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Introduction

Computational methods and associated software implementations are central to every field of

scientific investigation. Modern biological research relies heavily on the development of soft-

ware tools to process and organize increasingly large data sets, simulate complex mechanistic

models, provide tools for the analysis and management of data, and visualize and organize out-

puts [1–3]. Such software varies widely in its scope, complexity, and potential for re-use, from

single-use analysis scripts that accompany journal publications to domain-specific packages

(such as molecular dynamics simulators [4,5]), common numerical methods (such as finite

element methods [6] or optimization algorithms [7]), and finally fundamental scientific soft-

ware (such the numerical methods package “numpy” [8]).

For valid usage in research, it is essential that this software is both openly available and

accurately implements its intended functionality. Accessibility of code has improved signifi-

cantly in recent years [9], and it is increasingly accepted that research papers should be accom-

panied by accurate code scripts, which are subject to peer review alongside the other methods

of the research. However, this has simultaneously highlighted the role of computational sci-

ence in the so-called “reproducibility crisis” [10], where multiple cross-disciplinary meta-anal-

yses have indicated that less than half of published code may be run without errors [11–14],

and as little as 5% can replicate the primary results of the associated paper [15].

This causes a multitude of negative effects on scientific research including a lack of trans-

parency and open access [16], poor development and deployment practices [17], and a lack of

executable reproducibility—where code cannot even be run [18]. This also undermines the

productivity of the research software base, as any researchers wishing to use the same compu-

tational framework are then forced to re-implement this in their own software.

Beyond basic reproducibility, higher-quality software possesses additional qualities such as

extensibility, reliability, and reusability. These characteristics arise from carefully designed,

well-documented, and appropriately maintained code, and they enable research software to

more thoroughly and efficiently support scientific progress—for example, by allowing a soft-

ware package developed by one research group to be picked up by another which goes on to

add additional features to address further scientific questions. The term sustainable (not to be

confused with environmentally friendly software) has been adopted to refer to software that is

reliable, reproducible, and reusable [19].

Given the importance of high-quality software to effective research in computational biol-

ogy, there has been significant literature on ensuring reproducibility [20,21] and good
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development practices [22–24] in computational research. Indeed, several other Ten Simple

Rules articles have already provided excellent descriptions of best software development prac-

tices to aspire towards, and we point the reader to these guides on documentation [25], usabil-

ity [24], robustness [26], and version control [27].

However, less attention has been devoted to specific teaching strategies which are effective

at nurturing in researchers the complex skillset required to produce high-quality software that

underpins both academic and industrial biomedical research. Biologists and computational

researchers, even if aware of the importance of high-quality software to their research, are typi-

cally left to fend for themselves in developing the necessary skills to produce reusable software.

Although training resources are available (for example, courses offered by the Software Sus-

tainability Institute to UK-based researchers), many doctoral training programs overlook

extensive formal education in effective software engineering.

Two recent articles in the Ten Simple Rules collection [28,29] have discussed the teach-

ing of foundational computer science and coding techniques to biology students. We

advance this discussion by describing the specific steps for effectively teaching the necessary

skills a scientist needs to develop sustainable software packages that are fit for (re-)use in

academic research or more widely. We advocate that future researchers receive extended

training in software engineering, moving beyond few-day training sessions and forming a

substantial and integrated portion of their scientific education. Although our advice is likely

to be applicable to all students and researchers hoping to improve their software develop-

ment skills, our guidelines are directed towards an audience of students who have some pro-

gramming literacy but little formal training in software engineering, typical of early

doctoral students. These practices are also applicable outside of doctoral training environ-

ments, and we believe they should form a key part of postgraduate training schemes more

generally in the life sciences.

The following rules have been fine-tuned through generations of doctoral students at the

EPSRC CDT in Sustainable Approaches to Biomedical Science: Responsible and Reproducible

Research (SABS:R3) CDT at the University of Oxford. The SABS:R3 program trains doctoral

students in cutting-edge, collaborative systems approaches to biomedical research, with a

strong focus on computational methods. Perhaps uniquely, it provides both comprehensive

training in advanced software development and software engineering to all of its students, and

introduces them to state-of-the-art techniques applicable to industrially derived research

within the biomedical sciences.

Students initially take a three-week classroom training program in the principles of soft-

ware engineering. This course is designed to introduce important themes in software develop-

ment and convey their importance; we discuss key aspects of this in the first 4 rules. National

and international consortia can provide resources and expertise to support institutions in run-

ning these programs—the SABS:R3 classroom section was supplemented by training from the

Software Sustainability Institute.

To make this training immediately relevant, all students subsequently undertake an indus-

try-supported group software development project over their first year, allowing them to learn

and apply their software skills in a realistic setting. These projects require students to develop

high-quality software in support of some scientific or industrial project or investigation,

involving a variety of fields including epidemiology, pharmacokinetics, and medical imaging.

Two such projects have additionally led to scientific publications [30,31]. We have fine-tuned

the design and implementation of these projects over a series of student cohorts and share

some of the lessons we have learned in Rules 5 to 8, before finally discussing the output from

these projects, and how they may be sustained after the students finish their training.
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Rule 1: Emphasize the value of good software development

It has widely been accepted within industrial software development communities (and is

increasingly accepted within academic environments) that investing additional time to uphold

common software engineering practices improves overall productivity across a wide range of

project scales and fields [32–34].

However, this translation of this acceptance to academia has been limited by insufficient

prior training, as mentioned in the introduction, as well as a lack of its perceived value and

importance. Within the results-focused setting of academia, good software development has

often been considered a secondary priority—“nice if you have time, but not essential.” This

may be attributed to the perceived lack of academic recognition for software outputs [35,36],

diminishing the motivation and financial support for upholding good practices. This is exacer-

bated in the time-pressured environment of a PhD, where the limited time frame encourages a

focus on obtaining immediate results over longer-term investments, such as a high-quality and

reusable code base.

Much research software is initially developed for highly specialized applications (for exam-

ple, a pipeline of idiosyncratic procedures to process a particular data set). In this context,

reusability and extensibility may not seem essential at the outset of the software’s lifespan, but

their utility may become apparent later on (e.g., several years later, if a new PhD student is

tasked with processing a new data set with similar characteristics, are they able to draw upon

the previous pipeline, or must they start over from scratch?). This increased productivity

quickly pays back the initial time investment required and allows the easy integration of small

pipelines into large and varied code bases, increasing their potential application (Fig 1). While

this paper focuses on the development of large-scale software packages intended for immediate

reuse, many of the skills we aim to inculcate in researchers will equally well serve them in the

development of higher-quality analysis scripts.

By emphasizing the advantages of good software development with students at the start of

their research careers, it is possible to dispel any preconceived assumptions that careful coding

practices will inherently slow down the pace of research. Our experience, both as PhD supervi-

sors and PhD students, is that while students are often enthusiastic to learn software develop-

ment as a new skill, the benefits to scientific research of a formal grounding in sound software

engineering practices may not be immediately apparent at the start of the PhD. The advantage

of, for example, taking a test-driven approach is typically realized later in the PhD, as codes

developed early in the PhD can be extended and built upon with confidence. Ultimately, good

software practices such as automated testing and prudent refactoring can prevent bugs, flawed

results, and retractions [37].

As we discuss further in Rule 8 below, these benefits can be reinforced through structured

peer mentoring. Over time, this results in a body of robust and reusable open-source software

underpinning the long-term research within the group, and these benefits become more

immediately obvious and self-sustaining.

Rule 2: Support students to develop good coding practices

There are a variety of schools of thought for proper coding practices, and giving students a

degree of freedom over the standards they adopt can encourage accountability and teach the

role of such practices. However, it is essential to provide students with direction for what good

code is. This will help student groups to come to a consensus that aligns with widely used pro-

gramming practices, while still leaving enough room for interpretation. It is often helpful to

introduce students to general standards used by existing projects/domains, before allowing

them to adjust it based on the specific requirements of their work. This is a key concept in the
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FAIR (Findable, Accessible, Interoperable and Reusable) principles for research software [38],

where accordance with domain-specific standards supports code reuse by ensuring their code

can interoperate with other codebases in the future.

When introducing coding standards, and encouraging students to think critically about

how their code should be written, it can be helpful to direct them to think about points such as

the following:

• Can you choose meaningful and understandable variable and function names, so that your

code is somewhat self-documenting?

• What are the naming conventions in your programming language? (For example, in Python,

the PEP 8 Style Guide prescribes the use of snake case for function and variable names, and

camel case for class names.)

• How will you lay out your code? While aspects such as indentation are part of the syntax in

some languages (like Python), this (along with the use of whitespace and allowed line length)

is a stylistic choice in others.

• How will you document your code and communicate changes (such as refactoring) to others

working on the same codebase?

The impact of such changes on the readability of the code (without changing its function)

can be seen in Fig 2. Similarly, it can be helpful to warn students of so-called “code smells,”

which suggest failures to adhere to good software practices and are associated with increased

code maintenance [39,40]. Students should be asked to avoid situations such as the following

(unless they have a good reason to break the guidelines):

• Functions should not contain more than 20 lines.

• Repeated code should be combined into a function for re-use.

• Unused features (created to anticipate future functionality that never gets implemented)

should be removed.

Fig 1. While sustainable approaches to software development can require more effort than a quick-and-dirty

coding style initially, they quickly become time-saving over medium-to-long time scales.

https://doi.org/10.1371/journal.pcbi.1012410.g001

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012410 September 12, 2024 4 / 18

https://doi.org/10.1371/journal.pcbi.1012410.g001
https://doi.org/10.1371/journal.pcbi.1012410


• Standard library functions/data types (i.e., min/max functions or arrays) should not be reim-

plemented from scratch.

• Long parameter lists (i.e., with more than four parameters) may be collapsed into a single

object.

• Functions/classes/methods should not have multiple responsibilities. If they do, their scope

should be simplified by defining additional functions/classes/methods.

While these approaches may require some refactoring of the student’s code, this typically

results in significant time savings over the lifetime of the code, reducing the amount of time

spent debugging—the balance of such approaches is discussed by Balaban and colleagues [41].

These good practices may be developed interactively through exercises identifying antipattern

in deliberately poorly written code and then rectifying the issues with it. This can also help

Fig 2. Codes snippets A–C are all valid Python and implement identical functionality. However, they vary in

readability: (A) is difficult to understand for anyone except the original author; (B) is much improved, but perhaps

suffers in readability due to verbose commenting; (C), however, should be directly interpretable on account of

meaningful variable names and sensible object-oriented architecture.

https://doi.org/10.1371/journal.pcbi.1012410.g002

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012410 September 12, 2024 5 / 18

https://doi.org/10.1371/journal.pcbi.1012410.g002
https://doi.org/10.1371/journal.pcbi.1012410


students appreciate the difficulties associated with working on poorly written code and moti-

vate the importance of good coding practices before they begin working on larger-scale proj-

ects. Additionally, students should take the time to explore the features of static analysis tools

and Integrated Development Environments to support their efforts to follow good coding

practices (see Rule 9).

Rule 3: Advocate the role and importance of open-source and

collaborative development

We encourage open-source development using sites such as GitHub (Fig 3) and find that most

students are enthusiastic about sharing their work in this way. The benefits of open-source

development for early career researchers [42,43], software quality [44,45], and research in gen-

eral [46,47] are well documented.

This also prompts students to think about how their work may be shared, and we specifi-

cally teach the students how to package and distribute their code, including managing depen-

dencies and publishing to package management systems such as pip or CRAN. The students

also explore how they can facilitate other researchers’ use of their code, such as by providing

online documentation, installation instructions/executable files, and example workflows.

Finally, we cover code maintenance, so that students are familiar with the complete life-cycle

of a software product, and can make informed decisions on maintaining or withdrawing sup-

port for different operating systems or versions of external dependencies.

We recognize that open-source development may not always be completely possible, for

example, if industrially partnered research projects involve proprietary data or methods that

must be hidden, but in these situations believe it is helpful to train students to share their code

to the extent possible. Collaborative work is still possible in this context, through the careful

use of private repositories, or excluding sensitive data from public versions of the repository.

Students are also taught about the importance of software licensing to allow the reuse of their

software, and the different approaches that licenses take to redistribution and proprietization.

Clear licensing and accessible software (including metadata) are both key features of the FAIR

principles for research software [38].

Having a public-facing repository also means that software may attract those in the wider

community to act as co-developers, which can also encourage students to take more ownership

and care of the quality of the repository. As other users can see, use or even contribute to their

Fig 3. Version control tools such as GitHub make it easy for developers to keep track of changes in a software

codebase.

https://doi.org/10.1371/journal.pcbi.1012410.g003
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code, software development principles discussed in Rule 2 such as ensuring code quality and

good documentation have immediate benefits. The potential for wider involvement also

prompts students to review how they might support third parties wishing to contribute, seek

support, or report issues in the software. As part of this, students are guided to promote rec-

ommended community standards by providing public contribution guidelines, issue tem-

plates, discussion boards, and security policies for their software [48]. Previous teaching

projects [49] within the SABS:R3 program have attracted external collaborators across the

globe, as a result of effective publishing through GitHub and clear open-source contribution

guidelines.

Rule 4: Use agile development practices

Among different development paradigms, so-called “agile” development has many features

that are beneficial to scientific research. Project goals are typically not fully defined at the con-

ception of a project and are often informed by preliminary and intermediate results, so the

ability to easily refactor the codebase is essential. Agile development methodologies account

for this through concise planning horizons (often termed “sprints” or “iterations”), working

towards coding targets that can be feasibly accomplished in a reasonable time frame (typically

1 month). This approach facilitates the rapid creation of working prototypes and mitigates the

phenomenon of “analysis paralysis,” a pitfall that arises when attempting to anticipate too

many potential future requirements.

While there are several frameworks for agile development such as “Scrum” or “eXtreme

Programming” [50], we emphasize the basic principles in our courses rather than any particu-

lar approach. The key principles are continuous integration (that is, always having a codebase

that passes automated tests and is safe to deploy, even if lacking features), test-driven develop-

ment (wherein tests are written before the source code itself, requiring students to consider the

best interface for new code), short-range planning, and frequent code refactoring (reorganiza-

tion and tidying). These characteristics provide a good framework to adapt to changing

demands and evolving research questions; importantly, they produce software that is well

tested—whose outputs do not change without developers realizing it [51–53].

Rule 5: Create a real-world project that is ambitious, relevant, and

exciting

In general, we learn skill-based knowledge best by doing, rather than through taught lectures

or textbooks [54,55]. For this reason, we developed annual group projects for students to con-

solidate the software development skills introduced in taught courses. These problems should

not be toy projects; they should be challenging, real-world problems that have not been tackled

before. We have found that this novelty motivates students to engage more directly with the

project [56].

These projects should also have wider relevance outside of pure pedagogy, be it to academic

research or industrial applications (Fig 4). This typically necessitates a larger scale problem

than typical teaching/textbook problems, requiring a team of students to tackle it together.

This resembles effective software engineering in industry, where good software is developed in

large, multi-disciplinary groups. This will be in contrast with the primarily individual experi-

ence that students typically gain during undergraduate research projects, where individual

scripts are written to answer a specific research question rather than creating a tool for explor-

ing a wider field of research. These larger projects help to contextualize the role and uses of

research software, and develop students’ experience and confidence in working with a large

codebase. A few examples of projects we have previously run with student cohorts are linked
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below, to give a perspective of both the wide range of research areas covered and the scope of

possible outcomes of these projects:

• Epidemiological agent-based modeling (EpiABM) software, based on CovidSim model

developed at Imperial College London [49].

• An educational game based on the process of designing new drugs, developed in

collaboration with Roche [57].

• Extensible quality control tool for clinical images, developed in collaboration with GE

Healthcare [58].

Ensuring that these projects have tangible outputs is also key to student engagement. The

key output for these projects is a complete software package, which should be open-source if

possible (see Rule 3) to enable the wider research community to engage with this work. Addi-

tionally, because the projects are drawn from real-world research questions, successful soft-

ware outputs will involve insightful, novel results shedding light on some scientific problem.

This gives students the motivation to apply rigorous scientific thinking to any modeling

assumptions inherent in their software and to examine their software’s behavior in some rigor-

ous way (for example, by comparing its predictions to existing benchmark data or established

comparator methods).

Furthermore, in SABS:R3, projects were developed in collaboration with industrial partners

to tackle problems in their respective fields, and many of these industrial partners have

Fig 4. To keep students of all interests and backgrounds excited, we recommend software projects that are oriented

towards appealing scientific subjects (e.g., biology, epidemiology, chemistry), rather than projects that dwell merely on

more foundational computer science or algorithmic tasks.

https://doi.org/10.1371/journal.pcbi.1012410.g004
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subsequently used the open-source research outputs in-house. The industrial partners have

also supported the projects, funding access to compute resources or providing access to data-

bases to enable these projects to have real-world impact. The impact may also be tracked more

broadly, through a combination of direct software engagement (i.e., downloads or citations),

or public event engagement (such as the attendance at a software workshop). Development of

web-hosted user-friendly interfaces allows greater quantification of the impact through telem-

etry tracking the number of users, use frequency, and typical use cases.

Providing publishing opportunities, either within dedicated software journals or through

scientific journals in cases where the software has been used for notable scientific applications,

can also provide a concrete end goal for students. Thus far, 3 cohorts within the SABS:R3 pro-

gram have published (or prepared for publication) descriptions of their software and associ-

ated scientific findings in reputable journals [30,31]; further scientific and software

publications are anticipated in future years of the program.

Rule 6: Set up long-term projects for multiple cohorts of students

We have typically run multi-cohort projects, with a new cohort of students working to extend

an existing codebase developed by a previous cohort in the preceding years. The benefits of

this are twofold. Firstly, it allows more ambitious projects to be tackled which might not be

attainable in a year (Fig 5). Secondly, developing someone else’s codebase is an essential soft-

ware skill and encourages students to write their code with future developers in mind.

While most teaching in academic settings focuses on developing a new codebase, this is

rarely the reality of software development in academia or industry, and it is common for new

starters to struggle to adapt to working on legacy code instead of developing new projects [59].

Providing experience of this in a teaching setting (and often with the luxury of access to the

previous developers—see Rule 8) gives students the skills required to implement changes in

long-standing research software codebases.

Projects which merely involve the maintenance of an existing codebase, without adding any

new features, are in our experience less likely to spur significant student interest, so we recom-

mend that legacy software projects always involve adding some new features.

Multi-cohort projects can also adapt to changes in the project motivation—for example, a

project developing broad epidemiological inference software at the start of the COVID-19 pan-

demic [30], was redirected to develop agent-based modeling software [31] following the high-

profile use of this approach in UK governmental response to the pandemic [60]. This software

package was recently extended by a subsequent year group to interface with spatial data reposi-

tories and integrate accurate population information into epidemiological models [61]. This

approach ensured the relevancy of the software being developed, and that it would continue to

be supported and maintained after the original developers graduated from the teaching course.

Fig 5. While all year-long projects should produce a complete and usable product, these can then be further

extended by subsequent cohorts. Such extensions should not be trivial “bolt-ons,” but rather fundamentally extend

the functionality of the software output, which may require students to modify/refactor existing elements of the

codebase.

https://doi.org/10.1371/journal.pcbi.1012410.g005
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To develop skills in software maintenance, we also encourage students (even those not

involved in peer supervision (see Rule 8)) to revisit any maintenance-related concerns that

arise after they complete the training program.

In addition to this focus on developing preexisting codebases, we recognize that the process

of embarking on a “greenfield” software project—where students must create a new software

library from scratch—still provides valuable lessons in how to set up the fundamental architec-

ture and collaborative infrastructure of a software project. We have therefore found it valuable

to set aside the first few days of the training for a greenfield “mini-project.” This approach also

allows instructors to gain a detailed insight into student ability levels, strengths, and weak-

nesses, which can guide the goals and organization of the primary project.

Rule 7: Encourage collaboration within mixed-ability groups

Software development is rarely a solo endeavor, and this should be reflected in the teaching

environment. Group work encourages students to learn from each other’s coding styles, as

well as “soft skills” such as communication and teamwork within the specific context of soft-

ware development.

Students are not a homogeneous group; however, they will enter any program with differ-

ing levels of experience. While this can be seen as a disadvantage, collaboration within groups

allows students to share their various individual skill sets, becoming their own teachers as they

share their particular specialties [62]. For example, students with more experience can gravi-

tate towards leadership or design roles, while the less experienced students can learn from

more experienced, for example, through pair programming [63,64]. Ideally, groups should be

large enough to contain students with a variety of skill levels (Fig 6) and enable some degree of

specialization between students, but small and cohesive enough for all students to maintain

familiarity with all aspects of the project. We have found that groups of 4 to 5 students work

very well.

These groups also give students a strong motivation to develop project management skills

via planning discussions and delegation of responsibilities among themselves. Although formal

training in project management techniques may be available at some institutions or from

other sources, such training is typically classroom-based and often optional. This means that

students will benefit from consolidating these skills in a practical context, to refresh concepts

they may have previously encountered in taught modules. Group software work also requires

the use of version control software, and developing skills such as branch management, bug

tracking, and code review that students are taught at the start of the course, but may not have

applied during solo projects.

With larger-scale projects (see Rule 5), it is inevitable (and indeed desirable) that projects

will be modular, and readily broken into separate tasks. Despite this, it is important to ensure

that the different aspects of the project still interact where possible so that learners are not

working in isolation on their sections. This interaction often happens explicitly (for example,

when developing a computational pipeline where elements must interface effectively), but

ensuring individual students are not isolated working on separate aspects of the codebase is

crucial to ensuring that the students learn from each other’s experience. Peer-to-peer learning

and assessment may be strengthened by promoting a shared responsibility in code review,

developing teamwork and communication skills within a computational environment as well

as exposing students to new approaches and design patterns in their peers’ code. These

approaches also help avoid premature specialization, where students only learn about their

own features and miss out on skills from other areas; similarly, all learners should be comfort-

able documenting and testing their code, rather than leaving this to a single individual.
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We have found it most effective for students to have the chance to work together in person,

enabling collaborative activities such as regular stand-up meetings and pair programming.

When students are working remotely, appropriate collaboration tools should be employed and

project leaders should ensure that all students remain actively involved in the project (e.g., via

holding regular group and one-on-one meetings, or monitoring contributions to identify any

students who might be withdrawing from the project), for the benefits of collaborative activi-

ties such as pair programming to still be realized [65,66]. For example, we have found it effec-

tive when students engage in pair programming remotely using the screen-sharing facility

offered by most video conferencing platforms, possibly in conjunction with the live-coding

feature present in some modern IDEs such as VSCode.

Rule 8: Organize supervision from former students and peers

Practical courses at a graduate level are often limited in scope by the availability of senior aca-

demics to offer supervision. Instead, more senior students on the course can act in supervisory

roles for these projects—able to provide hands-on supervision, and a more informal resource

(away from senior academics) to answer questions about unfamiliar aspects of software devel-

opment (such as unit testing). Drawing students from previous cohorts that worked on the

same project is particularly advantageous (and is a proven technique in open source develop-

ment: used, for example, in Google’s Summer of Code [https://google.github.io/gsocguides/

mentor/]), as this ensures that student supervisors have a strong familiarity with the

Fig 6. Cohort heterogeneity can take many forms, such as previous academic degrees/professional experience, prior fluency in different

programming languages (which may or may not include the teaching language of the course), and familiarity with wider software

development skills. Course leaders can take advantage of this range when designing and supervising projects so that all students can both utilize

their own strengths and learn skills from others. Created with BioRender.com.

https://doi.org/10.1371/journal.pcbi.1012410.g006
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underlying codebase. This relationship is also beneficial for the supervising student—as well as

learning through their teaching they also have first-hand experience of the struggles new devel-

opers may have picking up their codebase and how they could mitigate this in future projects.

This supervision also mimics professional structures common in industry, where junior

developers will typically submit work to senior developers for code review. Another good prac-

tice for learners (and supervisors) who may later wish to transition to careers in the tech sector

is the formal use of version control features and code review. Code review can also help to

update other members of the team on features within the code and formalize the protocol for

introducing significant changes into the main codebase, including those that affect wider

functionality.

Encouraging peer code review, where learners begin to review each other’s pull requests, is

also highly beneficial to ensure continual feedback on code outputs. This form of comprehen-

sive peer supervision can be supported by continuous integration metrics such as test coverage

and code quality, reducing some of the supervision requirements in student projects by auto-

matically highlighting issues in the students’ code that they must resolve themselves [67]. Peer-

to-peer feedback can also be used to derive assessment metrics of student performance [68].

Rule 9: Focus on the process, not the final outcome

Although projects should be ambitious and exciting (Rule 5), the final outcomes of these proj-

ects should never come at the expense of the learning process. Course leaders should endeavor

to foster a creative environment where students are focused on achieving the desired function-

ality in the best way possible (rather than the most functionality possible), enabling students to

produce higher-quality outputs and develop stronger software development skills to take for-

ward into their future projects.

Students will gain more from having the time and freedom to write higher-quality code at a

slower pace, rather than rushing to complete targets. For this reason, we do not recommend

formal assessment (i.e., grades) of student contributions to software training projects; instead,

informal and constructive feedback on students’ rate of progress, strengths, and areas for

improvement should be provided by instructors and mentors. Meanwhile, students should

also be continuously receiving detailed, practical feedback on their code via code review from

their peers or course demonstrators.

This focus on personal development also provides students with a unique opportunity to

learn features and patterns of the programming language with which they are unfamiliar, in a

way that is rarely achieved elsewhere in their studies when working to deadlines. However, stu-

dents should avoid using this freedom to delve into obscure, esoteric, or overly academic cod-

ing styles, and they should be encouraged to keep the practical goals of the project in mind as

they explore more advanced concepts in their programming language (see Rule 2).

If the initial project aims turn out to be too ambitious, projects should be rescoped to focus

on some smaller goals that the students can more confidently achieve without ever feeling the

need to forego good software engineering practices. Alternatively, students can be divided into

different streams working on different aspects of the project, or initially be assigned an easier

toy project to develop various software development skills before launching into more ambi-

tious year-long projects where they learn to balance best practices with time and resource

limitations.

Another key benefit of this teaching program is the opportunity to explore and develop

familiarity with common software development tools, as proficiency in these will boost their

productivity throughout both their PhD and subsequent career choices in computational

fields. As introduced in Rule 7, one key aspect of this is familiarity with version control tools
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such as Git, and the importance of this skill has been addressed in “Ten Simple Rules for Tak-

ing Advantage of Git and GitHub” [27]. Students should be taught and encouraged to utilize

features of GitHub widely, for example, to document bugs and planned features through issues

or peer-review each other’s code through pull requests. An additional advantage of students

engaging with GitHub features is that they will build up a public history of code commits,

issues, pull request reviews, and other software-related tasks; such track records are extremely

valuable evidence of software-related competency during the hiring process for both industry

and academic jobs involving software development.

Similarly, familiarity with the functionality of Integrated Development Environments

(IDEs), including built-in debugging and refactoring tools, is important for efficient software

development and is associated with students’ improved learning and productivity [69]. Learn-

ers may also find it helpful to use static analysis tools, such as PVS-Studio (for C, C++, and

Java) or flake8 (for Python), which provide feedback on code style to develop awareness of

clean code practices.

Furthermore, outcomes may not simply be limited to the academic output or even the func-

tion of the code. The importance of software development practices can be emphasized,

including software development goals as well as functionality—for example, a group may tar-

get publishing complete documentation online, or 100% unit test coverage. When a software

project is used as part of a scientific publication, the quality of the underlying software design

and engineering (for example, in user-friendliness, extensibility, and reproducibility) should

be highlighted in the publication.

Rule 10: Build a community to “future-proof” your project

Our experience over the last 2 decades highlights the potential benefits of providing advanced

training in software development in the context of a “live” applied research project. Our first

experience with this approach was in 2005, when we used the initial development of the Chaste

(Cancer, heart, and soft tissue environment) physiological modeling software [70–73] to teach

test-driven, agile software development practices to a cohort of 10 PhD students and several

postdoctoral researchers. Over the intervening period, Chaste has become one of the leading

such platforms and is in continual use by research groups across the world (Fig 7). Over 50

early career researchers have contributed to its development, and several of the original Chaste

developers now use it within their own research groups in academia, industry, and at regula-

tory authorities.

Although this success is unlikely to be replicated in every such training-driven and hence

student-led development project, our similar experience in the development of PINTS (Proba-

bilistic inference for noisy time series) [74] suggests that this approach has the potential to

deliver sustainable and reusable software platforms to the research community with surprising

frequency. The key here, we believe, is the generation of a community of researcher-developers

who take collective ownership of the code and, through joint publications and frequent code

releases, have a joint interest in its continued maintenance and use. This community stemmed

from an early focus on developing the user base of this software from the original developers

to a wider, multi-institutional community. For further details on this development, we refer

readers to excellent Ten Simple Rules articles that have previously addressed community-

building [75], and promotion/sponsorship [76].

Communities of software users, developers, and maintainers can take many forms and may

range in scale from local collaborations within a university up to the more global network we

observed with Chaste (Fig 7). Although such communities will inevitably tend to develop

alongside existing collaborative relationships, it is also possible to start building connections
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with developers in other regions of the world using online, collaborative development tools

such as GitHub (see Rule 3).

Building such communities can future-proof a code base, and perhaps suggest a new and

more sustainable model for the development of the computational tools and software that

increasingly underpin research.

Conclusions

Instilling good software development practices in early career researchers is invaluable in

ensuring the impact of their computational outputs, but software development does not always

receive as much attention in student scientific computational training as it deserves. Our expe-

rience running doctoral training programs focused on software development for 15 years has

shown that this is best achieved through active learning on ambitious group projects targeting

real-world problems, mentored by older students on the program. Feedback from students has

supported these views, with many students being enthusiastic about learning and applying sus-

tainable software development practices using the approaches we have discussed here and con-

tinuing to apply the practices in their work after the conclusion of the course. This teaching

pathway has demonstrated a track record of success in open-source software development,

with a range of widely used software packages developed by students during their PhDs, which

is available at https://github.com/SABS-R3/software-outputs. For example, students who

Fig 7. We downloaded the first 50 citing papers of Chaste [72] according to Google Scholar (ordered by relevance), and, for each paper, we plot the

location of the city of the first corresponding author’s institution as an orange dot, with orange lines indicating the great circle path from that location

to Oxford, England where Chaste was originally developed. Public domain continents data from Natural Earth.

https://doi.org/10.1371/journal.pcbi.1012410.g007
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developed an automated pipeline to build antibody databases during this teaching program

have subsequently used this domain-specific experience to publish highly cited antibody struc-

ture prediction tools [77], antibody language models [78], and antibody paratope predictors

[79]. In each case, the incorporation of techniques such as automated workflows, contribution

templates, and module packaging that they learned during the teaching course has been instru-

mental in the widespread sharing and reuse of their software outputs.

We hope that other graduate training schemes may consider adopting these strategies in

their own institutions, to promote the value of sustainable software development, and the

research benefits it can bring.
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4. Šulc P, Romano F, Ouldridge TE, Rovigatti L, Doye JPK, Louis AA. Sequence-dependent thermody-

namics of a coarse-grained DNA model. J Chem Phys. 2012; 137(13):135101. https://doi.org/10.1063/

1.4754132 PMID: 23039613

5. Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, Crozier PS, et al. LAMMPS—a

flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum

scales. Comput Phys Commun. 2022; 271:108171. https://doi.org/10.1016/j.cpc.2021.108171

6. Guyer JE, Wheeler D, Warren JA. FiPy: Partial Differential Equations with Python. Comput Sci Eng.

2009; 11(3):6–15. https://doi.org/10.1109/MCSE.2009.52

7. Gad AF. PyGAD: an intuitive genetic algorithm Python library. Multimed Tools Appl. 2023. https://doi.

org/10.1007/s11042-023-17167-y

8. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array program-

ming with NumPy. Nature. 2020; 585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2

PMID: 32939066

9. Cadwallader L, Mac Gabhann F, Papin J, Pitzer VE. Advancing code sharing in the computational biol-

ogy community. PLoS Comput Biol. 2022; 18(6):e1010193. https://doi.org/10.1371/journal.pcbi.

1010193 PMID: 35653366

10. Baker M. 1500 scientists lift the lid on reproducibility. Nature. 2016; 533(7604):452–454. https://doi.org/

10.1038/533452a PMID: 27225100

11. Trisovic A, Lau MK, Pasquier T, Crosas M. A large-scale study on research code quality and execution.

Sci Data. 2022; 9(1). https://doi.org/10.1038/s41597-022-01143-6 PMID: 35190569

12. Konkol M, Kray C, Pfeiffer M. Computational reproducibility in geoscientific papers: Insights from a

series of studies with geoscientists and a reproduction study. Int J Geogr Inf Sci. 2018; 33(2):408–429.

https://doi.org/10.1080/13658816.2018.1508687

13. Chang AC, Li P. Is Economics Research Replicable? Sixty Published Papers From Thirteen Journals

Say “Often Not”. Crit Financ Rev. 2022; 11(1):185–206. https://doi.org/10.1561/104.00000053

14. Stodden V, Seiler J, Ma Z. An empirical analysis of journal policy effectiveness for computational repro-

ducibility. Proc Natl Acad Sci U S A. 2018; 115(11):2584–2589. https://doi.org/10.1073/pnas.

1708290115 PMID: 29531050

15. Pimentel JF, Murta L, Braganholo V, Freire J. A Large-Scale Study About Quality and Reproducibility of

Jupyter Notebooks. In: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR). IEEE; 2019. p. 507–517. Available from: http://dx.doi.org/10.1109/MSR.2019.00077.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012410 September 12, 2024 15 / 18

https://doi.org/10.1038/nrg3096
http://www.ncbi.nlm.nih.gov/pubmed/22048662
https://doi.org/10.1371/journal.pbio.2002050
https://doi.org/10.1371/journal.pbio.2002050
http://www.ncbi.nlm.nih.gov/pubmed/28278152
https://doi.org/10.1371/journal.pcbi.0020087
http://www.ncbi.nlm.nih.gov/pubmed/16965174
https://doi.org/10.1063/1.4754132
https://doi.org/10.1063/1.4754132
http://www.ncbi.nlm.nih.gov/pubmed/23039613
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1109/MCSE.2009.52
https://doi.org/10.1007/s11042-023-17167-y
https://doi.org/10.1007/s11042-023-17167-y
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1371/journal.pcbi.1010193
https://doi.org/10.1371/journal.pcbi.1010193
http://www.ncbi.nlm.nih.gov/pubmed/35653366
https://doi.org/10.1038/533452a
https://doi.org/10.1038/533452a
http://www.ncbi.nlm.nih.gov/pubmed/27225100
https://doi.org/10.1038/s41597-022-01143-6
http://www.ncbi.nlm.nih.gov/pubmed/35190569
https://doi.org/10.1080/13658816.2018.1508687
https://doi.org/10.1561/104.00000053
https://doi.org/10.1073/pnas.1708290115
https://doi.org/10.1073/pnas.1708290115
http://www.ncbi.nlm.nih.gov/pubmed/29531050
http://dx.doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1371/journal.pcbi.1012410


16. Howison J, Bullard J. Software in the scientific literature: Problems with seeing, finding, and using soft-

ware mentioned in the biology literature. J Assoc Inf Sci Technol. 2015; 67(9):2137–2155. https://doi.

org/10.1002/asi.23538
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66. Schümmer T, Lukosch SG. Understanding tools and practices for distributed pair programming. J Univ

Comput Sci. 2009; 15(16):2009.

67. Sus JG, Billingsley W. Using continuous integration of code and content to teach software engineering

with limited resources. In: 2012 34th International Conference on Software Engineering (ICSE). IEEE;

2012. p. 1175–1184. https://doi.org/10.1109/icse.2012.6227025

68. Clark N, Davies P, Skeers R. Self and peer assessment in software engineering projects. In: Proceed-

ings of the 7th Australasian conference on Computing education-Volume 42. 2005. p. 91–100.

69. Dyke G. Which Aspects of Novice Programmers’ Usage of an IDE Predict Learning Outcomes. In: Pro-

ceedings of the 42nd ACM Technical Symposium on Computer Science Education. SIGCSE ‘11. New

York, NY, USA: Association for Computing Machinery; 2011. p. 505–510. https://doi.org/10.1145/

1953163.1953309

70. Pitt-Francis J, Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Fletcher AG, et al. Chaste: A test-

driven approach to software development for biological modelling. Comput Phys Commun. 2009; 180

(12):2452–2471. https://doi.org/10.1016/j.cpc.2009.07.019

71. Osborne JM, Walter A, Kershaw S, Mirams G, Fletcher A, Pathmanathan P, et al. A hybrid approach to

multi-scale modelling of cancer. Philos Trans A Math Phys Eng Sci. 1930; 2010(368):5013–5028.

72. Mirams GR, Arthurs CJ, Bernabeu MO, Bordas R, Cooper J, Corrias A, et al. Chaste: An Open Source

C++ Library for Computational Physiology and Biology. PLoS Comput Biol. 2013; 9(3):e1002970.

https://doi.org/10.1371/journal.pcbi.1002970 PMID: 23516352

73. Cooper FR, Baker RE, Bernabeu MO, Bordas R, Bowler L, Bueno-Orovio A, et al. Chaste: cancer,

heart and soft tissue environment. J Open Source Softw. 2020; 5(47). https://doi.org/10.21105/joss.

01848 PMID: 37192932

74. Clerx M, Robinson M, Lambert B, Lei CL, Ghosh S, Mirams GR, et al. Probabilistic Inference on Noisy

Time Series (PINTS). J Open Res Softw. 2019. https://doi.org/10.5334/jors.276

75. Sholler D, Steinmacher I, Ford D, Averick M, Hoye M, Wilson G. Ten simple rules for helping newcom-

ers become contributors to open projects. PLoS Comput Biol. 2019; 15(9):e1007296. https://doi.org/10.

1371/journal.pcbi.1007296 PMID: 31513567

76. Prlić A, Procter JB. Ten Simple Rules for the Open Development of Scientific Software. PLoS Comput

Biol. 2012; 8(12):e1002802. https://doi.org/10.1371/journal.pcbi.1002802 PMID: 23236269

77. Abanades B, Georges G, Bujotzek A, Deane CM. ABlooper: fast accurate antibody CDR loop structure

prediction with accuracy estimation. Bioinformatics. 2022; 38(7):1877–1880. https://doi.org/10.1093/

bioinformatics/btac016 PMID: 35099535

78. Olsen TH, Moal IH, Deane CM. AbLang: an antibody language model for completing antibody

sequences. Bioinform Adv. 2022; 2(1). https://doi.org/10.1093/bioadv/vbac046 PMID: 36699403

79. Chinery L, Wahome N, Moal I, Deane CM. Paragraph—antibody paratope prediction using graph neural

networks with minimal feature vectors. Bioinformatics. 2022; 39(1). https://doi.org/10.1093/

bioinformatics/btac732 PMID: 36370083

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012410 September 12, 2024 18 / 18

http://spiral.imperial.ac.uk/handle/10044/1/77482
https://arxiv.org/abs/2310.13468
https://arxiv.org/abs/2310.13468
https://doi.org/10.1145/2839509.2844642
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1109/tse.2010.59
https://doi.org/10.1109/tse.2010.59
https://doi.org/10.1109/icse.2012.6227025
https://doi.org/10.1145/1953163.1953309
https://doi.org/10.1145/1953163.1953309
https://doi.org/10.1016/j.cpc.2009.07.019
https://doi.org/10.1371/journal.pcbi.1002970
http://www.ncbi.nlm.nih.gov/pubmed/23516352
https://doi.org/10.21105/joss.01848
https://doi.org/10.21105/joss.01848
http://www.ncbi.nlm.nih.gov/pubmed/37192932
https://doi.org/10.5334/jors.276
https://doi.org/10.1371/journal.pcbi.1007296
https://doi.org/10.1371/journal.pcbi.1007296
http://www.ncbi.nlm.nih.gov/pubmed/31513567
https://doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pubmed/23236269
https://doi.org/10.1093/bioinformatics/btac016
https://doi.org/10.1093/bioinformatics/btac016
http://www.ncbi.nlm.nih.gov/pubmed/35099535
https://doi.org/10.1093/bioadv/vbac046
http://www.ncbi.nlm.nih.gov/pubmed/36699403
https://doi.org/10.1093/bioinformatics/btac732
https://doi.org/10.1093/bioinformatics/btac732
http://www.ncbi.nlm.nih.gov/pubmed/36370083
https://doi.org/10.1371/journal.pcbi.1012410

