
On the Fidelity Distribution of Purified
Link-level Entanglements

Karim S. Elsayed∗, Wasiur R. KhudaBukhsh†, Amr Rizk∗
∗Faculty of Computer Science, University of Duisburg-Essen, Germany

†School of Mathematical Sciences, University of Nottingham, UK

Abstract—The first step for entanglement distribution among
quantum communication nodes is to generate link-level Ein-
stein–Podolsky–Rosen (EPR) pairs between adjacent communi-
cation nodes. EPR pairs may be continuously generated and
stored in a few quantum memories to be ready for utilization
by quantum applications. A major challenge is that qubits
suffer from unavoidable noise due to their interaction with
the environment, which is called decoherence. This decoherence
results in the known exponential decay model of the fidelity of
the qubits with time, thus, limiting the lifetime of a qubit in a
quantum memory and the performance of quantum applications.

In this paper, we evaluate the fidelity of the stored EPR pairs
under two opposite dynamical and probabilistic phenomena,
first, the aforementioned decoherence and second purification,
i.e. an operation to improve the fidelity of an EPR pair at the
expense of sacrificing another EPR pair. Instead of applying the
purification as soon as two EPR pairs are generated, we introduce
a Purification scheme Beyond the Generation time (PBG) of two
EPR pairs. We use discrete time Markov chain (DTMC) approach
to analytically show the probability distribution of the fidelity
of stored link-level EPR pairs in a system with two quantum
memories at each node allowing a maximum of two stored EPR
pairs. In addition, we apply a PBG scheme that purifies the two
stored EPR pairs upon the generation of an additional one. We
finally provide numerical evaluations of the analytical approach
and show the fidelity-rate trade-off of the considered purification
scheme.

I. INTRODUCTION

Quantum entanglement lies at the core of the quantum
Internet which enables quantum applications including quan-
tum communications [1], [2], quantum key distribution [3]
and distributed quantum computation [4]. A major challenge
is that qubits suffer from unavoidable decoherence, which
results in a rapid decay in the quality of the entangled
Einstein–Podolsky–Rosen (EPR) qubit pair with time [5],
[6]. This quality which is also called fidelity is defined as
the closeness between the noisy EPR pairs and the original
(desired) one. In the phase damping decoherence model, the
fidelity decays exponentially with time [7].

A canonical model for quantum networks with quantum
memories or queues assumes that EPR pairs are continuously
generated and stored to be ready to respond to transmission
requests of qubits resulting in a high-capacity network [8].
The quantum network must guarantee a sufficient fidelity for
the desired application and due to the probabilistic nature
of quantum operations the higher the fidelity, the better the
quality attained by the application. To this end, the goal
of network nodes is to generate high-fidelity entanglements,

ensure the validity of the stored ones and apply purification
to them.

The generation of high-fidelity entanglements through pu-
rification involves consuming a smaller or equal fidelity EPR
pair to improve the fidelity of another pair. In [9]–[11] different
recurrence purification schemes are proposed using multiple
purification rounds to generate one very high-fidelity EPR pair.
Specifically, we start from the purification scheme in [10]
as a baseline to compute the fidelity distribution. Also note
that some works consider entanglement cut-off times, i.e., a
deadline after which the fidelity is assumed below a required
threshold, to ensure a minimum validity of the stored EPR
pairs. For example, the work in [12] assumes the cut-off times
are probabilistic and modeled by an exponential distribution
based on which the EPR pairs stored in the quantum queue
are dropped.

In this paper, we address the gap in the literature on the
derivation of the fidelity steady-state distribution of stored EPR
pairs under purification. Purification is usually treated as a
mechanism to initially generate high fidelity EPR pairs [9]–
[11]. Its application beyond the initial generation on the stored
EPR pairs is rarely considered. The purification of the stored
EPR pairs has the potential to improve the fidelity at the
expense of reducing the average number of EPR pairs in the
system, which inherently leads to a rate-fidelity trade-off. We
denote the purification scheme applied beyond the generation
of an EPR pair as PBG.

In this paper, we derive the steady-state probability distribu-
tion of the fidelity of the link-level entanglements in a system
with a few quantum memories in isolation of any request pro-
cess. In addition, we apply a PBG scheme that distillates the
stored EPR pairs before storing a newly generated pair when
the quantum memory is full. To the best of our knowledge, this
is the first work that evaluates the fidelity distribution of the
stored link-level entanglements in a few quantum memories
under purification beyond generation.

II. RELATED WORK

Link-level entanglement is the first step towards long dis-
tant quantum communication. The authors of [8] propose a
physical and link layer protocol to provide a robust link-level
entanglement generation between quantum communication
nodes. Specifically, the proposed protocol organizes the link-
level entanglement generation requests to ensure the fidelity
desired by the applications at the expense of the increased



generation time. Nitrogen vacancy (NV) centers in diamond
platform [13] is one way to generate desired fidelity EPR pairs,
where higher fidelity EPR pairs require longer generation
times. A different method relies on recurrence purification
algorithms, which use two EPR pairs per round to obtain a
higher fidelity one. The work in [10] proposes an approach that
purifies two EPR pairs using polarization mode dispersion and
derives an expression of the improved fidelity as well as the
probability of purification success. Several other works such
as [9], [11] provide quantum operation-based procedures for
the purification of two EPR pairs.

Starting from the Lindblad formalization of the qubit in-
teraction with the environment, i.e., decoherence, as time
first order differential equation [14], the time dynamics of
the fidelity can be analytically expressed for different phase
damping models [5]. Using this concept, the works in [9]
express the exponentially decaying fidelity over time of the
EPR pairs. Hence, quantum communication nodes need to
address the effect of the decoherence on the stored link-level
EPR pairs by estimating their fidelity to ensure meeting the
desired application requirements. For that reason, the works
in [12], [15] drop qubits from the memory after specific cut-off
times to ensure a minimum fidelity requirement. Specifically,
the authors in [12] model the cut-off times by an exponential
distribution. On the other hand, the work in [16] models
a quantum queue without dropping qubits and derives an
expression on the average queuing delay, thus it can estimate
the average decoherence a qubit suffers in the queue. Overall,
these works differ from this paper in the sense that we target
the analytical derivation of the steady-state distribution of
the fidelity of EPR pairs on one link given a the continuous
purification after generation (PBG) protocol.

Similar to our work, the authors of [17] derive analytical
bounds, however, on the average fidelity of the EPR pair
consumed by application requests using a link-level model
with one long-term memory under recurrent purification on
the single EPR in memory. While [17] considers continuous
time application requests, our work differs fundamentally as
we evaluate a link-level system consisting of two long-term
quantum memories and use a different purification protocol
(PBG) that enables storing two EPR pairs in these memories.
Moreover, our approach allows deriving the distribution of
the number of stored EPR pairs and the distribution of their
fidelities. Note that the work [17] was done in parallel and
independently of this work and our preceding preprint [18].

This paper is structured as follows: We first describe the
model and problem statement in Sect. III. In Sect. IV, we
derive the steady-state fidelity distribution of the stored EPR
pairs. We numerically evaluate the proposed approach in
Sect. V before concluding the paper and discussing open
problems in Sect. VI.

III. MODEL AND PROBLEM STATEMENT

We consider a link-level quantum system consisting of
two quantum nodes, where each node contains two long-
term quantum memories. Additionally, each node has a short-

term memory that holds the newly generated EPR pair for
minimal time before transferring it to the long-term ones.
We model the entanglement generation as Bernoulli trials
with success probability pg within a time slot △t similar
to [16], [19]. One rationale that the entanglement generation is
probabilistic is that the optical fiber is assumed to absorb the
transmitted qubit from one node to the other with probability
1 − pg = 1 − e−ηl, where l is the fiber length between the
communication nodes and η is the attenuation coefficient [20].
This is associated with the link-level entanglement generation
schemes that require qubit transmission through a fiber of
length l as discussed in [1], [9]. The scheme that we consider
in this paper involves, first, the preparation of an EPR pair
at one node before sending half of it, i.e., one of the two
entangled qubits, to the other node, hence, l being the link
length. In addition, each entanglement generation attempt
takes ideally △t = l/c duration, where c is the speed of light.
Following the formulation from [9] the fidelity of an EPR pair
at time t0 decays with time due to decoherence as

F (t) =
1

2

(
1 + (2F (t0)− 1) e−(t−t0)/tc

)
, (1)

where 1/tc is the decoherence rate and F (t0) is the fidelity
of the EPR pair at time t0. In this work, we assume a perfect
EPR generation. Note that this assumption does not affect our
analytical approach to obtain the fidelity distribution.

We assume a PBG scheme to maintain high fidelity. This
entails attempting to purify the two stored EPR pairs at
the moment of a successful generation of an additional one.
Instead of dropping the lowest fidelity EPR pair to be replaced
by the freshly generated one, we use it to purify the other
stored EPR pair. Specifically, we consider the purification
scheme in [10], where the fidelity of the purified EPR pair
becomes

Fp(F1, F2) =
F1F2

F1F2 + (1− F1)(1− F2)
, (2)

with a purification success probability ps given by

ps(F1, F2) = F1F2 + (1− F1)(1− F2). (3)

Here, F1 and F2 denote the fidelity of the first and the
second pair, respectively.

In Fig. 1, we illustrate the model of the purification protocol
using a sample path realization of the fidelity of the EPR
pairs over time. We assume the system contains one EPR
pair at time t = 0 and its fidelity decays with time due to
decoherence as in (1). As per the Bernoulli assumption on
the generation from above the inter-generation times {τi}i
come from a geometric distribution denoting the time between
two successful EPR pair generations. When an EPR pair is
generated and the quantum memories are full, purification
takes place between the two stored EPR pairs. The figure
shows the improved fidelity obtained from purification as well
as the random event of purification failure leading to losing
the two stored EPR pairs.

Next, we calculate the steady-state distribution of the fidelity
of the EPR pairs in the system with a few quantum memories.
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Fig. 1: A sample path realization of the fidelity of two EPR
pairs stored in the size-two memory system with fidelities
F1(t) and F2(t) such that F2(t) always represents the lower
fidelity EPR pair. Entanglement inter-generation times are
given by the random sequence {τi}. Purification takes place
upon a new entanglement generation to a full system where
the fidelity improves in case of purification success while the
two stored pairs are lost in case of purification failure.

The hardness of the problem originates from the hardness of
tracking the fidelity due to its dependence on the purification
outcome which in turn recursively depends on the fidelity at
the previous purification attempts.

IV. APPROACH

Motivated by the Bernoulli modeling of the EPR generation
in Sect. III, our key idea for calculating the fidelity distribution
is to track the fidelity decay at each time slot by discretizing
the fidelity proportional to the time slots. This allows modeling
the fidelity using a discrete time Markov chain (DTMC). We
divide the fidelity range into N+1 discrete levels proportional
to its decay ranging from the lowest fidelity value Fϵ to the
initial fidelity of the generated EPR pair F0 as

F (△n) =
1

2

(
1 + (2F0 − 1)e−α△n

)
, (4)

where △n ∈ {0, 1, ..., N} is the time duration elapsed since
the entanglement generation, which we denote the age (given
in discrete time) and α := △t/tc denotes the decoherence
coefficient in one time slot. We do not consider the fidelity
below the lowest value Fϵ. Since the age △n uniquely defines
the fidelity level, we model the fidelity level as a result of a
successful purification of two EPR pairs by an EPR pair with
equal or smaller age △np according to

△np(△n1,△n2) =

max

(⌈
−1

α
ln

(
2Fp(△n1,△n2)− 1

2F0 − 1

)⌉
, 0

)
, (5)

where Fp(△n1,△n2) is the fidelity after purification of the
two EPR pairs from (2) and △n1 and △n2 are the ages
corresponding to the fidelities of the stored EPR pairs F1(n)
and F2(n), respectively. Here Fi(n) is the fidelity at slot n
on the discrete time lattice. Since Fp(△n1,△n2) may not
correspond to one of the discrete fidelity levels, we use ⌈.⌉
to map the purification age to the next larger integer to lower
bound the purified fidelity. In case Fp > F0, which may occur
for small initial EPR fidelity, the maximum operation in (5)
maintains △np ≥ 0 corresponding to the highest fidelity F0.
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Fig. 2: A sample path realization showing the application of
PBG on the two stored EPR pairs with ages △n1 (shown)
and △n2 (not shown), respectively, obtains a purified EPR
pair with a fidelity value equivalent to an EPR generated at
a later time point with shortened age △np < △n1. The time
point t′g is the hypothetical generation time of the EPR pair
with an equivalent fidelity to the purified EPR pair at tp.

Note that the reduced age due to purification does not reflect
the actual time the EPR pair spent in the memory. In our
model, the purified pair obtains a fidelity value from (2) with
success probability (3) that is equivalent to the fidelity of an
EPR with a later generation time. Hence, as shown in Fig. 2
the age △n is shortened accordingly through the purification
operation.

Similarly, we calculate the maximum age N that achieves
the lowest fidelity threshold according to F (N) = Fϵ as

N =

⌈
−1

α
ln

(
2Fϵ − 1

2F0 − 1

)⌉
. (6)

Note that the fidelity F1(n) always represents the larger
fidelity EPR pair out of the two stored ones when the memories
are full and is exactly calculated using (4). Hence, right after
a fidelity jump in Fig. 1, F2(n) represents the older EPR pair
and the fidelity of the only EPR pair in the system when it
is not full (cf. the figure). The value of F2(n) is quantized
according to (5) during purification.

A. DTMC model of the age of the stored EPR pairs

We model the fidelity of the EPR pairs stored in the system
by a DTMC with states (△n1,△n2) ∼ (F1(n), F2(n)) repre-
senting their age such that △n2 always represents the oldest
(smallest fidelity) EPR pair in the system. We assume that the
system has initially one EPR pair with perfect fidelity, thus
the initial system state is (−∞, 0) at time n = 0, where −∞
stands for the non-existing second EPR pair. We illustrate the
system DTMC in Fig. 3, where we denote the state transitions
to be either forward or backward. The forward transitions
represent the time evolution before attempting purification, i.e.,
the age progression of EPR pairs. We summarize the forward
transitions as

(i, j) → (min{i+ 1, N},min {j + 1, N})w.p. 1− pg,

(−∞, j) → (0,min {j + 1, N})w.p. pg. (7)
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Fig. 3: DTMC modelling of the fidelity of the EPR pairs
stored in the system. A state (x, y) corresponds to the age of
the stored EPR pairs x, y, respectively where x ≤ y denotes
the ordering of the pairs. Recall that the discretization in (4)
provides a one to one mapping of the age to the discrete fidelity
levels. The description of the transitions represented by the
dotted arrows is in the text below.

The backward transitions are a result of a purification attempt
as in

Success: (i, j) → (0,△np(i, j))w.p. pg ps(i, j),

Fail: (i, j) → (−∞, 0)w.p. pg(1− ps(i, j)),

∀i ∈ {0, 1, ..., N} , j ≥ i, (8)

where △np(i, j) and ps(i, j) are the age of the successfully
purified EPR pair (5) and the probability of purification
success (3) at state (i, j), respectively. The purification attempt
occurs upon entanglement generation subject to a full quantum
memory, thus it only appears when i ̸= −∞. In case of a
purification failure, the two stored EPR pairs are lost and only
the newly generated EPR pair remains, thus the system state
resets to (−∞, 0).

The backward transition probabilities are state-dependent
since the success probability depends on the fidelity levels
(3), i.e., the age and α. We describe this dependence in
Fig. 3 by the dotted arrow representing the existence of a
state-dependent transition from each state within a block to a
corresponding state in the destination block. We define a block
in Fig. 3 to comprise the states within a horizontal row which
represents the states Sm = {(m, j)} ∀j ≥ m, j ∈ {0, 1, .., N}.
Note that not only do the transition probabilities vary in the
case of successful purification but also the destination state
(0,△np(i, j)). As illustrated the destination state is a function
of the current state as well as α. Note that a careful choice of
α, i.e., the time discretization with respect to the decoherence
rate is crucial for the design of the DTMC.

We represent the transition matrix of this Markov chain
in terms of sub-matrices describing the transitions between
blocks of the DTMC as depicted in Fig. 3 with the states or-

dered as [(−∞, 0) . . . (−∞, N)(0, 0) . . . (0, N) . . . . . . (N,N)]
by

Q =



000N+1,1X0 X−∞ 000N+1,N . . . . . . 0

fff0 000N+1,N D0 X0

. . .
. . .

...

fff1 000N,N D1 000N,N X1

. . .
...

...
...

...
. . .

. . . 0
...

...
...

. . . 0002,2 XN−1

fffN 0001,N DN 0001,N . . . 0001,2 1− pg


. (9)

The forward transition implies the transition from one block
to the next one, thus resulting in the sparse matrix structure,
where Xm is an N −m+ 1×N −m matrix, with 0 ≤ m ≤
N −1, representing the forward transitions in (7). We express
this matrix as

Xm = (1− pg)

[
IN−m

0001,N−m−1 1

]
, 0 ≤ m ≤ N − 1, (10)

while the N +1×N +1 matrix X−∞ represents the forward
transitions due to the successful generation of an EPR pair
when only one EPR pair is stored, which we express as

X−∞ = [000N+1,1|1−X0] , (11)

where [.|.] represents the column-wise concatenation opera-
tion. The probabilities of entanglement generation resulting
in a failed purification attempt, thus the backward transitions
in (8), are represented by the N −m+ 1× 1 vectors

fffm := pg

(
111− [ps(m,m), ps(m,m+ 1), ...., ps(m,N)]

T
)
,

(12)
with ps(i, j) being the probability of purification success at
state (i, j) known from (3). Additionally, Dm includes the
backward transitions due to a successful purification expressed
in (8). We express the elements of the matrix representing the
transition from state (m, j) to state (0, k) by

Dm[(m, j), (0, k)] = pgps(m, j)1k=△np(m,j), 0 ≤ m ≤ N,
(13)

where 1 is the indicator function.

B. Obtaining the fidelity distribution from the DTMC

The classical steady-state solution to the DTMC to obtain
the steady-state probability vector ppp involves solving the linear
system of equations pppTQ = pppT with the normalization
condition pppTeeens

= 1, where Q is the transition matrix, eeens

is an all-one column vector of length ns while ns being
the number of states. Since the number of equations in the
linear system grows quadratically as O(N2), we make use
of the problem structure and derive next a reduced problem
that requires solving only N + 1 equations. We denote the
probability of a state (i, j) as pi,j and the column probability
vector of the block states Si as pppi. Moreover, we denote the
part of the transition matrix representing the transitions from
all the states to the states Si, i.e., a block column in Q, by Qi.
For example Q−∞ and Q0 represent the first and the second
block column in Q as given in (9). Using the steady-state



description from above and (9), we express pppi in terms of Qi

as
pppTQi = pppTi . (14)

The key idea to reducing the system of equations to N +1
is by relating the steady-state probabilities of all the states in
terms of ppp0 using the structure of the DTMC and the transition
matrix (9). The structure of the DTMC implies that the states
S0 link all the states together. First, the states Si, i > 0
recursively originate from the forward transitions of S0 as
given by the corresponding block columns Qi. Equipped with
this idea, we can recursively derive pppi : i > 0 in terms of ppp0
using (9) and (14), i.e., the recursive structure starts from the
third block column in (9). This recursive structure leads to

pppTi = pppTi−1Xi−1 = pppT0

i−1∏
m=0

Xm, 0 < i < N. (15)

Similarly, we derive pN as

pN = pppTN−1XN−1 + (1− pg)pN =
1

pg
pppTN−1XN−1.

Note that pN represents only one state, i.e., pN,N . We further
derive pN using the expression of pppN−1 in terms of ppp0 from
(15) as

pN =
1

pg
pppT0

N−1∏
m=0

Xm. (16)

Now, the state (−∞, 0) is the destination of the states
Si, i ≥ 0 as a result of the backward transitions capturing
the failed purification attempt which is represented by the first
column in Q. Therefore, using (14), we derive p−∞,0 in terms
of pppi, i ≥ 0 as

p−∞,0 =

N∑
m=0

pppTmfffm = pppT0 fff0 + pppTNfffN +

N−1∑
m=1

pppTmfffm.

Consequently, using the expressions in (15) and (16) we obtain

p−∞,0 = pppT0

[
fff0 +

1

pg

N−1∏
m=0

XmfffN +

N−1∑
m=1

m−1∏
n=0

Xnfffm

]
,

:= pppT0 Φ. (17)

Next, the states S−∞ are recursively related by the forward
transitions according to Q−∞ as

p−∞,j = (1− pg)p−∞,j−1 = (1− pg)
jp−∞,0, 0 < j < N,

p−∞,N =
1− pg
pg

p−∞,N−1 =
(1− pg)

N

pg
p−∞,0.

Let ρρρ =
[
1, (1− pg), . . . , (1− pg)

N−1
, (1− pg)

N
/pg

]T
, we

rewrite ppp−∞ in vector form in terms of ppp0 as

pppT−∞ = p−∞,0 ρρρT = pppT0 ΦρρρT . (18)

Finally, S0 is the destination of all the states according to
Q0, i.e., from S−∞ according to the forward transitions in
(7) and from all the other states according to the backward
transitions due to successful purification in (8). Therefore, we
describe this relation using (14) as
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Fig. 4: The simulation of a link with l = 15km validates the
analytical distribution of the fidelity of the older EPR pair as
calculated from the model.

pppT0 = pppT−∞X−∞ +

N∑
m=0

pppTmDm. (19)

As a result, the linear system of equation to be solved is
reduced to

pppT0 Ψ = 000N+1,1,

pppT0 βββ = 1, (20)

where we derive Ψ using (15), (16) and (18) in (19) as

Ψ = IN −ΦρρρTX−∞ −D0 −
N−1∑
m=1

m−1∏
n=0

XnDm

− 1

pg

N−1∏
m=0

XmDDDN , (21)

in addition to deriving βββ using (15), (16) and (18) in the
normalization equation as

βββ = ΦρρρTeeeN+1+eeeN+1+

N−1∑
m=1

m−1∏
n=0

XneeeN−m+1+
1

pg

N−1∏
m=0

Xm.

(22)
We rewrite (20) in a short form as

pppT0 [Ψ|βββ] = [0001,N+1|1] . (23)

using the column-wise concatenation operation [.|.].
The system of equations in (23) is of rank N + 1, where

its solution yields the value of ppp0. We obtain the other steady-
state probabilities by substituting ppp0 in (15), (16) and (18).

V. NUMERICAL VALIDATION

In this section, we validate our analytical approach with
simulations and show the trade-off between the steady-state
average fidelity of the stored EPR pairs defined as F̄i :=
lim

n→∞
E[Fi(n)] and their average number for an increasing link

length ranging between 5km and 30km. We set the attenuation
η = 0.15 dB/km and the decoherence time tc = 1 ms similar
to [15], [21]. We assume a perfect generation of EPR pairs
and use a fidelity threshold Fϵ = 0.55.

In Fig. 4, we validate the steady-state cumulative distribu-
tion function (CDF) of the older EPR pair obtained analytically
with the result from the simulation for l = 15km.

We illustrate in Fig. 5 the rate-fidelity trade-off achieved
by applying purification beyond generation to the stored EPR
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Fig. 5: Trade-off between the average number of stored EPR
pairs and their fidelity as a result of applying purification on
the stored EPR pairs for an increasing link distance: (a) The
average fidelity of the two EPR pairs F̄1 and F̄2 when applying
purification is higher. (b) The average number of the stored
EPR pairs is, however, smaller when applying purification.

pairs in our system with two quantum memories. Intuitively,
while purification improves the average steady-state fidelity
of the two stored EPR pairs as shown in Fig. 5a, it results
in a reduction in the average number of the EPR pairs as
shown in Fig. 5b since we sacrifice one EPR pair for successful
purification and both in case of purification failure. Note that
F̄1 represents the average fidelity of the higher fidelity EPR
pair when it exists, i.e., when the quantum memories are full.

VI. DISCUSSION & OPEN PROBLEMS

In this paper, we used a DTMC to model the fidelity of the
EPR pairs for a quantum communication link in a few (two)
quantum memory system. We used this model to calculate
the steady-state distribution of the fidelity of the EPR pairs.
The model shows the improvement of the fidelity in terms
of its distribution of the existing EPR pairs by applying a
purification beyond generation protocol at the expense of a
decrease in the average number of ready EPR pairs in the
system. Extending the model to more than two quantum
memories or a quantum memory queue is open for future work
as well as incorporating a request process that consumes the
EPR pairs as required by the desired application. Moreover,
having more than a few EPR pairs stored in the queue raises a
question about the appropriate purification beyond generation
protocol and when it should be applied. Further, the problem
of calculating the distribution of the continuous fidelity is open
and is considered much more complex due to the stochastic
behavior of the entanglement generation and purification as
well as the dependence between the fidelity at the purification
points resulting in random recursive equations.
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