Þ

where Φi are complex doublets

Φi ¼
�
ϕia

ϕib

�
; i ¼ 1; 2; ð2Þ

and μ is a non-Hermitian mass parameter. This system
is invariant under PT symmetry, acting on the c-number
fields as

PT ∶ Φ1ðt; xÞ → Φ0
1ð−t;−xÞ ¼ Φ�

1ðt; xÞ;
Φ2ðt; xÞ → Φ0

2ð−t;−xÞ ¼ −Φ�
2ðt; xÞ; ð3Þ

under which Φ1 is a scalar doublet whereas Φ2 is a
pseudoscalar doublet. The eigenvalues of the squared mass
matrix

M2
� ¼ m2

1 þm2
2

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4μ4

q
ð4Þ

are real provided the following inequality holds:

2jμ2j ≤ jm2
1 −m2

2j; ð5Þ

which is assumed throughout the first two sections of this
work. Note that the eigenvalues become degenerate at
jμ2j ¼ jm2

1 −m2
2j=2. This marks the exceptional point,

which lies at the boundary between the regions of unbroken
and broken PT symmetry. At this point, the squared mass
matrix becomes defective and we lose an eigenvector. We
discuss these exceptional points further in Sec. IV D.
Because of the non-Hermitian mass term proportional

to μ2, the equations of motion one obtains by varying the
action with respect to Φi or to Φ†

i are not equivalent for
nontrivial solutions, i.e.,

δS

δΦ†
i

≡ ∂L
∂Φ†

i

−∂α
∂L

∂ð∂αΦ
†
i Þ
¼0⇎

δS
δΦi

≡ ∂L
∂Φi

−∂α
∂L

∂ð∂αΦiÞ
¼0:

ð6Þ

These two sets of equations of motion are related by PT
symmetry though or, equivalently, by a change in the sign
of μ2. As can be seen from the eigenvalues (4), observables
depend on μ4 only, so these two sets of equations of motion
are physically equivalent. This is also valid at the quantum
level (see Ref. [29]), as can be derived from the reality of
the partition function, provided the sources for the scalar
fields satisfy appropriate PT properties.
We choose here the equations of motion provided by the

variation of the action with respect to Φ†
i :

0 ¼ □Φ1 þm2
1Φ1 þ μ2Φ2 þ

κ

2
jΦ1j2Φ1; ð7aÞ

0 ¼ □Φ2 þm2
2Φ2 − μ2Φ1; ð7bÞ

together with their Hermitian conjugates

0 ¼ □Φ†
1 þm2

1Φ
†
1 þ μ2Φ†

2 þ
κ

2
jΦ1j2Φ†

1; ð8aÞ

0 ¼ □Φ†
2 þm2

2Φ
†
2 − μ2Φ†

1: ð8bÞ

We note that this formulation differs from that suggested in
Ref. [27], where the author introduced a similarity trans-
formation that transforms the non-Hermitian Lagrangian L
to a Hermitian one L0. The difference in approach is
reflected in differences in the masses of the gauge fields,
which we discuss in Sec. IV D.

B. Conserved currents

The Lagrangian (1) is invariant under the Uð1Þ trans-
formations

Φ1 → e−i
g0
2
β0Φ1; ð9aÞ

Φ2 → e−i
g0
2
β0Φ2; ð9bÞ
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which correspond to the current

Iαþ ¼ i
g0

2
ð½Φ†

1ð∂αΦ1Þ − ð∂αΦ†
1ÞΦ1�

þ ½Φ†
2ð∂αΦ2Þ − ð∂αΦ†

2ÞΦ2�Þ; ð10Þ

and also invariant under the SUð2Þ transformations

Φ1 → e−i
g
2
β⃗·τ⃗Φ1; ð11aÞ

Φ2 → e−i
g
2
β⃗·τ⃗Φ2; ð11bÞ

which correspond to the current

J⃗αþ ¼ i
g
2
ð½Φ†

1τ⃗ð∂αΦ1Þ − ð∂αΦ†
1Þτ⃗Φ1�

þ ½Φ†
2τ⃗ð∂αΦ2Þ − ð∂αΦ†

2Þτ⃗Φ2�Þ; ð12Þ

where τ⃗ ¼ ðτ1; τ2; τ3Þ is composed of the Pauli matrices.
The equations of motion (7) show, however, that these

currents are not conserved,

∂αIαþ ¼ ig0μ2ðΦ†
2Φ1 −Φ†

1Φ2Þ; ð13aÞ

∂αJ⃗
α
þ ¼ igμ2ðΦ†

2τ⃗Φ1 −Φ†
1τ⃗Φ2Þ; ð13bÞ

except at the Hermitian point μ2 ¼ 0. The fact that
symmetries of the Lagrangian do not correspond to con-
served currents for non-Hermitian theories is a direct
consequence of the fact that the two functional variations
in Eq. (6) cannot vanish simultaneously for nontrivial
solutions. Instead, a careful treatment of Noether’s original
derivation [36] shows that there still exist conserved
currents for non-Hermitian theories, but these correspond
to transformations that do not leave the Lagrangian
invariant [22] (see also Ref. [37] for a summary).
In the present model, we find that the conserved currents

are, in fact,

Iα− ¼ i
g0

2
ð½Φ†

1ð∂αΦ1Þ − ð∂αΦ†
1ÞΦ1�

− ½Φ†
2ð∂αΦ2Þ − ð∂αΦ†

2ÞΦ2�Þ; ð14aÞ

J⃗α− ¼ i
g
2
ð½Φ†

1τ⃗ð∂αΦ1Þ − ð∂αΦ†
1Þτ⃗Φ1�

− ½Φ†
2τ⃗ð∂αΦ2Þ − ð∂αΦ†

2Þτ⃗Φ2�Þ; ð14bÞ

which correspond to the following transformations:

Φ1 → e−i
g0
2
β0Φ1; ð15aÞ

Φ2 → eþig
0
2
β0Φ2; ð15bÞ

and

Φ1 → e−i
g
2
β⃗·τ⃗Φ1; ð16aÞ

Φ2 → eþig
2
β⃗·τ⃗Φ2: ð16bÞ

The relative sign between the charge assignments of the
two fields reflects the usual interpretation of viable PT -
symmetric theories as systems with coupled gain and loss.

III. GAUGING THE SCALAR MODEL

Since the conserved currents do not correspond to the
usual Noether currents, gauging the model (1) is nontrivial,
as we describe in this section, generalizing the approach
taken in Ref. [29] to the non-Abelian case. We refer to the
nonconserved currents corresponding to symmetries of the
Lagrangian asNoether currents, but note that the conserved
currents are in fact those consistent with Noether’s original
derivation (see Ref. [22]).

A. Coupling to the Noether currents

We introduce an Abelian gauge field Bα and an SU(2)
gauge field W⃗α, together with the SUð2Þ × Uð1Þ gauge
transformations

Φi → e−i
g0
2
β0e−i

g
2
β⃗·τ⃗Φi; ð17aÞ

W⃗α → W⃗α þ gðβ⃗ × W⃗αÞ þ ∂αβ⃗ ¼ W⃗α þDαβ⃗; ð17bÞ

Bα → Bα þ ∂αβ0; ð17cÞ

where Dαβ⃗ ¼ ∂αβ⃗ − gðW⃗α × β⃗Þ. In order to write a gauge-
invariant theory, one should couple the gauge fields to
the Noether currents, such that the scalar kinetic terms are
given by

Lkin ¼ ½DαΦ1�†DαΦ1 þ ½DαΦ2�†DαΦ2

¼ ∂αΦ
†
1∂αΦ1 þ ∂αΦ

†
2∂αΦ2 þ

i
2
∂αΦ

†
1ðg0Bα þ gτ⃗ · W⃗αÞΦ1 −

i
2
Φ†

1ðg0Bα þ gτ⃗ · W⃗αÞ∂αΦ1 þ
i
2
∂αΦ

†
2ðg0Bα þ gτ⃗ · W⃗αÞΦ2

−
i
2
Φ†

2ðg0Bα þ gτ⃗ · W⃗αÞ∂αΦ2 þ
1

4
Φ†

1ðg0Bþ gτ⃗ · W⃗Þ2Φ1 þ
1

4
Φ†

2ðg0Bþ gτ⃗ · W⃗Þ2Φ2; ð18Þ
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where Dα is given by the usual minimal-coupling prescription, i.e.,

DαΦi ¼ ∂αΦi þ
ig0

2
BαΦi þ

ig
2
½τ⃗ · W⃗α�Φi: ð19Þ

As in the Standard Model, we rotate the gauge fields as

Bα ¼ cos θWAα − sin θWZα; ð20aÞ

Wα
1 ¼

Wα þWα†ffiffiffi
2

p ; Wα
3 ¼ sin θWAα þ cos θWZα; Wα

2 ¼ i
Wα −Wα†ffiffiffi

2
p ð20bÞ

(where θW is the weak mixing angle) to obtain

Lkin ¼ ∂αΦ
†
1∂αΦ1 þ ∂αΦ

†
2∂αΦ2 −Wα

�
Jαþ;1 þ iJαþ;2ffiffiffi

2
p

�
−W†

α

�
Jαþ;1 − iJαþ;2ffiffiffi

2
p

�
− Zα½Jαþ;3 cos θW − Iαþ sin θW�

− Aα½Jαþ;3 sin θW þ Iαþ cos θW� þ
g2

2
W†

αWαðjΦ1j2 þ jΦ2j2Þ

þ 1

4
ZαZα

X
i

Φ†
i ð½g02sin2θW þ g2cos2θW�I − 2gg0 cos θW sin θWτ3ÞΦi

þ 1

4
AαAα

X
i

Φ†
i ð½g02cos2θW þ g2sin2θW�I þ 2gg0 cos θW sin θWτ3ÞΦi

þ 1

4
ZαAα

X
i

Φ†
i ð½ðg2 − g02Þ sin 2θWI þ 2gg0 cos 2θWτ3�ÞΦi

þ 1

2
gg0ðcos θWAα − sin θWZαÞ

X
i

Φ†
i

�
Wα

�
τ1 þ iτ2ffiffiffi

2
p

�
þW†

α

�
τ1 − iτ2ffiffiffi

2
p

��
Φi: ð21Þ

Also as in the Standard Model, the Lagrangian for the
gauge fields is

Lgauge ¼ −
1

4
W⃗0

αβ · W⃗0αβ −
1

4
BαβBαβ

¼ −
1

4
FαβFαβ −

1

4
ZαβZαβ −

1

2
W†

αβW
αβ; ð22Þ

with

W⃗0
αβ ¼ ∂βW⃗α − ∂αW⃗β þ gðW⃗α × W⃗βÞ; ð23aÞ

Bαβ ¼ ∂βBα − ∂αBβ; ð23bÞ

Wαβ ¼ ½∂β þ igðsin θWAβ þ cos θWZβÞ�Wα

− ½∂α þ igðsin θWAα þ cos θWZαÞ�Wβ; ð23cÞ

Fαβ ¼ ∂βAα − ∂αAβ þ ig sin θW½W†
αWβ −W†

βWα�; ð23dÞ

Zαβ ¼ ∂βZα − ∂αZβ þ ig cos θW½W†
αWβ −W†

βWα�: ð23eÞ

B. Consistent field equations

Since the gauge fields are coupled to currents that are not
conserved, additional terms need to be added to the
Lagrangian in order to have consistent field equations
[29]. For this, it is enough to consider the usual gauge-
fixing terms, which must be added to the classical
equations of motion in the non-Hermitian case (not just
at the quantum level in order to define the path integral, as
in the Hermitian case). The gauge-fixing terms in the
Lagrangian involve ghost fields η⃗ and ⃗η̄, taking the form

LGF¼∂α ⃗̄η · ½Dαη⃗�− 1

2ξ
½ð∂αBαÞ2þj∂αW⃗

αj2�

¼∂αχ̄
†ð½∂αþ igðsinθWAαþcosθWZαÞ�χ− igWαη3Þ

þ∂αχ̄ð½∂α− igðsinθWAαþcosθWZαÞ�χ†þ igWα†η3Þ
þ∂αη̄3ð∂αη3þ ig½Wαχ†−Wα†χ�Þ

−
1

2ξ
½ð∂αAαÞ2þð∂αZαÞ2þ2j∂αWαj2�; ð24Þ

where
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χ̄ ≡ η̄1 − iη̄2ffiffiffi
2

p ; χ ≡ η1 − iη2ffiffiffi
2

p : ð25Þ

The equations of motion for the full Lagrangian are then
given by

0 ¼ DαDαΦ1 þm2
1Φ1 þ μ2Φ2 þ

κ

2
jΦ1j2Φ1; ð26aÞ

0 ¼ DαDαΦ2 þm2
2Φ2 − μ2Φ1; ð26bÞ

0 ¼ DβW⃗0βα þ J⃗ α
þ −

1

ξ
∂α∂βW⃗β − gð∂α ⃗η̄ × η⃗Þ; ð26cÞ

0 ¼ ∂βBβα þ Iαþ −
1

ξ
∂α∂βBβ; ð26dÞ

0 ¼ ∂αDαη⃗; ð26eÞ

0 ¼ Dα∂α ⃗η̄; ð26fÞ

together with their Hermitian conjugates, where

Iαþ ≡ i
g0

2
ð½Φ†

1ðDαΦ1Þ − ðDαΦ1Þ†Φ1�
þ ½Φ†

2ðDαΦ2Þ − ðDαΦ2Þ†Φ2�Þ; ð27aÞ

J⃗ α
þ ≡ i

g
2
ð½Φ†

1τ⃗ðDαΦ1Þ − ðDαΦ1Þ†τ⃗Φ1�
þ ½Φ†

2τ⃗ðDαΦ2Þ − ðDαΦ2Þ†τ⃗Φ2�Þ: ð27bÞ

Taking into account the current divergences (13), the
derivatives of the above equations of motion lead to the
constraints

1

ξ
Dα∂α∂βW⃗β ¼ igμ2ðΦ†

2τ⃗Φ1 −Φ†
1τ⃗Φ2Þ − g∂α ⃗η̄ ×Dαη⃗;

ð28aÞ

1

ξ
□∂βBβ ¼ ig0μ2ðΦ†

2Φ1 −Φ†
1Φ2Þ; ð28bÞ

which must be satisfied in order for the field equations to
be consistent. As explained in the next subsection, BRST
symmetry allows one to write the latter constraints inde-
pendently of the ghost fields as

1

ξ
Dα∂α∂βW⃗β ¼

igμ2

2
ðΦ†

2τ⃗Φ1 −Φ†
1τ⃗Φ2Þ; ð29aÞ

1

ξ
□∂βBβ ¼ ig0μ2ðΦ†

2Φ1 −Φ†
1Φ2Þ: ð29bÞ

We can summarize our approach as follows. In order to
respect gauge invariance, we need to couple the gauge

fields to the Noether currents. However, because these
currents are not conserved, we need to introduce gauge-
fixing terms, which restrict gauge invariance, but imply
consistent field equations. The residual gauge invariance is
enough to ensure that gauge fields remain massless in the
absence of spontaneous symmetry breaking (SSB), and it is
defined by the gauge functions β0, β⃗ satisfying

∂αDαβ⃗ ¼ 0; ð30aÞ

□β0 ¼ 0: ð30bÞ

We therefore obtain a consistent gauge theory with a non-
Hermitian scalar sector, as in the Abelian case [29].

C. BRST transformation

In this subsection, we derive the gauge constraint (29) for
W⃗β using the BRST transformation, which is a residual
symmetry of the Lagrangian after gauge fixing. In order to
define it, one can introduce an auxiliary field T⃗ to write the
gauge-fixing Lagrangian (24) in the alternative form

LGF¼ ∂α ⃗̄η ·Dαη⃗þ ξ

2
jT⃗j2− T⃗ ·∂αW⃗α−

1

2ξ
ð∂αBαÞ2; ð31Þ

and the original Lagrangian (24) can be recovered after
integrating out T⃗. The BRST transformations are defined as

δϕi ¼ −i
g
2
θðτ⃗ · η⃗Þϕi; ð32aÞ

δW⃗α ¼ θDαη⃗; ð32bÞ

δBα ¼ 0; ð32cÞ

δ ⃗η̄ ¼ −θT⃗; ð32dÞ

δη⃗ ¼ g
2
θðη⃗ × η⃗Þ; ð32eÞ

δT⃗ ¼ 0; ð32fÞ

where θ is an infinitesimal Grassmann parameter. The
gauge-invariant terms (18) and (22) in the Lagrangian are
invariant under the BRST transformation, and the gauge-
fixing Lagrangian (31) transforms as a total derivative, so
the action is invariant under this BRST transformation.
Using the auxiliary field T⃗, the equation of motion (26c) for
the gauge field W⃗α can be written in the form

0 ¼ DβW⃗0βα þ J⃗ α
þ − ∂αT⃗ − gð∂α ⃗η̄ × η⃗Þ; ð33Þ

and a covariant derivative leads to
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Dα∂αT⃗ ¼ igμ2ðΦ†
2τ⃗Φ1 −Φ†

1τ⃗Φ2Þ − g∂α ⃗η̄ ×Dαη⃗: ð34Þ

A BRST transformation of Eq. (26f) leads to the
relation

0 ¼ δðDα∂α ⃗η̄Þ ¼ −θðDα∂αT⃗ − g∂α ⃗η̄ ×Dαη⃗Þ; ð35Þ

so that

Dα∂αT⃗ ¼ g∂α ⃗η̄ ×Dαη⃗; ð36Þ

which, together with Eq. (34), leads to

Dα∂αT⃗ ¼ igμ2

2
ðΦ†

2τ⃗Φ1 −Φ†
1τ⃗Φ2Þ: ð37Þ

Since, from the equations of motion for T⃗, one finds

T⃗ ¼ 1

ξ
∂αW⃗

α; ð38Þ

one finally obtains the expected constraint

1

ξ
Dα∂α∂βW⃗β ¼

igμ2

2
ðΦ†

2τ⃗Φ1 −Φ†
1τ⃗Φ2Þ; ð39Þ

which, unlike Eq. (28a), is independent of the ghost fields.
For further discussions of BRST (and anti-BRST)

symmetries in the context of non-Hermitian field theories,
see Ref. [38].

IV. SPONTANEOUS SYMMETRY BREAKING

SSB is possible if the sign of m2
1 in the Lagrangian (1)

is changed, and here we study the corresponding scalar
vacuum expectation values and vector masses.

A. Vacuum expectation value

With this change of sign, the Lagrangian (1) has a
symmetry-breaking vacuum that is given by

κ

2
jhΦ1ij2 ¼ m2

1 −
μ4

m2
2

; ð40aÞ

hΦ2i ¼
μ2

m2
2

hΦ1i; ð40bÞ

which is physical as long as

m2
1m

2
2 > μ4: ð41Þ

The vacuum is defined up to a SUð2Þ × Uð1Þ transforma-
tion, and it can be chosen so that

hΦ1i ¼
�

0

v1

�
≡ V1; hΦ2i ¼

�
0

v2

�
≡ V2; ð42Þ

with

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κ

�
m2

1 −
μ4

m2
2

�s
; v2 ¼

μ2

m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κ

�
m2

1 −
μ4

m2
2

�s
:

ð43Þ

With this choice, the vacuum expectation value is unbroken
by the transformation

hΦii→e−i
e
2
β0ðIþτ3ÞhΦii¼

�
e−ieβ0 0

0 1

�
hΦii¼hΦii; ð44Þ

such that the Abelian subgroup of SUð2Þ × Uð1Þ generated
by σ ≡ I þ τ3 remains unbroken. This subgroup corre-
sponds to the electromagnetic interaction, with Noether
current

Qα ¼ ie
2
½Φ†

1σð∂αΦ1Þ − ð∂αΦ†
1ÞσΦ1�

þ ie
2
½Φ†

2σð∂αΦ2Þ − ð∂αΦ†
2ÞσΦ2�

¼ e
g0
Iαþ þ e

g
Jαþ;3: ð45Þ

From Eq. (21), we see that the gauge field Aμ couples to the
current Iαþ cos θW þ Jαþ;3 sin θW, which can be identified
with the current (45) if

e ¼ g0 cos θW ¼ g sin θW: ð46Þ

The Uð1ÞEM charge is conserved at the tree level, although
the Noether current is in general not conserved. An
exploration of the possibility of charge nonconservation
beyond the tree level lies beyond the scope of this paper.
Its existence and observability would in principle depend
upon the completion of the bosonic model considered
here to include fermions, which is also a topic for future
work.
We can then express the scalar Lagrangian in terms of

fluctuations around the vacuum (42) as

Lscal ¼ ∂αΦ̂
†
1∂αΦ̂1 þ ∂αΦ̂

†
2∂αΦ̂2 þ

2μ4

m2
2

ðV†
1Φ̂1Þ

− 2m2
2ðV†

2Φ̂2Þ −m2
2jΦ̂2j2 þ

μ4

m2
2

jΦ̂1j2

−
κ

4
ðV†

1Φ̂1 þ Φ̂†
1V1Þ2 − μ2ðΦ̂†

1Φ̂2 − Φ̂†
2Φ̂1Þ

−
κ

2
ðV†

1Φ̂1 þ Φ̂†
1V1ÞjΦ̂1j2 −

κ

4
jΦ̂1j4; ð47Þ
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where

Φi ¼ Φ̂i þ Vi ¼
�

ϕþ
i

vi þ ρi þ iψ i

�
; ð48aÞ

Φ�
i ¼ Φ̂�

i þ Vi ¼
�

ϕ−
i

vi þ ρi − iψ i

�
: ð48bÞ

We note that the terms linear in fluctuations are a
consequence of the non-Hermitian nature of the system.
However, they do not play a role in the equations of motion
δS=δΦ̂†

i ≡ 0, since they depend on Φ̂i only. These equa-
tions of motion are

0 ¼ □Φ̂1 −
μ4

m2
2

Φ̂1 þ
κ

2
ðV†

1Φ̂1 þ Φ̂†
1V1ÞV1 þ μ2Φ̂2

þ κ

2
jΦ̂1j2V1 þ

κ

2
ðV†

1Φ̂1 þ Φ̂†
1V1ÞΦ̂1 þ

κ

2
jΦ̂1j2Φ̂1;

ð49aÞ

0 ¼ □Φ̂2 þm2
2Φ̂2 − μ2Φ̂1: ð49bÞ

The massless Goldstone modes consist of charged and
neutral fields:

G� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 − v22

p ðv1ϕ�
1 − v2ϕ�

2 Þ; ð50aÞ

G ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 − v22

p ðv1ψ1 − v2ψ2Þ: ð50bÞ

The remaining fields consist of a charged field and three
neutral fields. The charged fields are given by

H� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 − v22

p ðv2ϕ�
1 − v1ϕ�

2 Þ; ð51Þ

and one neutral field is given by

D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 − v22

p ðv2ψ1 − v1ψ2Þ; ð52Þ

with degenerate squared mass

M2 ¼ v21 − v22
v1v2

μ2 ¼ m2
2 −

μ4

m2
2

: ð53Þ

Finally, we can express the last two neutral fields as

H ¼ ρ1 cosh α − ρ2 sinh α; ð54aÞ

h ¼ ρ1 sinh α − ρ2 cosh α; ð54bÞ

with masses

M2
h ¼

1

2

�
m2

2 þ 2m2
1 − 3μ4=m2

2

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1 −m2
2 − 3μ4=m2

2Þ2 − 4μ4
q �

¼ ðv21 − v22Þ
�
λ −

λ̂ coshðβ − αÞ
sinhðβ − αÞ

�
; ð55aÞ

M2
H ¼ 1

2

�
m2

2 þ 2m2
1 − 3μ4=m2

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m2

1 −m2
2 − 3μ4=m2

2Þ2 − 4μ4
q �

¼ ðv21 − v22Þ
�
λ −

λ̂ sinhðβ − αÞ
coshðβ − αÞ

�
; ð55bÞ

where

tanh α ¼ −μ2

ðM2
H −m2

2Þ
; ð56aÞ

tanh β ¼ v2
v1

; ð56bÞ

and

λ ¼ κcosh4β; ð57aÞ

λ̂ ¼ κ

2
sinh 2β cosh2β: ð57bÞ

It is not obvious that M2 is positive or that M2
H and M2

h are
real, and we derive the corresponding conditions on μ2 in
the next section.
The eigenvectors of non-Hermitian matrices are not

orthogonal with respect to the Hermitian inner product

hϕ;φi ¼
Z
x
ϕ†φ: ð58Þ

In the case of PT -symmetric theories, however, the
eigenmodes of the non-Hermitian Hamiltonian are orthogo-
nal with respect to the PT inner product

hϕ;φiPT ¼
Z
x
ðϕPT ÞTφ; ð59Þ

and we have normalized the fields G�, G, H�, D, H, and h
accordingly. These eigenmodes are nontrivial linear com-
binations of the scalar components of Φ1 and the pseudo-
scalar components of Φ2 and, as such, they cannot be
eigenstates of P. Instead, the P transformation relates the
left and right eigenmodes, which are distinct for a non-
Hermitian Hamiltonian.
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We remark that the PT norm used for the modes G, G�,
D, and H� in Eqs. (50), (51), and (52) diverges when
μ4 ¼ m4

2 (v21 ¼ v22). At this point—the zero exceptional
point described in Ref. [28]—we lose three eigendirections:
D ∝ G and H� ∝ G�. On the other hand, when
μ4 ¼ THðhÞ, where

THðhÞ ¼
m2

2

9

�
6m2

1 −m2
2 þ ð−Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m2

2ð3m2
1 −m2

2Þ
q �

;

ð60Þ

jαj → ∞ and the PT norm of h andH in Eq. (54) diverges.
In this case, we lose one eigendirection:H ∝ h. We discuss
these exceptional points further in Sec. IV D.

B. Conditions on μ2

Ensuring that we are in a physical regime of spontaneous
symmetry breaking leads to a number of constraints on the
parameter μ2:

(I) In order for the symmetry to be broken [see
Eqs. (40a)–(40b)], we require that

μ4 < m2
1m

2
2: ð61Þ

(II) In order to ensure that the squared massM2 [defined
in Eq. (53)] remains positive, we require that

μ4 < m4
2: ð62Þ

(III) In order for the squared massesM2
h andM

2
H [defined

in Eqs. (55a)–(55b)] to be real, we require that

4μ4 ≤
�
2m2

1 −m2
2 −

3μ4

m2
2

�
2

: ð63Þ

We remark that in the region 4μ4≥ ð2m2
1−m2

2−
3μ4

m2
2

Þ2
the squared mass matrix cannot be brought to a
Hermitian form by a similarity transformation [27].

These constraints on the parameter μ4 are plotted in
Fig. 1. The unshaded regions correspond to values of μ4

consistent with a physical spontaneous symmetry-breaking
phase, satisfying all of the previously mentioned condi-
tions. The various constraints on μ4 can be summarized as
follows:
(1) If m2

2 <
m2

1

3
, then μ4 < m4

2 (Condition II).

(2) If m2
1

3
< m2

2 < m2
1, then μ4 < Th (Condition III).

(3) If m2
1 < m2

2 < 3m2
1, then μ4 < Th (Condition III) or

TH < μ4 < m2
1m

2
2 (Conditions I and III).

(4) If 3m2
1 < m2

2, then μ4 < m2
1m

2
2 (Condition I).

FIG. 1. The excluded regions for the parameter μ4, corresponding to the constraints I, II, and III, plotted as functions ofm2
2=m

2
1. Region

I corresponds to the symmetric phase of the SUð2Þ × Uð1Þ symmetry [see Eq. (61)], region II corresponds to the broken phase of PT
symmetry [see Eq. (62)] in whichM2 is negative, and region III corresponds to the broken phase of PT symmetry in whichM2

h andM
2
H

[see Eq. (63)] are complex. The unshaded region corresponds to a physical SSB phase for the SUð2Þ × Uð1Þ symmetry. For
m2

2=m
2
1 < 1=3, the allowed region is determined only by Condition II. For m2

1=3 < m2
2 < 3m2

1, the allowed region is determined by
Conditions I and III. Last, in the region m2

2 > 3m2
1, the allowed region is determined only by Condition III. At the point A, all the

conditions become equivalent.
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C. Equations of motion after SSB

After expressing the full Lagrangian in terms of fluctuations around the VEVs as done in Eqs. (48a)–(48b), we
can express the equations of motion after symmetry breaking in terms of the gauge fields Zα, Wα, and Aα. Introducing the
notations

Cαþ ≡ Jαþ;1 − iJαþ;2ffiffiffi
2

p ; Kαþ ≡ Jαþ;3 cos θW − Iαþ sin θW;

ð64Þ

and

σ ≡ I þ τ3; ω≡ τ3cos2θW − sin2θW
cos θW

; τþ ≡ τ1 − iτ2ffiffiffi
2

p ; τ− ≡ τ1 þ iτ2ffiffiffi
2

p ; ð65Þ

the equations of motion read as follows.
Scalar fields:

0 ¼ DαDαΦ̂1 þDα

�
ig
2
Zαωþ ig

2
Wατ−

�
V1 −

μ4

m2
2

Φ̂1 þ
κ

2
ðV†

1Φ̂1 þ Φ̂†
1V1ÞV1 þ μ2Φ̂2 þ

κ

2
jΦ̂1j2V1

þ κ

2
ðV†

1Φ̂1 þ Φ̂†
1V1ÞΦ̂1 þ

κ

2
jΦ̂1j2Φ̂1; ð66aÞ

0 ¼ DαDαΦ̂2 þDα

�
ig
2
Zαωþ ig

2
Wατ−

�
V2 þm2

2Φ̂2 − μ2Φ̂1: ð66bÞ

Zα gauge field:

0 ¼ ∂βZαβ þ ig cos θWðW†
βW

βα −W†βαWβÞ þ
1

ξ
∂α∂βZβ þ

g2

2cos2θW
ðjV1j2 þ jV2j2ÞZα − Kαþ þ ig cos θWð∂αχ̄†χ − ∂αχ̄χ†Þ

þ g2

2
Zα

X
i

ðΦ̂†
iω

2Φ̂i þ ½V†
i Φ̂i þ Φ̂†

i Vi�Þ þ
eg
2
Aα

X
i

Φ†
i ðωσÞΦ̂i −

gg0

2
sin θW

X
i

ð½Φ̂†
i τ−Vi�Wα þ ½V†

i τþΦ̂i�Wα†Þ

−
gg0

2
sin θW

X
i

ð½Φ̂†
i τ−Φ̂i�Wα þ ½Φ̂†

i τþΦ̂i�Wα†Þ: ð67Þ

Aα gauge field:

0 ¼ ∂βFαβ þ ig sin θWðW†
βW

βα −W†βαWβÞ þ
1

ξ
∂α∂βAβ −Qα þ ig sin θWð∂αχ̄†χ − ∂αχ̄χ†Þ þ e2Aα

X
i

Φ̂†
i σΦ̂i

þ eg
2
Zα

X
i

Φ̂†
i ðωσÞΦ̂i þ

eg
2

X
i

ð½Φ̂†
i τ−Φ̂i�Wα þ ½Φ̂†

i τþΦ̂i�Wα† þ ½Φ̂†
i τ−Vi�Wα þ ½V†

i τþΦ̂i�Wα†Þ: ð68Þ

Wα gauge fields:

0 ¼ ∂βWαβ þ igWβðsin θWFβα þ cos θWZβαÞ þ 1

ξ
∂α∂βWβ − igðsin θWAβ þ cos θWZβÞWβα þ g2

2
WαðjV1j2 þ jV2j2Þ

− Cαþ þ igð∂αχ̄η3 − ∂αη̄3χÞ þ
g2

2
Wα

X
i

ðViΦ̂i þ Φ̂†
i Vi þ jΦ̂ij2Þ þ

g
2
ðeAα − g0 sin θWZαÞ

X
i

ðΦ̂iτþΦ̂i þ V†
i τþΦ̂iÞ:

ð69Þ

From these equations, we can see that the gauge field masses are
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MW ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

2

r
¼ cos θWMZ and MA ¼ 0; ð70Þ

as in the Hermitian 2HDM.

D. Comments on the exceptional points

At the zero exceptional points μ2 ¼ �m2
2, the VEVs

become

v21 ¼ v22 ≡ v2 ¼ 2

κ
ðm2

1 −m2
2Þ; ð71Þ

which vanish in the degenerate limit m2
1 ¼ m2

2. For
m2

1 ≠ m2
2, though, the gauge boson masses at the excep-

tional points are

M2
W ¼ g2v2 ¼ cos2θWM2

Z ≠ 0; ð72Þ
remaining physical and nonzero.
In order to make sense of this, in spite of the

divergence of the PT norm and the apparent non-
normalizability of the Goldstone modes (see Sec. IVA),
it is helpful to reconsider the behavior of the non-Hermitian
theory at the exceptional point. As an example, let us
consider the following 2 × 2 squared mass matrix of the
noninteracting theory [22]:

M2 ¼
�

m2
1 μ2

−μ2 m2
2

�
: ð73Þ

For m2
1 > m2

2, the eigenvectors of this mass matrix are

eþ ¼ N

�
ηffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p

− 1

�
and e− ¼ N

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
−η

�
;

ð74Þ
where

η ¼ 2μ2

m2
1 −m2

2

ð75Þ

(not to be confused with the ghost field appearing earlier).
The eigenvectors are not orthogonal with respect to the

usual Hermitian inner product,

e�þ · e− ¼ 2N2η

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
; ð76Þ

except in the Hermitian limit μ → 0 (η → 0). They are,
however, orthogonal with respect to the PT inner product,
and orthonormality fixes

N ¼
�
2η2 − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
−1=2

: ð77Þ

The exceptional point of this mass matrix occurs when
η → 1, at which point the normalization of the eigenvectors

diverges. This signals that the mass matrix has become
defective, having the Jordan normal form

M2jη→1 ¼
� ðm2

1 þm2
2Þ=2 1

0 ðm2
1 þm2

2Þ=2

�
; ð78Þ

and we lose an eigenvector. In fact, we see that in the limit
η → 1 the eigenvectors eþ and e− become parallel to each
other. However, the issue of the nonorthogonality of these
eigenvectors is then moot, and we can normalize them with
respect to the Hermitian inner product, fixing

Njη¼1 ¼
1ffiffiffi
2

p : ð79Þ

In other words, at the exceptional point the system behaves
like a Hermitian theory with one fewer degree of freedom.
Returning to the case of spontaneously broken gauge

symmetries at the zero exceptional point, the explanation
for the nonvanishing masses of the gauge bosons is that
the Goldstone modes must be normalized with respect to
Hermitian conjugation and not PT conjugation (which has
become ill defined). The discontinuity in the behavior of
the system as we approach such exceptional points means
that we must treat these particular points in parameter space
separately.
Thus, our conclusion is that it is also possible to give

masses to gauge bosons in a gauge-invariant way through
SSB for non-Hermitian theories, even at the exceptional
points. At these points, however, the counting of eigendir-
ections must allow for the fact that the Hamiltonian has
become defective.
We note that different results were derived in Ref. [27],

which is based on an alternative interpretation of a similar
(Abelian) non-Hermitian theory, and where the gauge
boson masses are zero at the zero exceptional point. The
difference in our results can be traced back to differing
interpretations of the complex conjugate: we take complex
conjugation to act linearly on the fields, whereas in
Ref. [27] it was taken to act antilinearly on one of the
fields (as motivated by a similarity transformation to a
Hermitian theory). This has the effect of interchanging
v22 → −v22 in the expression for the gauge boson masses,
such that they then vanish at the zero exceptional point,
when v21 ¼ v22. It was then argued that this is consistent
with the fact that the Goldstone modes cannot be normal-
ized with respect to the PT norm, which diverges at
exceptional points, and these modes therefore cannot be
“eaten” by the gauge field. This then led Ref. [27] to
conclude that it is possible to spontaneously break the
gauge symmetry of a non-Hermitian model without giving
a mass to the gauge bosons. Our conclusion is different: the
gauge boson remains massive in the symmetry-broken
phase, even at the zero exceptional point.
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V. MASSES IN THE NON-HERMITIAN MODEL
COMPARED WITH THE HERMITIAN MODEL

In this section, we discuss the dependences of the scalar
and vector masses in the non-Hermitian 2HDM on the
non-Hermitian mixing parameter μ2. These dependences
are shown in Figs. 2 and 3 for the scalar and vector bosons,
respectively, wherein we have introduced the notation
βHðhÞ ≡ THðhÞ=m4

2. In addition, we make a comparison with
thedependenceof the scalar andvectormasses onaHermitian
mixing parameter in the corresponding Hermitian 2HDM.
We note the following features from each panel of Fig. 2:
(1) In the regionm2

1 > 3m2
2, the massM2 goes to zero at

the exceptional point μ2 ¼ m2
2. If μ

2 were to become
larger then m2

2, thenM
2 would become negative and

we would enter the phase of broken PT symmetry.
(2) In the region m2

1=3 < m2
2 < m2

1, the masses M2
H and

M2
h become equal at the point tanh2 β ¼ βh. For

larger values of μ2, both M2
H and M2

h would become
complex.

(3) For m2
1 < m2

2 < 3m2
1, the masses M2

H and M2
h

become equal at the point tanh2β ¼ βh or tanh2β ¼
βH. Between these points, M2

H and M2
h become

complex. When tanh2β > m2
1=m

2
2, the mass M2

H
becomes negative. The unshaded regions correspond
to physical masses.

(4) Form2
2 > 3m2

1, the masses are all real and positive as
long as tanh2β < m2

1=m
2
2.

We note in the lower right panel of Fig. 3 that the gauge-
boson masses vanish at the point μ4 ¼ m2

1m
2
2, where the

symmetry is restored, as we would expect.
It is interesting to compare the masses in this PT -

symmetric non-Hermitian model with those in a similar
Hermitian 2HDMwith the following Lagrangian, involving
a Hermitian mass-mixing term:

L ¼ ∂αΦ
†
1∂αΦ1 þ ∂αΦ

†
2∂αΦ2 þm2

1jΦ1j2 −m2
2jΦ2j2

þm2
12ðΦ†

1Φ2 þΦ†
2Φ1Þ −

κ

4
jΦ1j4: ð80Þ

FIG. 2. Themasses of the physical scalar bosons as functions of tanh2 β in different parameter regions. Unphysical parameter regions are
shaded grey. The upper left panel shows the region wherem2

1 > 3m2
2, the upper right panel shows the region wherem

2
1 < 3m2

2 < 3m2
1, the

lower left panel shows the region where m2
1 < m2

2 < 3m2
1, and the lower right panel shows the region where m2

2 > 3m2
1.
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The vacuum expectation values for this Lagrangian are

hΦ1i ¼
�

0

vH1

�
¼ VH

1 ; hΦ2i ¼
�

0

vH2

�
¼ VH

2 ; ð81Þ

with

vH1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κ

�
m2

1 þ
m4

12

m2
2

�s
; vH2 ¼ m2

12

m2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

κ

�
m2

1 þ
m4

12

m2
2

�s
:

ð82Þ

After expressing the Lagrangian in terms of the shifted
field Φ̂i, where

Φi ¼ Φ̂i þ VH
i ¼

�
ϕþ
i

vHi þ ρi þ iψ i

�
; ð83aÞ

Φ�
i ¼ Φ̂�

i þ VH
i ¼

�
ϕ−
i

vHi þ ρi − iψ i

�
; ð83bÞ

we can calculate the eigenvalues. As in the non-Hermitian
model, the massless states consist of massless charged
scalar and pseudoscalar Goldstone fields

G� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvH1 Þ2 þ ðvH2 Þ2

p ðvH1 ϕ�
1 þ vH2 ϕ

�
2 Þ; ð84aÞ

G ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvH1 Þ2 þ ðvH2 Þ2

p ðvH1 ψ1 þ vH2 ψ2Þ: ð84bÞ

The normalizations of the eigenmodes should be compared
with those in Sec. IVA. We remark that this Hermitian
model is not PT symmetric if Φ1 and Φ2 transform as a
scalar and a pseudoscalar, respectively. It is, however, PT
symmetric if both Φ1 and Φ2 transform as scalars or
pseudoscalars, and the Hermitian and PT norms coincide,
as is expected for a Hermitian, PT -symmetric theory.
The remaining massive fields include a charged scalar, a

neutral pseudoscalar, and two neutral scalar fields. The
charged scalars are

FIG. 3. The masses of the charged and neutral gauge bosons as functions of tanh2β in the same parameter regions as in Fig. 2.
Unphysical parameter regions are shaded grey.

ALEXANDRE, ELLIS, MILLINGTON, and SEYNAEVE PHYS. REV. D 101, 035008 (2020)

035008-12



H� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvH1 Þ2 þ ðvH2 Þ2

p ðvH2 ϕ�
1 − vH1 ϕ

�
2 Þ; ð85Þ

and the pseudoscalar is

D ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvH1 Þ2 þ ðvH2 Þ2

p ðvH2 ψ1 − vH1 ψ2Þ; ð86Þ

with degenerate squared mass

M2 ¼ ðvH1 Þ2 þ ðvH2 Þ2
vH1 v

H
2

m2
12: ð87Þ

Last, we can express the neutral scalar boson fields as

H ¼ −ρ1 cos α − ρ2 sin α; ð88aÞ
h ¼ ρ1 sin α − ρ2 cos α; ð88bÞ

with squared masses

M2
h ¼ ððvH1 Þ2 þ ðvH2 Þ2Þ

�
λ −

λ̂ cosðβ − αÞ
sinðβ − αÞ

�
; ð89aÞ

M2
H ¼ ððvH1 Þ2 þ ðvH2 Þ2Þ

�
λþ λ̂ sinðβ − αÞ

cosðβ − αÞ
�
; ð89bÞ

where

tan α ¼ −m2
12

ðM2
H −m2

2Þ
; ð90aÞ

tan β ¼ vH2
vH1

; ð90bÞ

and

λ ¼ κcos4β; ð91aÞ

λ̂ ¼ κ

2
sin 2β cos2β: ð91bÞ

The squared masses for this Hermitian model are plotted
in Fig. 4 in the parameter ranges 2m2

1 > m2
2 (left panel)

and 2m2
1 < m2

2 (right panel). We see that the mass spectra
are completely different from the non-Hermitian, PT -
symmetric case, offering distinctive phenomenological
possibilities.
Before concluding, we remark that, by comparing the

expressions above with those in Sec. IVA, we can see that
the non-Hermitian 2HDM that we have considered in this
work is an analytic continuation of the Hermitian 2HDM,
obtained by taking m4

12 → −μ4. In other words, the
Hermitian 2HDM lies in the fourth quadrant of the
(m2

2=m
2
1; μ

4=m4
1) plane (not shown in Fig. 1).

VI. CONCLUSION

In this paper, we have exhibited a consistent description
of a non-Abelian two-Higgs-doublet model with a non-
Hermitian scalar mass-mixing term, which generalizes the
non-Hermitian extension of the Abelian Higgs model given
in Refs. [26,29]. As in Ref. [29], the main point that
led to a consistent model in the present article consists of
restricting gauge invariance to a subclass of gauge field
configurations. The corresponding constraint plays the role
of a conventional gauge-fixing condition, but which must
be taken into account at the classical level already, in order
to find consistent field equations. Within this framework,

FIG. 4. The masses of the scalar fields in the Hermitian 2HDM as functions of tan2β in the parameter ranges 2m2
1 > m2

2 (left panel) and
2m2

1 < m2
2 (right panel).
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we have described the realization of SSB and compared its
features with the Hermitian case.
An interesting question is the significance of the excep-

tional points. As explained in this paper, the number of
eigendirections is reduced there, so that this limit is not
continuous. It is indeed easy to see that, in the non-
interacting model, one can write a unique equation of
motion for Φ1 þΦ2 only, with mass ðm2

1 þm2
2Þ=2, when

taking the exceptional limit jμ2j → jm2
1 −m2

2j=2,
cf. Eq. (78). The introduction of gauge or self-interactions
does not allow this though, and one can therefore question
the stability of the exceptional points under quantum
corrections, which appear as soon as interactions are
switched on. However, the treatment of radiative correc-
tions and further study of the exceptional points goes
beyond the scope of the present paper.
We have noted that physical observables depend

on μ4, and thus not on the set of equations of motion we
choose. This can also be checked with the masses of scalar
excitations and gauge bosons: the transformation μ2 → −μ2
leads to changes in the signs of α and β [see Eq. (56)], such

that the masses obtained after SSB are not modified. It was
shown in Ref. [29] that the quantum theory also depends on
μ4 only, and we expect the same to be valid here, since this
feature is based on the scalar sector properties of the partition
function, which is very similar here.
Finally, we note that the scalar boson mass spectrum

in the non-Abelian non-Hermitian model differs signifi-
cantly from that in the Hermitian version. This shows that
the non-Hermitian model opens up new phenomenological
perspectives, which merit a subsequent, more detailed
discussion.
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