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Abstract: Effusion cooling is often regarded as one of the critical techniques to protect solid surfaces
from exposure to extremely hot environments, such as inside a combustion chamber where tem-
perature can well exceed the metal melting point. Designing such efficient cooling features relies
on thorough understanding of the underlying flow physics for the given engineering scenarios,
where physical testing may not be feasible or even possible. Inevitably, under these circumstances,
modelling and numerical simulation become the primary predictive tools. This review aims to give a
broad coverage of the numerical methods for effusion cooling, ranging from the empirical models
(often based on first principles and conservation laws) for solving the Reynolds-Averaged Navier–
Stokes (RANS) equations to higher-fidelity methods such as Large-Eddy Simulation (LES) and hybrid
RANS-LES, including Detached-Eddy Simulation (DES). We also highlight the latest progress in
machine learning-aided and data-driven RANS approaches, which have gained a lot of momentum
recently. They, in turn, take advantage of the higher-fidelity eddy-resolving datasets performed by,
for example, LES or DES. The main examples of this review are focused on the applications primarily
related to internal flows of gas turbine engines.

Keywords: effusion cooling; cooling effectiveness; Reynolds-averaged Navier–Stokes equations;
large-eddy simulation; hybrid RANS-LES; machine learning

1. Introduction

Cooling is critical in most heat engines, especially highly efficient gas turbines. Within
the combustor of a modern gas turbine engine, either ground based for power generation or
airborne for propulsion, the temperature of the hot gases as a result of the chemical reaction
can be extremely high and can still reach above 1700 K even towards the downstream at
the exit of the combustor. No metallic material or structure is likely to withstand such
high temperatures without some form of protection. Among many cooling techniques,
film cooling [1] is particularly effective under these conditions. A “film” of cooler air flow,
if well distributed, can cover the critical metal components as the designer intended, hence
providing vital protection against the aforementioned extremely hot environment. Despite
the compressed cooling air temperature being typically around 500 to 800 K, which may
seem to still be very hot, it is sufficiently low to protect the metal components from much
hotter temperatures the components are exposed to.

As the schematic in Figure 1(left) shows, a coolant film is formed on the hot side of
the metal to provide protection. Very often, a single hole or slot to allow for the coolant
to pass would be quite limited as to its effectiveness and cooling efficiency. Achieving
cooling protection, while avoiding some of the complex interactions of a jet-in-cross-flow
(see Figure 2 below), can be challenging. This leads to the second concept in Figure 1(right),
where the number of cooling holes is considerably increased with an array of closely
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spaced holes, namely, the effusion cooling technique. Effusion cooling aims at providing
cooling films fully covering the hot side of the solid surfaces. Theoretically, effusion cooling
becomes transpiration cooling, when the hole diameter and the hole spacing are small
enough. Practically, effusion cooling involves a perforated plate with multi-row holes,
while transpiration cooling involves completely porous materials [2].

Figure 1. Illustrative concepts of film cooling (left) and effusion cooling (right).

Because the multiple cooling holes can be placed quite densely, the adjacent cooling jets
interact with each other and form a fully covering cool film without the need to increase the
jet momentum ratio, hence avoiding jet-in-cross-flow losses. This would directly translate to
better protection and highly efficient use of coolant mass flows. For these reasons, effusion
cooling is regarded as an advanced concept and technique for cooling the combustor
liners and turbine blade in gas turbines [3]. As is shown later in this review, despite
predominant applications of multi-hole effusion cooling in engineering practices, studies
on single-hole arrangements provide more detailed analyses to improve understanding
and modelling methods.

Experimental and computational studies of effusion cooling have been widely con-
ducted due to the highly relevant industrial importance, and their publications can be
quite easily found in the literature. There are also many review articles on the general
subject of effusion cooling. For example, the review article of Wang et al. [2] gives an
extensive account of advanced effusive cooling techniques for turbine blades. However,
the motivation of the present review is to provide an up-to-date review that specifically
focuses on the latest progress in computational efforts in predicting effusion cooling per-
formances, of which some are among the authors’ most recent work, which we believe
is the first of its kind spanning a hierarchy of modelling and simulation methodologies.
Conjugate Heat Transfer (CHT) is not particularly covered in this review simply because,
by means of a dimensionless cooling effectiveness parameter, an adiabatic wall bound-
ary condition is sufficient to assess the cooling performance. The paper is organised as
follows. An overview of the numerical simulations is given first, and four sections of
individual modelling/simulation methods and their representative results are presented
next, followed by a further section on machine learning and data-driven techniques, before
the conclusions.
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Figure 2. Fluid dynamicists’ impression of a single circular coolant jet in a heated crossflow, inspired
by [4]. Notice the presence of horseshoe and wake vortices may not be as strong at different jet angles.

2. Overview of Numerical Methods and Challenges

While the appearances of a film cooling or effusion cooling flow may vary depending
on the configurations and flow conditions, such as Reynolds number (Re), density ratio,
and blowing ratio, the essential flow features they all share can be summarised by those of
a jet-in-cross-flow, as shown in the sketch of Figure 2. It can also be certain as shown in
this review that the Reynolds number given under these conditions would be sufficiently
high, and the turbulent flow regime is typically expected. This defines the challenges posed
to the modelling/simulation methods, which need to deal with not only the turbulence
modelling of the incoming boundary layer, but also jet mixing, separation, and turbulent
transport of enthalpy.

To study such complex heat and mass transfer problems for potentially quite different
configurations, the series of numerical methods vary in a hierarchy of fidelity and cost (see
Figure 3 below). In the meantime, with the addition of machine learning and data-driven
augmentation, higher-hierarchy methods such as DNS or LES also provide datasets to train
new RANS models, as discussed in Section 7.

Despite the variety of methods, one key non-dimensional parameter has been at
the centre of numerical predictions [1–3], which describes the effectiveness of cooling:
the so-called Adiabatic Cooling Effectiveness (ACE), ηad, as defined by:

ηad =
T∞ − Tw

T∞ − Tc
(1)

where T∞ is the bulk temperature of the hot gas stream, Tw the wall temperature or the fluid
temperature immediately next to the wall on the hot side, and Tc the coolant temperature.
Clearly, one expects 0 ≤ ηad ≤ 1 [5–11]. In an idealised situation, where the coolant
provides a perfect protection, Tw = Tc; hence, ηad = 1. Conversely, if Tw is closer to T∞,
i.e., the cooling has not been effective, then ηad → 0. Although by its name, ACE appears
to be a measurement only for an adiabatic wall, it actually reveals the performance of the
convection and diffusion part of the heat transfer process even when the wall is conductive.

To the lowest fidelity end, experimental-data- and first principles-based empirical
relations were first developed to solve a single-row effusion cooling problem. These
attempts also included analytical methods looking at the control volume, employing
mass and energy conservation. Streamline patterns can often be assumed to simply the
problem. As discussed in more detail in Section 3, these methods have managed to produce
reasonable results for single-hole geometries while struggling considerably more with
multi-hole scenarios where spatial periodicity in the streamwise direction cannot be easily
assumed, despite the fact that they are super fast [5–7].

Solving the RANS (Reynolds-Averaged Navier–Stokes) equations is the next level
on the hierarchy triangle. RANS is a vast subject within turbulence modelling (see, for
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example, [12]), which aims for statistical descriptions of the flow. It employs Reynolds
decomposition and time-average to reduce the time-dependent Navier–Stokes equations to
ones that look alike with additional closure terms—Reynolds stresses. Even with Unsteady
RANS (URANS), the averaging time is still much larger than the largest timescale of the
turbulent fluctuations, and as a result, one ends up with conservation equations that
describe the evolution of the mean flow quantities only. However, most RANS models are
calibration-reliant. The fact that a wide range of one-equation and two-equation models are
based on the Boussinesq eddy viscosity hypothesis also means that, due to its questionable
validity, accurate predictions for ηad can be a challenge. Although RANS models not based
on eddy viscosity can still perform relative well, they do suffer from stiffness of the extra
equations of the model itself, such as Reynolds Stress Model (RSM) with up to nine more
equations to solve for each spatial point; otherwise, RANS is generally viewed as being
very efficient to solve.

In contrast to the time-averaging process in RANS, LES (large-eddy simulation) em-
ploys a spatial filtering process instead to remove the unresolvable scales by the grid size.
Hence, subgrid scale stresses would need some kind of closure. However, unlike the
RANS Reynolds stress tensor, the subgrid scale stress tensor only reflects the influence of
small-scale turbulence on large-scale (grid-scale) flow quantities. Section 6 below gives a
full account of the LES methods in predicting ηad. The drawbacks of eddy-resolving LES
are chiefly down to its unrealistic requirement of the number of grid points, N ∼ Re13/7,
for practical applications [13]. As for the fully resolving DNS (direct numerical simulation),
it is only applicable for very low Reynolds number cases, as the number of required grid
points becomes N ∼ Re9/4 [14], even for a conservative estimate.

As its name suggests, a hybrid RANS-LES benefits from the hybridisation of RANS
and LES; therefore, it is more affordable. The zonal hybrid methods are based on a dis-
continuous treatment of the RANS-LES interface, e.g., a fixed wall distance in y+ units.
In practice, information must be exchanged at the RANS-LES interface between two solu-
tions with different spectral contents. The global hybrid methods are based on a continuous
treatment of the flow variables at the interface between RANS and LES. These methods,
like DES (detached eddy simulation) [15], introduce a “gray area” in which the solution is
neither pure RANS nor pure LES since the switch from RANS to LES does not imply an
instantaneous change in the resolution level. Despite a wide number of approaches (and
acronyms), these methods are quite similar and can very often be rewritten as variants
of a small group of generic approaches. In practice, they tend to decrease the level of
RANS eddy viscosity, thus permitting strong instabilities to develop. It is now commonly
accepted that hybrid RANS-LES is the main strategy to drastically reduce computational
cost (compared with LES) in a wide range of complex industrial applications including
effusion cooling if attached boundary layers have a significant impact on the global flow
dynamics. In Section 5, the hybrid methods are fully discussed in further detail.

It is only very recently that high-fidelity methods, such as LES (or DNS), found another
great application—to create machine learning (ML) datasets (although often involving
higher-order statistics) for training augmented RANS models. Evidently, this fascinating
new subject benefits from the latest development of Artificial Intelligence (AI) and data
science, such as Artificial Neuron Network (ANN), which this review also covers towards
the end.
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Figure 3. Hierarchy of fidelity and cost of CFD methods.

3. Semi-Analytical Modelling
3.1. Single-Hole Models

Detailed coolant film formation mechanisms for effusion cooling applications vary
with different hole designs and array configurations owing to the jet-to-mainstream and
jet-to-jet interactions. But the fundamental flow physics for a single-hole application is well
investigated and summarised as a jet-in-cross-flow.

A number of works carried out in the pre-70s of the last century explored different
types of the film or effusion cooling methods, trying to maximize the ACE. The first
paper that summarised all the early works of the jet-in-crossflow type of cooling methods,
including some simplified analytical or semi-empirical models to predict the ACE, was
presented by Goldstein in 1971 [1]. An analytical method using the overall energy and
mass conservation based on the control volume concept was introduced, as Figure 4 shows.

Figure 4. A sketch of the control volume method described by Goldstein [1].

Baldauf and his colleagues [16] presented an empirical solution for the single-row
film cooling effectiveness based on the experimental data. They divided the flow into two
regions, as Figure 5 illustrates: the first one is a complex flow domain with a strong 3D
character located very close to the coolant exit, whilst the second one is located further in
the downstream region where a diluting coolant film with 2D characteristics is identified.
The cooling effectiveness was estimated in the second region using the control volume
analysis and damping functions, in which the correlations were established based on the
experimental data.

Figure 5. A sketch of the coolant film development theory by Baldauf and his colleagues [16].
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LeGrives [17,18] developed another semi-analytical method and identified two mech-
anisms controlling the film cooling effectiveness. As Figure 6 suggests, LeGrives explained
that the dilution process includes not only the mixing of the coolant jet by turbulent dif-
fusion, but also the entrainment of the external mainstream by the vortices. Extensive
measurements, flow visualisations, and derivation attempts were carried out by LeGrives,
who determined an expression for the mass entrainment ratio. Meanwhile, the turbulent
diffusion and entrainment due to the spreading of the jet was derived from the empirical
expressions by Keffer and Bains [19].

Figure 6. A sketch of the semi-analytical method proposed by LeGrives [17,18].

The work by Chen [5] utilised the analytical and semi-analytical models above to
make comparisons with the experimental results by Sinha [20] and a hybrid LES study.
It was found that those analytical models could predict the level of ACE in the far wake
region (x/D > 8) but are completely wrong in the near wake region. These models might
be a good tool to estimate the applications of film cooling where the holes are relatively
large and separated, but they cannot be used for effusion cooling applications where the
coolant holes are small and compact.

3.2. Superposition Models

As explained previously, the difficulty of theoretically predicting the cooling effec-
tiveness of effusion cooling applications is the smaller, more compact, and interacting
coolant jets. Since the 1970s, numerous attempts have been made to establish a model that
extrapolates results from much smaller measurements or calculations for the prediction of
the cooling effectiveness in effusion cooling applications.

In Sasaki et al.’s work [21], they compared the experimental results of a multi-row
effusion cooling application with Sellers’ superposition model [22] from single-hole results.
They suggested that the superposition model is only able to provide good agreement in a
far wake region (x > 3D) and only when the holes are laterally widely spaced.

The superposition method is also developed for predictions that evolve conjugate heat
transfer (CHT) in effusion cooling cases to combine the heat convection in the fluid with
conduction within the solid wall. The implemented heat sink method proposed earlier
by Mayle [23] was used in a full-coverage effusion cooling study performed by Eckert
in 1984 [24]. The blade leading edge was cooled by 11 rows of cooling holes, and heat
transfer coefficients were calculated from measurements of adiabatic wall temperature.
The analytical model did not give satisfactory results compared to the measurements.
Recently, Arcangeli et al. [25] developed a simplified 2D conjugate approach to calculate the
cooling effectiveness of an effusion cooled plate based on correlations from experimental
results. For the conjugate plate, a good parabolic correlation was derived between the
coolant mass flow rate and cooling effectiveness, but it does not work for adiabatic walls.
Moreover, as the authors stated, the correlation only works for certain input parameters
similar to their experimental conditions. The universality has not yet been demonstrated.

The research team of Crawford et al. [26,27] chose another approach of using an
injection model with an adjusted turbulent mixing length. This model was tested by
experimental data of a flat copper plate with a fixed hole size at different injection angles,
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blowing, and density ratios. The model predicted the downstream region of the first few
rows well despite the transition region. However, this model only works for low blowing
ratios and failed to provide reliable results at high blowing ratios.

Andreini and his colleagues at the University of Florence explored the semi-analytical
model for the multi-hole effusion cooling case in the early 2010s [28,29]. They started with
experimental measurements of effusion-cooled multi-perforated plates representing the
combustor liner [28]. Some analytical work was carried out to establish, in an indirect
way, the augmentation of the hot-side heat transfer coefficient due to effusion jets. Later,
they carried out some RANS simulations [29] on a 3-million-cell wall-resolving grid using
Menter’s k-ω Shear Stress Transport (SST) model in ANSYS CFX. It is worth noting that
they also simulated the thermal conduction within the plate between the hot and cold sides
for the purpose of developing a lower-order heat sink model for CHT prediction.

Although the need for analytical or semi-analytical models has decreased with rising
computational power, engineering design still benefits from those simplified or lower order
models, especially when determining the arrangement of hundreds of coolant holes in a
combustor liner. Unfortunately, none of the models presented so far provide satisfactory
accuracy and universality in cooling effectiveness predictions.

4. Reynolds-Averaged Navier–Stokes Modelling

The RANS modelling of single- and multi-hole cooling flows is well-featured within
the literature. Broadly, numerical studies from linear two-equation turbulence models to
Reynolds stress models have been explored to close the Reynolds stress term. However,
studies of turbulent heat flux closures are less diverse, and in earlier work, the closure
method is often not discussed, but it was common practice to use the Gradient Diffusion
Hypothesis (GDH) or its variations such as Higher-Order Generalised GDH (HOGGDH),
as it was analogous to the treatment of turbulent diffusivity in the momentum transport
equation. Articles that explore alternative methods are also summarised in the present
section. A table summarising the reviewed RANS cases is provided in Table 1.

Table 1. Table of reviewed RANS cases with investigated turbulence modelling approaches.

Paper Year Turbulence Models Turbulent Heat Flux

Bergeles et al. [30] 1978 Wall anisotropy model *
Leylek and Zerkle [31] 1993 Standard k-ε
Walters and Leylek [32] 1996 Launder–Spalding k-ε High Re
Walters and Leylek [33] 1996 Launder–Spalding k-ε Two-layer
Ferguson et al. [34] 1998 Standard k-ε two-layer wall model

RNG k-ε
RSM *

Hoda and Acharya [35] 2000 High Re k-ε
Low Re k-ε Launder–Sharma
Lam–Bremhost model
Low Re k-ω
DNS-based Low-Re k-ε
Low-Re Mayong–Kasagi *
Speziale *

Acharya et al. [36] 2001 k-ε
RSM *

Azzi and Jubrain [37] 2003 k-ε with wall-based anisotropy model *
Harrison and Bogard [38] 2008 Realizable k-ε

Standard k-ω
RSM *

Li et al. [39] 2015 Algebraic anisotropic eddy viscosity model Anisotropic scalar flux with GDH and
HOGGDH

Ling et al. [40] 2016 Pseudo RANS with LES fields GDH (Prt = 0.85, 0.6)
GDH (αt from LES)
HOGGDH (C = 0.6, 1.5)
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Table 1. Cont.

Paper Year Turbulence Models Turbulent Heat Flux

Laschet et al. [41] 2002 Algebraic eddy viscosity model [42] *
Bohn and Krewinkel [43] 2009 Algebraic eddy viscosity model [42] *
Ceccherini et al. [44] 2008 k-ε with wall-based anisotropy model [37] *
Ceccherini et al. [45] 2010 SST Menter k-ω
Andreini et al. [46] 2010 SST Menter k-ω
Coletti et al. [47] 2013 Standard k-ε GDH (Sct = 0.85)
Andrei et al. [48] 2014 SST Menter k-ω with wall-based anisotropy model [37] *
Ledezma [49] 2016 SST Menter k-ω with enhanced wall functions

Realizable k-ε with enhanced wall functions
Krawciw [50] 2017 Two-layer realizable k-ε model GDH

* non-linear models.

4.1. Single Hole

Leylek and Zerkle [31] used RANS modelling with the standard k-ε model and the
generalised wall function treatment of Launder and Spalding [51]. The closure of the
turbulent heat flux term was not discussed in the article. This early study supplied extensive
results compared to the experimental studies of Pietyzk et al. [52,53] and Sinha et al. [20].
Predictions of centreline cooling effectiveness did not predict the trends associated with jet
detachment and the lateral coolant spreading behaviour was underpredicted compared
to the experiment. Exit plane velocity profiles were shown for various blowing ratios and
coolant hole length-to-diameter ratios, which revealed highly skewed velocity profiles for
different conditions. This raised the importance of accurately replicating the coolant hole
flow to replicate combustor and turbine geometrical conditions.

Seven turbulence modelling approaches, considering generalised and non-equilibrium
wall functions, were compared on a single-hole cooling geometry by Ferguson et al. [34].
A standard k-ε model including a two-layer wall treatment, a Re-Normalisation Group
(RNG) k-ε model, and RSM were explored. The results showed that the linear k-ε model
performed better than the non-linear RSM, with improvements observed in the modelled
turbulence level. The selection of near-wall treatment was crucial where only the two-layer
wall treatment was able to predict the separation bubble that occurred due to coolant
jet lift-off.

Turbulence models and their predictions of the film cooling jet-in-crossflow case were
studied by Hoda and Acharya [35]. Seven different models were studied: High-Re k-ε,
Low-Re formulation of the k-ε Launder–Sharma model and Lam–Bremhost model, Low-Re
k-ω model, DNS-Based Low-Re k-ε, and the non-linear Low-Re Mayong–Kasagi model
and Speziale model. The High-Re k-ε model overpredicts values in spanwise and vertical
velocities and is not recommended for complex flows. Near-wall flow is well predicted by
the Launder–Sharma model, but it fails to capture trends in turbulent mixing within the
jet wake. Likewise, the Lam–Bremhost model predicts accurate near-wall behaviour but
predictions in the jet do not agree with the validating experiment, and it fails to predict
the recirculation ahead of the jet. The DNS-based k-ε model scales correlation terms for an
ε budget calculated from the DNS of a channel. However, this simplified budget fails to
predict the correct gradients in the spanwise and streamwise directions within the jet and
wake, but the recirculation is well captured by the DNS-based k-ε model. Both non-linear
models show inconsistencies when compared to the experimental data, with the Speziale
model unable to predict the trends seen in the jet and wake, while the Mayong–Kasagi
model overpredicts the vertical penetration of the jet. These predictions are thought to be
a consequence of how the model is fitted to simple wall-bounded flows. The k-ω model
provides reasonable predictions of the near-wall flow.

A later study by Acharya et al. [36] investigated k-ε models and an RSM, comparing
the results to the experimental, LES, and DNS data. Observations indicated that jet exit
boundary conditions are critical to numerical predictions and the boundary should be
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derived from experiments, or the jet hole and plenum should be modelled. The two-
equation models were seen to overpredict the coolant penetration and underpredict the
jet’s lateral spreading as a result of the linear eddy viscosity model. RSM calculations
showed only marginal improvements over the two-equation models. Critically, it is often
presumed that the RSM provides realistic anisotropy; however, it is demonstrated that the
modelling of each Reynolds stress transport equation can dampen the desired anisotropy
of the complex flow. Finally, Acharya et al. [36] showed that the LES and DNS calculations
provided a better prediction of the mean velocities and the turbulent stresses.

Early computational studies by Walters and Leylek [32,33] aimed to replicate the ACE
results of Sinha et al. [20] for a density ratio of 2.0 and blowing ratios of 0.5, 0.8, and
1.0. An unstructured grid with second-order spatial schemes was used with turbulence
modelled by the Launder and Spalding standard k-ε turbulence model with High-Re wall
functions. For the lower blowing ratio, correct trends in centreline effectiveness were
seen, but their values were overestimated. At high blowing ratios, an overestimation was
observed, and the effects of jet lift-off were not present in the centreline ACE. Corrections
were used to account for the skew in the jet’s centreline, which better captured the centreline
and lateral cooing effectiveness in the downstream regions. Like Acharya et al. [36],
the author commented on the lack of non-linear anisotropy in the modelled turbulence and
its effect on the lateral coolant spread. Secondly, Walters and Leylek [32] commented on the
requirement of low-Re or two-layer wall models to improve the numerical simulation of jet
lift-off and reattachment. Further work by Walters and Leylek [33] showed that a two-layer
model does not improve the cooling results in the downstream region, but improvements
were seen in the recirculating flow immediately in the downstream of the hole.

Similarly, Harrison and Bogard [38] investigated the realizable k-ε, standard k-ω, and
RSM turbulence models for predictions of heat transfer coefficients and ACE. All models
showed poor predictions of coolant lateral spread, including the RSM, agreeing with the
conclusions of Acharya et al. [36]. Results of ACE at a blowing ratio of 0.5 revealed that the
standard k-ω provided the most accurate predictions of laterally averaged ACE but failed
to predict the centreline effectiveness data. The realizable k-ε model presented opposing
results where reasonable estimations of centreline ACE were observed while predictions
of laterally averaged ACE were poor. At high blowing ratios, where cooling jet lift-off
was present, all models performed poorly. The surface heat transfer coefficients showed
underpredictions in the centreline values and overpredictions in lateral values for all
three models.

Bergeles et al. [30] conducted a set of numerical studies providing accurate results for
single cooling holes at small blowing ratios. An anisotropic model of Reynolds stresses
was proposed to capture the complex turbulence. Equations (2)–(4) alongside the k-ε model
closed the turbulent Reynolds-stresses and heat flux. The wall-normal Reynolds stress
(v′2) was set to k/3, which provided a close fit over the inner boundary layer. Equation (2)
fitted Quarmby and Quirk [54,55] data for radial to tangential diffusion ratios in pipe flow,
where the parameter ∆ is the boundary layer height and the streamwise velocity is equal
to 95% of the freestream velocity. The derivation of the model was discussed in detail by
Bergeles et al. [30]. The results showed suitable accuracy for a limited range of blowing
ratios from 0.1 at a 90◦ injection angle to 0.5 at a 30◦ injection angle.

νt,z

νt,y
=

αt,z

αt,y
=

{
1.0 + 3.5

(
1 − y

∆
)

y ⩽ ∆,
1.0 y > ∆

(2)

νt,y = 0.09
k2

ε
, αt,y = 0.1

k2

ε
(3)

u′v′ = −νt,y
∂U
∂y

, u′w′ = −νt,z
∂U
∂z

(4)
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Azzi and Jubran [37] applied the anisotropic model proposed by Bergeles et al. [30]
to the standard k-ε model with wall treatments. For the low-blowing ratio case, the modi-
fication better captured the centreline ACE and lateral spreading when compared to the
original model and the studies of Walters and Leylek [32]. At a larger blowing ratio,
the model failed to predict the jet lift-off and reattachment that resulted in the differences
from the experimental ACE in agreement with Bergeles et al. [30].

Ling et al. [40] assessed turbulent heat flux closures in a single-hole configuration
using a pseudo-RANS computation, where the flows velocity and pressure were taken
from the LES simulation of Bodart et al. [56], and a Reynolds-averaged advection–diffusion
equation was used to solve the non-dimensional temperature field. GDH and HOGGDH
closure models were assessed within the advection–diffusion equation to identify their
impact on the surface cooling performance, with coefficients outlined in Table 2 with their
respective non-dimensional temperature mean error. It was found that the HOGGDH
model marginally improved the cooling prediction with a coefficient of 1.5 and the lateral
coolant spread was in better agreement with the experiment. However, the authors found
that using an LES-derived turbulent diffusivity provided the lowest error, but the contours
of the cooling effectiveness did not capture the correct lateral coolant spread.

Table 2. Cases and respective errors for turbulent heat flux closures investigated by Ling et al. [40].

Case No. Model Parameter Value Error

1 GDH αt = αt,LES 0.013
2 GDH Prt = 0.85 0.034
3 GDH Prt = 0.6 0.023
4 HOGGDH CHOGGDH = 0.6 0.031
5 HOGGDH CHOGGDH = 1.5 0.020

Li et al. [39] developed an algebraic anisotropic turbulence model to improve the
RANS predictive capability of gas turbine film cooling flows (Figure 7). An anisotropic
eddy viscosity tensor was formed for use with the Boussinesq Hypothesis closure for
Reynolds stresses. Anisotropic ratios used within the tensor were expressed using the
algebraic Reynolds Stress transport equations. The scalar turbulent flux was manipulated
similarly, utilising an anisotropic scalar–flux ratio based on the commonly used GDH
and HOGGDH. The results of the centreline ACE showed improved agreement with the
experimental data over the standard k-ε model. For flows with a high BR, the jet lift-off was
still not captured, as ACE centreline trends differed close to the cooling hole. Spanwise-
averaged cooling effectiveness results presented minor improvements over the standard
k-ε model.
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Figure 7. Improved centreline ACE using the anisotropic model of Li et al. [39] (AASF AAEV k-ε).
Adapted from Int. J. Heat Mass Trans., Vol. 91, Li et al. [39], Application of algebraic anisotropic
turbulence models to film cooling flows, published by Elsevier.

4.2. Multi-Hole

Laschet et al. [41] investigated flow through a multi-perforated plate with conjugate
heat transfer. An in-house CHT-fluids code was used with direct coupling between the
heat transfer in the solid and the fluid flow using a common wall temperature. In the flow,
a local 1D Riemann problem was solved on each cell face with a third-order accurate van
Leer’s MUSCL scheme with added diffusivity for stability. Viscous fluxes were discretised
with a central differencing scheme, and the turbulence was modelled with Baldwin and
Lomax’s [42] algebraic eddy viscosity model. The results of the study showed that a
fan-shaped cooling hole geometry led to a reduction in the thermal gradients in the solid.
Further work by Bohn and Krewinkel [43] used the same approach as Laschet et al. [41]
to investigate two different multi-layer material systems to optimise the longevity of the
thermal barrier coating. Fan-shaped and cylindrical cooling holes were investigated for
low blowing ratios of 0.28 and 0.48.

Numerical work using the anisotropic model from Azzi and Jubran [37] was performed
alongside experimental work by Ceccherini et al. [44]. The anisotropic model provided
a better agreement for the experimental study than a turbulence model with a standard
two-layer wall function, although an overestimation of peaks and an underprediction of
coolant lateral spread were still present. Later work by Ceccherini et al. [45] on combined
slot and effusion cooling used the SST Menter k-ω turbulence model for ACE predictions.
The results showed that the model overestimated the cooling effectiveness, and the shape
of the trends was not seen.

Andreini et al. [46] investigated the heat transfer coefficients of the slot and effusion-
cooled case of Ceccherini et al. [45]. RANS simulations were conducted with the SST Menter
k-ω turbulence model. The authors highlighted the commonly observed overprediction of
a coolant along the jet centreline and the underprediction of lateral spreading obtained with
RANS approaches while the spanwise averaged prediction showed positive results. This is
reflected in the work presented, with large differences in spanwise distributions. However,
the spanwise-averaged results presented are in close agreement with the experiment.

The near-wall anisotropy model featured in Azzi and Jubran [37] was also used by
Andrei et al. [48] with a k-ω SST turbulence model in the numerical portion of their article
on multi-hole effusion cooling. An 18-row staggered cylindrical cooling hole arrangement
was investigated at density ratios of 1.0 and 1.5 and blowing ratios of 1.0, 2.0, and 3.0.

Following the experimental portion of the paper by Coletti et al. [47], a RANS study
using a standard k-ε model is shown. It was observed that both the position and the
strength of the counter-rotating vortex pair were not properly captured. The local minima
of the eddy viscosity between the counter-rotating vortex pair immediately after injection
were not seen. Coolant concentrations were overestimated across the wall. To address the
model discrepancies, the authors identified that a spatially varying Schmidt number would
capture trends in the turbulent diffusivity observed in the experiments.
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Krawciw investigated computational studies of effusion cooling arrays [50]. Com-
parisons were made between cylindrical, spey fan, modified fan, slotted, cylindrical, and
rectilinear helix -shaped cooling holes (shown in Figure 8) at blowing ratios of 3.32 and
14.94 and freestream turbulence intensities of 5% and 20%. Simulations were conducted
in Star-CCM+ using a two-layer realizable k-ε model for the Reynolds stresses, while the
turbulent heat flux was closed with the GDH model. An unstructured polyhedral mesh
with prism layers at the wall was used. Results for the cylindrical cooling hole cases were
not comparable to the experiment and underpredicted the cooling effectiveness across the
surface. Results for the other shaped holes, which provided an increased spreading effect
at the injection point, were more comparable to the presented experiments but lacked the
correct lateral coolant spreading as reported with the GDH approach.

Alongside an LES computational study, Ledezma [49] conducted RANS simulations
with the k-ω SST and realizable k-ε turbulence models with enhanced wall functions
for blowing ratios of 0.6, 0.8, and 1.0 for an eight-row multi-hole effusion cooling plate.
The laterally-averaged cooling effectiveness results published showed that both RANS
models underpredicted the cooling effectiveness while the LES results were comparable to
the experiment. Cooling effectiveness contours showed that both RANS models did not
accurately capture the lateral coolant spread observed in the experiment and LES results.

Figure 8. A sample of cooling effectiveness results from Krawcwiw [50] for varying effusion cooling
hole geometries. Reprinted from Krawciw [50], Optimisation techniques for combustor wall cooling,
published on the Loughborough University repository under the terms of a CC BY-NC-ND 4.0 license.

5. Hybrid RANS-LES

Due to the high near-wall resolution requirement of the full wall-resolving LES, hybrid
RANS-LES methods have attracted more attention and interests in the last decade. A few
researchers have been using it to model effusion cooling flows in single- and multi-hole
cooling configurations.
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Figure 9 presents a snapshot of turbulent structures and coolant-hole centre-plane
vorticity field simulated by a zonal hybrid RANS-LES method, suggesting its ability to
reproduce flow mixing between the hot mainstream and coolant jets. This section introduces
some of the recent studies using hybrid LES modelling approaches for single- and multi-
hole effusion cooling. A table summarising the reviewed hybrid RANS-LES cases is
provided in Table 3.

Figure 9. Visualisation of a multi-hole effusion cooling array from a hybrid RANS-LES study.
Reprinted from Appl. Therm. Eng., Vol. 184, Chen et al. [7], Study of an effusion-cooled plate with
high level of upstream fluctuation, published by Elsevier; CCC license for re-use obtained.

Table 3. Table of reviewed hybrid RANS-LES cases including information of turbulence models and
inflow turbulence generation models.

Paper Year Turbulence Models Turbulent Inflow Model

Roy et al. [57] 2009 SA-DES −
Foroutan and Yavuzkurt [58] 2015 realizable k-ε-based DES −
Chen and Xia [5] 2018 SST-based implicit LES SEM
Jin et al. [59] 2022 k-ω based VLES NA

LES-WALE NA
SST-based DES NA

Zamiri et al. [60] 2020 LES-WALE NA
SST-based SAS NA
DES NA

Mazzei et al. [61] 2015 SST-based SAS NA
SST-based DES NA

Mazzei et al. [62] 2016 SST-based SAS NA
Lenzi et al. [63] 2020 SST-based SBES NA
Arroyo-Callejo et al. [64] 2016 DRSM NA

SA-based Zonal DES NA
k-ω SST NA

Chen and Xia [5–7] 2018–2021 SST-based implicit LES SEM
k-ω SST NA

5.1. Single Hole

The first study that utilised a hybrid LES approach in single-hole cooling research
was conducted by Roy and his colleagues [57]. They used a Spalart—Allmaras-based DES
model on a film-cooled flat plate with unstructured grids. The 35-degree inclined coolant jet
with a blowing ratio of 1.0 and density ratio of 2.0 was well predicted and greatly enhanced
the description of the anisotropic mixing process. However, the laterally averaged film
cooling effectiveness from the DES simulation failed to show much improvement than that
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of the RANS model, which was attributed to the reduced three-dimensional asymmetric
instabilities from the use of a symmetry boundary condition at the hole centreline.

More hybrid LES studies on single-hole cooling have been carried out since then,
and improvements has been made based on the initial 1-equation DES approach. For ex-
ample, Foroutan and Yavuzkurt [58] compared the behaviour of a realizable k-ε RANS
model- with a realizable k-ε model-based DES approach. They simulated the 30◦-inclined
single-hole cooling case measured by Sinha and his colleagues [20] with a fully structured
1.4-million-cell wall-resolving grid. It is worth mentioning that they also introduced a
synthetically generated 10% inflow turbulence intensity level using a 2D vortex method.
Enhanced mixing was found by using the DES approach, as well as the introduced inflow
turbulence, and, therefore, with improved ACE prediction in the far wake region. How-
ever, the jet mixing and main stream entrainment phenomenon were so complex in the
near-wake region that both methods failed to give reasonable prediction.

A few years later, Chen and Xia utilised a new hybrid RANS-LES model [5] in single-
hole cooling cases. They combined the k-ω SST model with an implicit LES model using
the wall proximity controller, so that the RANS model was only activated in the near-wall
boundary region where the flow was mostly laminar. They studied the canonical single-
hole case from [20] with an unstructured 10-million-grid mesh. The study confirmed the
potential success of hybrid LES in providing high-fidelity numerical prediction in both the
flow field and the ACE for single-hole cooling cases. The study also suggested that the
coolant jet development, mixing, and entertainment can be changed significantly when the
mainstream is highly turbulent (e.g., 20% turbulence intensity in the combustion chamber).

In recent years, Very Large Eddy Simulation (VLES) has caught some researchers’
attention. Jin and his colleagues [59] applied VLES to the canonical single-hole test case by
Sinha [20] and compared the results to other popular methods (DES and LES). The VLES
model was blended with Wilcox’s k-ω model using a resolution function determined by the
cut-off, integral, and Kolmogorov length scales. The DES model that they used was blended
with the k-ω SST model, while the LES model used a Wall-Adaptive Local Eddy viscosity
(WALE) SGS model. Results based on a 2.5-million-cell grid suggested that the VLES model
provides encouraging predictions on both the flow structures and ACE. Delayed Kelvin–
Helmholtz instability was found in the DES prediction, which has led to the unsatisfactory
cooling effectiveness prediction. The authors also concluded that VLES performs better
than the LES, but this is mainly because the grid resolution they used was not good enough
for the LES to resolve all the scales, especially in the near-wall region.

Researchers are also using the hybrid LES method to study the performance of different
cooling hole shapes. However, the study was mostly conducted using commercial software
due to the complexity of the hole geometry and difficulties it brought to meshing. Zamiri
and his colleagues [60] studied a 35-degree-inclined laid-back fan shape hole using three
different models: LES, Scale Adaptive Simulation (SAS), and DES, with a 6-million-node
multi-block structured mesh using ANSYS CFX. They concluded that LES is the only model
that they found to provide acceptable accuracy in cooling performance. They believed
that this was due to the LES model’s advantage in resolving more complex flow structures
when the coolant jet left the laid-back fan shape hole and was mixed with the mainstream,
compared to the simple cylindrical hole geometry.

5.2. Multi-Hole

Andreini and his colleagues at the University of Florence, which is mentioned a few
times in the early sections, also explored the application of hybrid LES in a multi-hole
effusion cooling case [61–63]. In the work by Mazzei et al. [61], a SST SAS model and a
DES model were used to predict the performance of a lean-burn combustor liner effusion
cooling with swirling combustion jets. However, effusion jets were not simulated directly
owing to the complex geometry of the fuel nozzle and combustor chamber. A constant heat
flux boundary condition was applied to the effusion-cooled plate following their previous
study on effusion cooled flat plates. To make the simulations comparable to experiments,
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the heat mass transfer analogy was retrieved with two extra equations for two passive
scalars that track the flow mixing of both the slot and effusion cooling. Two different grid
resolutions were used, 8-million and 21-million, but the results were close as only 40% of
resolution increase was applied to each direction owing to the unstructured manner of
the mesh. The authors concluded that the study revealed the potential of using SAS in
simulating the combustor liner effusion cooling with a swirling flow, with a similar or better
accuracy to DES under the limited computational cost. In the following study [62], two
different effusion models, the adiabatic homogeneous model (AHM) and the source-based
effusion model (SAFE), were compared. The former assumes uniform coolant injection on
the flat plate, while the latter injects point mass to the main flow. The results suggested
that both methods were fine in predicting the momentum exchange between the coolant
and mainstream, but the SAFE method provided higher-fidelity results in heat transfer and
cooling effectiveness. Lenzi [63] continued the previous study and used a new hybrid LES
method named stress-blended eddy simulation (SBES) approach. In his study, the effusion
coolant jets were actually modelled using a much finer unstructured mesh of 50-million
elements. The study suggested that a few unsteady interactions between the swirling jets
and the coolant jets play a crucial role in defining the coolant film capabilities, which cannot
be properly reproduced by steady-state methods.

A compound angle effusion cooling arrangement was studied by a research group
from France [64]. The experiment carried out by Zhang et al. [65] was simulated by Arroyo
and his colleagues using the differential Reynolds stress model (DRSM) in conjunction with
a generalized gradient diffusion hypothesis (GGDH) and a hybrid RANS–LES method:
zonal detached eddy simulation (ZDES), with CHT effects also being taken into account.
The authors proposed a new method to calculate the length scales for the ZDES method.
Encouraging results were obtained by both methods, but the authors found that the tran-
sition region from RANS to LES in the ZDES needed to be taken extra care. The authors
also stated that since the ZDES method is 50% slower than the DRSM method, it is not the
preferred method to them for multi-hole effusion cooling.

Chen et al. [5–7] utilised a new hybrid RANS-LES method in predicting the combustor
liner effusion cooling. The method used the RANS approach as a wall-model to reduce
the near-wall resolution requirement of LES, which is due to increasing the resolution to
resolve the compressed and stretched turbulent structures closer to the wall. An 18-million-
cell unstructured mesh was generated with a wall-resolving y+ value. A comparison
with URANS results suggested that the hybrid LES approach performed much better in
reproducing the coolant jet mixing, separation, and reattachment, and thus providing better
prediction in the coolant film formation and surface ACE. Further study with low and high
inflow turbulence intensities, which were generated by the synthetic eddy method (SEM),
and a comparison with experimental measurements suggested that the highly turbulent
flow in the combuster chamber (20% intensity) substantially leads to wider spreading of the
coolant film and, thus, requires a higher blow ratio to achieve a similar level of effectiveness
in the downstream region.

6. Large-Eddy Simulations

LES has been used to model effusion cooling flows in a diverse range of studies includ-
ing single- and multi-hole cooling configurations. A snapshot of the turbulent structures
and centre-plane velocity field simulated with LES showing its ability to model large-scale
turbulent structures and capture the turbulent mixing between the hot mainstream and
cold jet is presented to illustrate the LES solution in Figure 10. Within this section, LES
modelling approaches and schemes are highlighted alongside their significant contributions
and applications. A table of reviewed cases is presented in Table 4.
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Figure 10. LES solution showing turbulent structures and mixing behaviour of coolant downstream
of a single row of cooling holes with an 80-million cell mesh. This figure is an original extension of
the earlier work published by Ellis and Xia [10].

Table 4. Table of reviewed LES cases including inflow and sub-grid scale models.

Paper Year Sub-Grid Scale Model Turbulent Inflow Model

Tyagi and Acharya [66] 2003 DMM No inflow turbulence
Iourokina and Lele [67] 2005 Dynamic Smagorinsky Recycle-Rescaling [68]
Renze et al. [69,70] 2008 MILES Recycle-Rescaling
Guo et al. [71] 2006 Implicit Recycle-Rescaling [68]

Rozati and Tafti [72] 2008 Dynamic Smagorinsky
(Prsgs = 0.5) No inflow turbulence

Bodart et al. [56] 2013 Vreman’s eddy viscosity
model [73] Digital filtering [74]

Oliver et al. [75] 2019 WALE No inflow turbulence
Ellis and Xia [10] 2022 WALE (Prsgs = 0.4) Digital filtering [76]

Kang et al. [77] 2021 WALE Turbulence generated by
upstream cylinders

Hao and di Mare [78–80] 2023 Implicit Digital filtering [81]

Mendez et al. [82] 2008 WALE
Periodic (assumes
asymptotic effusion
behaviour)

Renze et al. [83] 2009 MILES No inflow turbulence
Motheau et al. [84] 2012 WALE Synthetic turbulence [85]

Standard Smagorinsky Synthetic turbulence [85]
Konopka et al. [86] 2013 Recycle-Rescaling [87]

Sung et al. [88] 2016 Implicit wall resolved and
modelled No inflow turbulence

Ledezma [49] 2016 WALE No inflow turbulence

6.1. Single-Hole

Tyagi and Acharya [66] used a Dynamic Mixed Model (DMM), outlined by Moin et al. [89]
and Vreman et al. [90], to model the subgrid-scale stress tensor and scalar flux vector. This
was used to model the cooling flow of an inclined cylindrical jet at blowing ratios of 0.5 and
1.0 for a density ratio of 1.0. An explicit second-order accurate Adams–Bashforth scheme
was used to discretise the equations in time, while a third-order upwind-difference scheme
was used for convective schemes, and the remaining schemes were discretised with a fourth-
order central differencing scheme. The results showed that the time-averaged velocity
profiles provided reasonable agreement with measured data of Lavrich and Chiapetta [91]
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for both BR conditions. The ACE results were compared against the experimental data
of Sinha et al. [20], although differences were present in the density ratio. The centreline
cooling effectiveness at BR = 0.5 matched the experimental data [20], with small differences
close to the coolant hole.

Parallel interface coupling between a compressible and low-Mach-number computa-
tional code was pursued by Iourokina and Lele [67] for predicting film cooling performance
across turbine leading edges. The coupling enabled the low-Mach-number code to model
the plenum chamber, while the compressible code resolved the external flow. Qualitative
results were presented for a jet-in-cross-flow to demonstrate the method. This was extended
to a single cooling hole [92] with the rescaling-recycling technique of Lund et al. [68] to
generate the upstream turbulent boundary layer. A qualitative comparison was presented
to the contours published by Pietrzyk et al. [52,53], which showed some agreement, but
clear quantitative comparisons could not be made. Later work [93], featuring cooling
effectiveness comparisons to Sinha et al. [20], showed comparable centreline effectiveness
results aft the cooling hole.

The Monotonically Integrated LES (MILES) technique of Fureby and Grinstein [94]
was used by Renze et al. [69,70] for LES studies of a single row of cooling holes. The solved
equations were discredited with a mixed central-upwind AUSM scheme with a centred
5-point low-dissipation stencil. The inlet flow was established with a compressible recycling-
rescaling method to capture the upstream turbulent flow. The results showed accurate
agreement to the velocity data in the experimental results of Jessen et al. [95]. The cooling
predictions for BR = 0.43 compared well to the experimental results of Sinha et al. [20] at
BR = 0.5. The results of Sinha et al. [20] showed large differences in lateral coolant spread
for varying DR and, thus, the lateral spread cannot be compared between the two cases.
The authors showed a strong interaction between the approaching turbulent boundary
layer and the effusing jet flow with λ2 contours, where the upstream turbulent boundary
layer was captured with a precursor recycling-rescaling simulation.

Guo et al. [71] investigated a 90◦and a 30◦inclined single-hole cooling geometry for
low blowing ratios of 0.1 and 0.48. The LES was performed with the Navier–Stokes equa-
tions for compressible flow discretised with a mixed central-upwind AUSM scheme with
low numerical dissipation. For the turbulent inflow, the rescaling-recycling method of
Lund et al. [68] was used. The LES results showed the formation of the counter-rotating vor-
tex pair, separated flow, and the complex anisotropic state of the turbulence characteristics
shown with the invariant technique.

An investigation of the blowing ratio on cooling holes distributed across turbine blade
leading edges was conducted by Rozati and Tafti [72] using LES. The LES was performed on
a non-dimensional form of the incompressible Navier–Stokes equations where the subgrid-
scale stresses were modelled with a dynamic Smagorinsky model. The subgrid-scale
turbulent heat flux was modelled using a subgrid-scale Prandtl number of 0.5. Blowing
ratios of 0.4, 0.8, and 1.2 were studied, showing that at higher blowing ratios, the coolant-
mainstream mixing was greater, and thus, the cooling effectiveness on the turbine blade
was reduced.

High-fidelity LES was performed by Bodart et al. [56] on an inclined jet with results
showing the jet structure and the discrepancies of the GDH model. A grid of 52 million
cells was used to spatially resolve turbulent structures. Structured block meshing was
employed within regions of interest, and unstructured cells were applied to coarsen the
mesh at the upper wall. Sub-grid scale stresses were modelled with Vremen’s eddy viscosity
model [73]. At the inlet boundary condition, the synthetic turbulence method of Xie and
Castro [74] based upon the digital filtering method of Klein et al. [96] was used to generate
physical upstream turbulent flow. The turbulent inflow was in agreement with the mean
velocity profile and Reynolds stresses found in the PIV experiment by Coletti et al. [47].
The investigation showed that the normal and spanwise components of turbulent scalar
flux opposed the gradients, as modelled by the GDH. However, the streamwise component
did not oppose the gradient and deviated from the closure.
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Shaped film cooling holes were investigated with LES by Oliver et al. [75] to under-
stand the role of Mach number in cooling performance. The LES used a finite difference
approach on overset methods with the compressible Navier–Stokes equations discretised
with a sixth-order Padé method and a 4th-order Runge-Kutta method. The grids used
consisted of 42.5 million grid points, and the subgrid-scale stresses were modelled with
the WALE model. The laterally averaged and lateral maximum cooling results were in
agreement with the presented experimental data for a mainstream Mach number of 0.25.
At a Mach number of 0.5, the cooling effectiveness performance decreased, and the time-
averaged coolant distribution exhibited a lateral skewness, and the temporal data showed
bimodal stability, which was not present in the low Mach number case.

Ellis and Xia [10] investigated the impact of mainstream freestream turbulence in LES
of a single row of film cooling holes. No inflow turbulence, near-wall turbulent boundary
layer, and freestream turbulence inflow at 20% intensity were investigated. The inflow
turbulence was generated with the digital filtering method, originally used for urban
flows [76]. The WALE model was used to model the subgrid-scale stresses, while the
convective schemes were discretised with a central-upwind blended scheme to capture
the fine-scale turbulent structures in the cooling jet. The subgrid-scale turbulent heat flux
was modelled using a subgrid-scale Prandtl number of 0.4. Turbulent structures showed
interactions between the upstream turbulence and the cooling jet, as shown in Figure 11.
The interactions showed increasing contributions to the lateral spreading of the coolant from
the no-inflow case to the turbulent boundary layer case and to the freestream turbulence
case. The replication of the experimental results, where a turbulent boundary layer was
measured upstream of the cooling hole, was only achieved with the turbulent boundary
layer case. This demonstrates the importance of modelling the upstream turbulence in
these cooling flows.

Figure 11. Visualisation of large scale turbulent structures with λ2 and normalised temperature
for a case with no inflow turbulence (a,b), near-wall turbulent boundary layer (c,d) and freestream
turbulence (e,f). Reprinted from Int. J. Heat Mass Trans., Vol. 195, Ellis and Xia [10], Impact of inflow
turbulence on large-eddy simulation of film cooling flows, published by Elsevier, under the terms of
the CC BY 4.0 license.
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Kang et al. [77] used LES to investigate the impact of upstream freestream turbulence
by introducing upstream geometrical cylinder into the simulation of a single row of fan-
shaped cooling holes to mimic the high turbulence intensity found in combustor flows.
The simulations were conducted at blowing ratios of 1.0 and 2.0 for a density ratio of 2.0.
The diameter of the cylinders was modified to deliver a turbulence intensity of 13% to the
cooling holes. ANSYS CFX, a commercial CFD package, was used by the authors using
a WALE model for the subgrid-scale stresses. The introduction of the upstream cylinders
showed a large decrease in downstream centreline effectiveness for a blowing ratio of 2.0.

Hao and di Mare [78–80] conducted a series of LES simulations of single cylindrical and
fan-shaped cooling holes. An in-house code used an implicit LES finite volume approach,
solving the Navier–Stokes equations with viscous fluxes discretised with a centred second-
order accurate scheme and inviscid fluxes evaluated with a Roe–Riemann solver with a
biased three-point stencil that provides third-order accuracy away from discontinuities.
Hao and di Mare [78] showed good agreements with the experimental surface cooling
effectiveness, and the velocity profiles exhibited correct trends with minor differences closer
to the cooling hole. The article identifies that the turbulence properties of coolant jets do
not achieve self-similar behaviour when scaled with traditional local velocity defects and
jet-layer thickness but identifies a suitable scaling method for the presented cases.

6.2. Multi-Hole

Mean velocity and velocity fluctuations over an infinite multi-perforated plate were
compared in the LES of Mendez et al. [82]. Periodicity was used across the computational
domain with freestream-type boundary conditions used to force the appropriate mean
vertical flow rate with a source term to ensure that the infinite multi-perforated plate flow
was sustained. Comparisons with experimental data showed that the finest mesh explored
captured the mean velocity trends but over-predicted the value; however, the free shear
layer of the cooling hole was shown to be in good agreement with the experiment.

Renze et al. [83] presented LES results from a geometry featuring three staggered rows
of fan-shaped cooling holes. The numerical methodology is consistent with previously
published work [69,70]. The cooling holes were separated laterally by a pitch of 3D and a
spanwise spacing of 6D. The results showed a difference in mixing behaviour in successive
rows where the turbulent kinetic energy was highest ahead of the first row with declining
turbulence production in the following rows. Cooling effectiveness was improved after
each row with the decay of cooling effectiveness reduced after each row. In the later part of
the article, the turbulent Prandtl number was derived using the resolved wall-normal eddy
viscosity and diffusivity, showing a range of values from 0.4–2.5.

Motheau et al. [84] investigated a multi-perforated plate with elliptical-shaped inlet
and exit hole sections that mimicked the laser drilling technique used for effusion cooling
holes. The holes were positioned in a staggered arrangement with longitudinal spacing
and pitch between holes that replicated an experimental combustor. LES was performed
using the Advanced Virtual Burner Project (AVBP) code developed at CERFACS and IFP
(see Wolf et al. [97]). Discretisation in space and time was performed with a third-order
Taylor–Galerkin-type scheme. Two subgrid-scale models were investigated: a standard
Smagorinsky model and the WALE model. A previous study of the same geometry found
that 10 million tetrahedral cells were sufficient to reproduce the core features of the flow [82].
Motheau et al. [84] showed that the WALE model with synthetic turbulence injection pro-
vided the best comparison to the experiments. Ultimately, the LES was used to demonstrate
the impact of combustion instability on the cooling performance. It was found that acoustic
forcing in the combustion chamber limits the coolant mass flow rate through the effusion
cooling holes.

A multi-hole fan-shaped cooling geometry with an adverse pressure gradient was
investigated with LES by Konopka et al. [86]. The rescaling-recylcing technique of El-
Askary et al. [87] was used to generate realistic inflow turbulence. The pressure gradient
was achieved by manipulating the pressure and streamwise velocity distribution on the up-
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per boundary. The results were in close agreement with the LES results of Renze et al. [83]
and showed that the mild adverse pressure gradient did not impact wall cooling effective-
ness distribution, in agreement with Hay et al. [98]. In the boundary layer, the mild adverse
pressure gradient thickened the thermal boundary layer, and inspections of the turbulent
heat flux showed increased magnitudes in the mid and upper regions of the jet shear flow.

Sung et al. [88] presented a detailed LES simulation resolving 52 cooling holes across
an eight-row multi-hole effusion cooling array. The simulation used the low-Mach pressure
projection solver detailed in Ham [99]. Two blowing ratios were investigated covering an
attached coolant case (BR − 0.457) and a detached coolant case (BR = 1.22). Wall-resolved
and wall-modelled LES were compared, where the meshes were composed of 530 million
and 290 million cells, respectively, using a tetrahedral mesh with prism layers at the wall.
The detached case showed very similar behaviour between the two approaches across
each row. For the attached case, the laterally-averaged cooling differed between the two
approaches for the first three rows of cooling holes, but both methods overpredicted the
experiment in this region but provided good agreement for the downstream region.

Effusion cooling was studied with LES by Ledezma [49] using a 47-million- and
18-million-cell hexadominant unstructured mesh across 8 rows of staggered cylindrical
cooling holes. The authors used the SIMPLEC solver in Fluent v14.5, using a bounded
second-order central differencing scheme for spatial terms and a second-order backward
time stepping scheme. Subgrid scale stresses were modelled with the WALE model. The
results of the fine mesh were in close agreement with the experiment’s laterally-averaged
cooling measurements and presented lateral distributions for blowing ratios of 0.6, 0.8,
and 1.0.

7. Machine Learning Augmented Modelling

Machine learning has been used in a variety of strategies to improve the modelling
of effusion cooling flows or directly complete the modelling. In turbulence modelling,
machine learning techniques have provided improvements that have attempted to tackle
the stagnated development seen at the start of the 21st century [100]. Machine learning
and data-driven methods have taken advantage of the dense high-fidelity numerical and
experimental datasets, coupled with physical insights into the flow. For effusion cooling
flows, machine learning-augmented modelling has been employed to improve the poor
predictions that RANS simulations provide, as shown in Section 4. Within this section,
machine learning augmented modelling techniques used for effusion cooling flows through
single-hole and multi-hole studies are reviewed.

Jet-in-crossflow configurations were investigated by Ling et al. [101], where data-
driven methods were used to improve the anisotropic turbulent predictions of the k-ε
turbulence model in an a posteriori analysis. A random forests algorithm was trained using
a basis of 49 invariant, non-dimensional input features constructed from the flow’s mean
velocity, the mean velocity gradients, the turbulent kinetic energy and dissipation rate,
the density, the pressure gradients, and the molecular and turbulent viscosities. The model
output barycentric coordinates associated with Reynolds anisotropy eigenvalues. This
permitted a prediction of the anisotropy that ensured realizability by constraining their
values to well-defined limits. The generalisation of the model was assessed by applying it
to a wavy wall case and flow over a square cylinder.

Milani et al. [102] used machine learning to improve the turbulent heat flux closure
in RANS simulations. A supervised machine learning algorithm was applied to infer a
turbulent diffusivity field for the GDH based on the turbulent diffusivity calculated from
a high-fidelity LES or DNS simulation. A skewed jet-in-cross-flow and a wall-mounted
cube in cross-flow were used to train a random forest algorithm, and the model was
then tested on an inclined jet-in-cross-flow. Contours of turbulent diffusivity showed
improved results compared to the LES-described values. A forward propagation step to
investigate the ACE, which is the ultimate goal, produced results similar to the LES ACE
distribution. Later studies by Milani et al. [103] used the same approach and demonstrated
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the a priori performance of a favourable pressure gradient film cooling hole flow. Rather
than LES or DNS data, extensive high-resolution experimental datasets were employed
in this case. Using the random forest model for turbulent diffusivity, the injection region
showed reduced error of the mean scalar field; however, the wall showed an increase in
the error. The use of this approach showed some degree of improvement and illustrated a
potential method for improving RANS turbulent closures.

Interpreting complex machine learning models was the subject of the later study of
Milani et al. [103] using a feature analysis technique. Rule extraction from the random
forest trees identified the wall distance and eddy viscosity as critical features in the model.
Pointwise feature usage, describing a point-by-point analysis of the features used in the
algorithm, showed that certain features were only critical in localised regions. For example,
the eddy viscosity is less significant in determining the turbulent diffusivity near the wall
but becomes more important within the freestream. A sixth-order term in the velocity
gradient becomes very prominent below the core of the jet where it is known that a constant
turbulent Prandtl number overestimates the wall-normal transport. These techniques
remove the “black box” and opaque nature of the machine learning algorithms while
providing modelling insights that can be incorporated into further studies.

The generalisation of machine learning models of turbulent diffusivity using a non-
uniform turbulent Prandtl number was investigated by Milani et al. [104]. Results from the
machine-learnt turbulent diffusivity model were observed to generalise well to a blowing
ratio of 1.0 when the model was trained upon different datasets. However, it did not
generalise well to the higher blowing ratio case. Two dimensionality reduction techniques,
Principal Component Analysis (PCA) and t-distributed Stochastic Neighbour Embedding
(t-SNE), were used to identify regions in which the datasets deviated from each other.
This analysis showed that the data from the higher-blowing ratio case were a superset
of those from the lower-blowing ratio case. The results highlighted that effective models
must incorporate datasets spanning different operating conditions for the configuration of
interest. It was highlighted that this approach lacked sufficient anisotropy in the turbulent
heat flux, and the results reported did not incorporate a non-linear anisotropic Reynolds
stress field.

A later work by Ellis et al. [8] investigated the use of shallow neural networks and
random forest algorithms to inform a function for the HOGGDH coefficient for single-row
inclined cylindrical cooling holes with a k-ω SST model. The HOGGDH model was em-
ployed due to its improved modelled turbulent heat flux vector direction observed in the
study of a heated blunt plate flow [9]. The models were trained on two LES single-hole
cylindrical cases and tested on a third case not seen in the models’ training. The shallow
neural network and random forest models were able to reconstruct an LES-derived HOG-
GDH coefficient that accurately reproduced the turbulent heat flux magnitude. However,
the form of the HOGGDH showed discrepancies in the turbulent heat flux direction and
components in the downstream region of the jet. When the model was employed in a
RANS solver, the model improved predictions over a standard GDH approach, but only
minor improvements were seen over a HOGGDH model with a constant coefficient of 0.6.

Ellis and Xia [11] implemented a Tensor Basis Neural Network (TBNN) model (Figure 12)
of turbulence anisotropy trained on high-fidelity LES data using 10 tensor features and
17 scalar features. The model and its implementation in RANS showed improved a posteriori
results. When combined with a standard HOGGDH model (with cθ = 0.6), the results
showed improved predictions of lateral coolant distributions, but the results in the initial
region of jet development were best predicted when combined with the GDH model.
The model was then used in a RANS simulation of a multi-row effusion cooling flow,
which was experimentally investigated by Andrei et al. [48]. Spanwise-averaged cooling
performance (provided in Figure 13) was improved using a combination of the TBNN
turbulence anisotropy model and the HOGGDH turbulent heat flux closure. The contours
provided in the article showed a qualitative improvement in the lateral coolant spread in
agreement with the experimental contours.
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Figure 12. Tensor-basis neural network (TBNN) model used by Milani et al. [105] and Ellis and
Xia [11,106] for turbulent diffusivity tensors and turbulence anisotropy, respectively. Reprinted from
Phys. Fluids, 35, Ellis and Xia [11], Data-driven turbulence anisotropy in film and effusion cooling
flows, published by AIP Publishing, under the terms of the CC BY 4.0 license.

Milani et al. [105] implemented the TBNN architecture (Figure 12) to further im-
prove turbulent scalar flux predictions by introducing anisotropy into the turbulent scalar
flux vector and addressing the counter gradient transport. Two key types of counter-
gradient transport were highlighted: cross-gradient transport in the windward shear layer
and non-local effects in the near-wall region aft the coolant injection. In contrast to the
machine-learnt turbulent diffusivity of Milani et al. [102,104], the TBNN architecture learns
a turbulent diffusivity tensor, Dij, included in the Reynolds-averaged scalar transport equa-
tion (Equation (5)). The results showed a qualitative improvement across the centreline
planes; however, the spanwise planes showed smaller improvements. Within the work,
the issue of numerical stability for tensor-based diffusivity was addressed. The tensor was
forced to be positive semi-definite to satisfy the stability within the diffusion–convection
equation, which deviated from the machine-learnt term.
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Figure 13. Spanwise averaged ACE for the multi-hole cooling array case compared to experimental
datasets [48] [ ]. Reprinted from Phys. Fluids, 35, Ellis and Xia [11], Data-driven turbulence
anisotropy in film and effusion cooling flows, published by AIP Publishing, under the terms of
the CC BY 4.0 license. (a) Experimental dataset [ ], SST-GDH [ ] and TBNN-SST-GDH [ ].
(b) Experimental dataset [ ], SST-HOG [ ] and TBNN-SST-HOG [ ].



Energies 2024, 17, 4480 23 of 30

∂

∂xi
(uic) =

∂

∂xi

(
ν

Sc
∂c
∂xi

)
+

∂

∂xi

(
Dij

∂c
∂xj

)
(5)

Milani et al. [107] addressed the question of machine learning model generality.
The generality question refers to the ability of a model to perform on different flows that it
was not trained upon. The turbulent nature of each flow is different, and it is well known
that turbulence models behave differently across a broad range of flows. Milani et al. [107]
showed that models trained and tested on the same class of flow produce significant im-
provements to the mean scalar field when the TBNN model from Milani et al. [105] is used.
When trained and tested on different classes of flows, the model does not improve the
results but merely replicates the baseline. This shows that, although this approach is not
able to generalise, it does not produce non-physical results.

Recent work by Ellis and Xia [106] combined a TBNN (Figure 12) turbulence anisotropy
model [11] with the published spatially varying HOGGDH coefficient model [8] and a
k-ω SST model. The study investigated single-hole inclined cylindrical cooling holes.
Although surface cooling effectiveness distributions only showed marginal improvements
over the standard k-ω SST model with baseline HOGGDH, large improvements to the
temperature profiles through the coolant jet were observed with improved mean velocity
and turbulent profile predictions. The authors concluded their article by identifying that
the approach still under-predicted the turbulent kinetic energy field and further machine
learning models could be extended to improve the turbulent model transport equations.

Deep neural networks were used by Wang et al. [108] to directly predict solid temper-
atures and stresses in multi-hole cooling arrangements using CFD with solid conductive
heat transfer. The simulations were conducted with ANSYS Fluent using the Realizable
k-epsilon model. Latin Hypercube Sampling (LHS) was used to support the training dataset
generation. The deep neural network used inputs such as blowing ratio, density ratio,
inclination angle, hole pitch, and spacing. The results showed that the deep neural network
was able to reproduce the CFD results for cases not seen with a mean absolute percent error
of 0.5% and 0.08% for temperature and stresses, respectively. The authors reported that the
approach was only valid within the scope of parameters studied, and the method would
not be suitable for cases that significantly differ from the training dataset. In addition, these
approaches are only as ideal as the CFD used to train the model.

Yang et al. [109] investigated the use of a Convolution Neural Network (CNN) to
quantify the cooling superposition in novel multi-hole cooling arrays. CFD simulations
of 13 multi-hole cooling cases were used to train and test the model. The input to the
CNN model was a binary input matrix where a 1 defines the spatial location of a cooling
hole while the model output is the surface cooling effectiveness distributions. The model
then predicts the cooling performance of novel and unseen hole distributions. A later
work by Yu et al. [110] implemented a transfer learning method designed to assimilate
both numerical and experimental data for effusion cooling. The model trained was able
to predict the performance of random cooling hole configurations that would provide a
useful rapid design tool.

A low-cost, novel approach for simulation effusion cooling walls in a combustor
sector was introduced by Paccati et al. [111]. The geometry of the effusion cooling holes
was replaced with two-dimensional boundary source terms for the effusion hole velocity
and turbulence terms that are modelled with a combined reduced-order and regression
approach to form the surrogate model. The model was trained with the RANS CFD of a
single cooling hole, providing accurate predictions over an array of operating conditions.
Good agreement was found in the velocity profiles between a pure CFD solution of the
combustor sector with resolved effusion cooling holes and when the source term surrogate
model was used, but cooling predictions across the effusion cooling plate showed over-
predictions at the cooling hole trailing edge.
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Physics-Informed Neural Networks (PINNs) were investigated by Huang et al. [112,113].
The method provides a meshless approach to resolving inverse problems in fluid mechanics
and other fields. Huan et al. [112] used PINNs to reconstruct the time-averaged field of a
complex jet-in-crossflow case using a tensor-based eddy viscosity to improve the prediction of
anisotropy that jet flows feature. With limited observations, the authors found that the approach
provided some success in replicating the time-averaged field compared to when using a scalar
eddy viscosity.

In a later work, Huang et al [113] used PINNs to reconstruct the three-dimensional
flow field of a swirling combustor flow with an effusion cooling plate from two-dimensional
two-component data. The PINN was formulated using mean values of velocity, pressure,
and passive scalar as well as the Reynolds stress tensor and turbulent passive scalar flux.
Losses were shown to be a summation of a weighted loss from the Partial Differential
Equation (PDE) losses and the observational (experimental) loss, but boundary condition
losses were not shown in the final loss metric. The results found some success when data
were trained on just the two-dimensional two-component data, but the authors found
significant improvements when observational data of the coolant passive scalar, measured
with pressure-sensitive paint (PSP), were also included. The authors highlighted that the
method requires large volumes of data and should only supplement three-dimensional
modelling, but a future work that helps capture complex turbulent wall-bounded flows
could improve the approach.

Despite the impressive efforts of machine learning to improve effusion cooling predic-
tion, a couple of key questions remain to be addressed in the near future. Firstly, the choice
of input features between primary physical variables and high-order tensors can be less
straightforward to determine. Using primary physical flow properties can be more physics-
informing while high-order tensors can be more numerically unstable, making them less
attractive in practice. Secondly, the “black box” nature of some models reduces the trace-
ability and can prohibit their adoption by industry. Finally, error estimation is still a major
topic among machine learning and data-driven algorithm developers. Ultimately, one
ought to have the knowledge of what the potential error bounds are before applying such
machine learning-augmented models.

8. Concluding Remarks and Outlook

With the advancement of computing power over the past few decades, we have
witnessed numerical simulation and modelling as a methodology for studying effusion
cooling phenomena on a general trend towards higher-fidelity, more resolved, and better
predicted solutions. And yet, the demand for even higher accuracies of cooling predictions
and better understanding of effusion mechanisms appears to grow even faster in order to
satisfy the engineering needs. Based on our extensive review of computational works over
the recent years, a few observational notes can be made:

• First-order principles and conservation law-based control volume methods are still
relevant today. However, their practical usage is seen to have reduced, mainly due to
the lower likelihood of canonical geometries and simplified boundary conditions.

• For the RANS, however, there have been an overwhelming body of work produc-
ing reasonable results. RANS models tend to predict an elongation of coolant track
in the streamwise direction while under-predicting the cooling jet’s lateral spreading.
Mismatches of ACE distributions can be easily found in comparison studies against
measurements, despite their superior computational efficiency to their higher-fidelity
counterparts.

• Not surprisingly, eddy-resolving methods, which include LES and hybrid RANS-
LES, have seen great increases in their application in practice, offering more accurate
accounts for longitudinal and lateral distributions of ACE and surface temperature
prediction. More importantly, they also come with the resolved Reynolds stresses and
turbulent heat fluxes for interrogation that may reveal more underlying flow physics.
However, these are at significant computational costs as our listed works have shown.



Energies 2024, 17, 4480 25 of 30

In modern cooling designs, given the effectiveness strongly relies on the shape of the
cooling holes, it would be impossible for eddy-resolving methods alone to provide all
the answers to the vast varieties of design questions, leading to the next bullet point.

• The power of machine learning algorithms cannot be underestimated as they have
demonstrated their huge potential to exploit the “big data” created by previously
mentioned eddy-resolving methods. The physics-based input to the TBNN framework,
for example, was shown to produce encouraging results.

Looking forward, it is foreseeable that eddy-resolving methods will continue to de-
velop and evolve with cost reduction in mind, especially with the likes of wall-modelled
LES and hybrid RANS-LES. On the other hand, the future of RANS models, owing to their
simplicity and low-cost nature, with machine learning-aided data-driven augmentation
beyond the limits of conventional eddy viscosity and GDH hypotheses looks particu-
larly bright.
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Abbreviations
The following abbreviations are used in this manuscript:

ACE Adiabatic cooling effectiveness
AHM Adiabatic homogeneous model
AI Artificial intelligence
ANN Artificial neuron network
AVBP Advanced virtual burner project
CFD Computational fluid dynamics
CHT Conjugate heat transfer
CNN Convolution neural network
DDES Delayed detached-eddy simulation
DES Detached-eddy simulation
DMM Dynamic mixed model
DNS Direct numerical simulation
DRSM Differential Reynolds stress model
GGDH Generalized gradient diffusion hypothesis
HOGGDH Higher-order generalised gradient diffusion hypothesis
LES Large-eddy simulation
LHS Latin hypercube sampling
MILES Monotonically integrated LES
ML Machine learning
MRC Magnetic resonance concentration
PCA Principal component analysis
RANS Reynolds-averaged Navier–Stokes
SAFE Source-based effusion model
SBES Stress-blended eddy simulation
SGS Sub-grid scale model
RNG Re-Normalisation Group
RSM Reynolds stress model
SAS Scale Adaptive Simulation
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SEM Synthetic eddy method
SST Shear stress transport model
TBNN Tensor basis neural network
VLES Very large eddy simulation
WALE Wall-adaptive local eddy viscosity
GDH Gradient diffusion hypothesis
ZDES Zonal Detached-eddy simulation
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