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Abstract Many aspects of the brain’s design can be understood as the result of evolutionary6

drive towards metabolic e�ciency. In addition to the energetic costs of neural computation and7

transmission, experimental evidence indicates that synaptic plasticity is metabolically demanding8

as well. As synaptic plasticity is crucial for learning, we examine how these metabolic costs enter in9

learning. We �nd that when synaptic plasticity rules are naively implemented, training neural10

networks requires extremely large amounts of energy when storing many patterns. We propose11

that this is avoided by precisely balancing labile forms of synaptic plasticity with more stable forms.12

This algorithm, termed synaptic caching, boosts energy e�ciency manifold and can be used with13

any plasticity rule, including back-propagation. Our results yield a novel interpretation of the14

multiple forms of neural synaptic plasticity observed experimentally, including synaptic tagging and15

capture phenomena. Furthermore our results are relevant for energy e�cient neuromorphic16

designs.17

18

Introduction19

The human brain only weighs 2% of the total body mass, but is responsible for 20% of resting20

metabolism (Attwell and Laughlin, 2001; Harris et al., 2012). The brain’s energy need is believed to21

have shaped many aspects of its design, such as its sparse coding strategy (Levy and Baxter, 1996;22

Lennie, 2003), the biophysics of the mammalian action potential (Alle et al., 2009; Fohlmeister,23

2009), and synaptic failure (Levy and Baxter, 2002; Harris et al., 2012). As the connections in the24

brain are adaptive, one can design synaptic plasticity rules that further reduce the energy required25

for information transmission, for instance by sparsifying connectivity (Sacramento et al., 2015). But26

in addition to the costs associated to neural information processing, experimental evidence suggests27

that memory formation, presumably corresponding to synaptic plasticity, is itself an energetically28

expensive process as well (Mery and Kawecki, 2005; Plaçais and Preat, 2013; Jaumann et al., 2013;29

Plaçais et al., 2017).30

To estimate the amount of energy required for plasticity,Mery and Kawecki (2005) subjected fruit31

�ies to associative conditioning spaced out in time, resulting in long-term memory formation. After32

training, the �y’s food supply was cut o�. Flies exposed to the conditioning died some 20% quicker33

than control �ies, presumably due to the metabolic cost of plasticity. Likewise, fruit �ies doubled34

their sucrose consumption during the formation of aversive long-term memory (Plaçais et al.,35

2017), while forcing starving fruit �ies to form such memories reduced lifespan by 30% (Plaçais and36

Preat, 2013). A massed learning protocol, where pairings are presented rapidly after one another,37

leads to less permanent forms of learning that don’t require protein synthesis. Notably this form of38

learning is energetically less costly (Mery and Kawecki, 2005; Plaçais and Preat, 2013). In rats (Gold,39

1986) and humans (Hall et al., 1989, but see Azari, 1991) bene�cial e�ects of glucose on memory40

have been reported, although the intricate regulation of energy complicates interpretation of such41

experiments (Craft et al., 1994).42

Motivated by the experimental results, we analyze the metabolic energy required to form43
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Figure 1. Energy e�ciency of perceptron learning. (a) A perceptron cycles through the patterns and updates its synaptic weights until all
patterns produce their correct target output. (b) During learning the synaptic weights follow approximately a random walk (red path) until they �nd
the solution (grey region). The energy consumed by the learning corresponds to the total length of the path (under the L1 norm). (c) The energy
required to train the perceptron diverges when storing many patterns (red curve). The minimal energy required to reach the correct weight
con�guration is shown for comparison (green curve). (d) The ine�ciency, de�ned as the ratio between actual and minimal energy plotted in panel
c, diverges as well (black curve). The overlapping blue curve corresponds to the theory, Eq. 3 in the text.
Figure 1–Figure supplement 1. Energy ine�ciency as a function of exponent ↵ in the energy function.

associative memories in neuronal networks. We demonstrate that traditional learning algorithms44

are metabolically highly ine�cient. Therefore we introduce a synaptic caching algorithm that is45

consistent with synaptic consolidation experiments, and distributes learning over transient and46

persistent synaptic changes. This algorithm increases e�ciency manifold. Synaptic caching yields a47

novel interpretation to various aspects of synaptic physiology, and suggests more energy e�cient48

neuromorphic designs.49

Results50

Ine�ciency of perceptron learning51

To examine the metabolic energy cost associated to synaptic plasticity, we �rst study the perceptron.52

A perceptron is a single arti�cial neuron that attempts to binary classify input patterns. It forms the53

core of many arti�cial networks and has been used to model plasticity in cerebellar Purkinje cells.54

We consider the common case where the input patterns are random patterns each associated to a55

randomly chosen binary output. Upon presentation of a pattern, the perceptron output is calculated56

and compared to the desired output. The synaptic weights are modi�ed according to the perceptron57

learning rule, Figure 1A. This is repeated until all patterns are classi�ed correctly (Rosenblatt, 1962,58

see Methods and Materials). Typically, the learning takes multiple iterations over the whole dataset59

(’epochs’).60

As it is not well known howmuchmetabolic energy is required tomodify a biological synapse, and61

how this depends on the amount of change and the sign of the change, we propose a parsimonious62

model. We assume that the metabolic energy for every modi�cation of a synaptic weight is63

proportional to the amount of change, no matter if this is positive or negative. The total metabolic64
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costM (in arbitrary units) to train a perceptron is the sum over the weight changes of synapses65

Mperc =
N
…

i=1

T
…

t=1
wi(t) *wi(t * 1)↵ , (1)

where N is the number of synapses, wi denotes the synaptic weight at synapse i, and T is the total66

number of time-steps required to learn the classi�cation. The exponent ↵ is set to one, but our67

results below are similar whenever 0 f ↵ ø 2, Figure 1-Figure supplement 1. As there is evidence that68

synaptic depression involves di�erent pathways than synaptic potentiation (e.g. Hafner et al., 2019),69

we also tried a variant of the cost function where only potentiation costs energy and depression70

does not. This does not change our results, Figure 1-Figure supplement 1.71

Learning can be understood as a search in the space of synaptic weights for a weight vector72

that leads to correct classi�cation of all patterns, Figure 1B. The synaptic weights approximately73

follow a random walk (Methods and Materials), and the metabolic cost is proportional to the length74

of this walk under the L1 norm, Eq. 1. The perceptron learning rule is energy ine�cient, because75

repeatedly, weight modi�cations made to correctly classify one pattern are partly undone when76

learning another pattern. However, as both processes require energy, this is ine�cient.77

The energy required by the perceptron learning rule depends on the number of patterns P78

to be classi�ed. The set of correct weights spans a cone in N-dimensional space (grey region in79

Figure 1B). As the number of patterns to be classi�ed increases, the cone containing correct weights80

shrinks and the random walk becomes longer (Gardner, 1987). Near the critical capacity of the81

perceptron (P = 2N), the number of epochs required diverges as (2 * P_N)*2, Opper (1988). The82

energy required, which is proportional to the number of updates that the weights undergo, follows83

a similar behavior, Figure 1C.84

It is useful to consider the theoretical minimal energy required to classify all patterns. The most85

energy e�cient algorithm would somehow directly set the synaptic weights to their desired �nal86

values. Geometrically, the random walk trajectory of the synaptic weights to the target is replaced87

by a path straight to the correct weights (green arrow in Figure 1B). Given the initial weights wi(0)88

and the �nal weights wi(T ), the energy required in this idealized case is89

Mmin =
…

i
wi(T ) *wi(0). (2)

While the minimal energy also grows with memory load (Methods and Materials), it increases less90

steeply, Figure 1C.91

We express the metabolic e�ciency of a learning algorithm as the ratio between the energy the92

algorithm requires and the minimal energy (the gap between the two log-scale curves in Figure 1C).93

As the number of patterns increases, the ine�ciency of the perceptron rule rapidly grows as (see94

Methods and Materials)95

Mperc

Mmin
=

˘

⇡P
2 * P_N , (3)

which �ts the simulations very well, Figure 1D, black curve and dashed blue curve.96

There is evidence that both cerebellar and cortical neurons are operating close to their maximal97

memory capacity (Brunel et al., 2004; Brunel, 2016). Indeed, it would appear wasteful if this were98

not the case. However, the above result demonstrates that for instance classifying 1900 patterns by99

a neuron with 1000 synapses with the traditional perceptron learning requires about Ì900 times100

more energy than minimally required. As the fruit-�y experiments indicate that even storing a101

single association in long-term memory is already metabolically expensive, storing many memories102

would thus require very large amounts of energy if the biology would naively implement these103

learning rules.104

Synaptic caching105

How can the con�icting demands of energy e�ciency and high storage capacity be met? The106

minimal energy argument presented above suggests a way to increase energy e�ciency. There107
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Figure 2. Synaptic caching algorithm. (a) Changes in the synaptic weights are initially stored in metabolically cheaper transient decaying weights.
Here two example weight traces are shown (blue and magenta). The total synaptic weight is composed of transient and persistent forms.
Whenever any of the transient weights exceed the consolidation threshold, the weights become persistent and the transient values are reset
(vertical dashed line). The corresponding energy consumed during the learning process consists of two terms: the energy cost of maintenance is
assumed to be proportional to the magnitude of the transient weight (shaded area in top traces); energy cost for consolidation is incurred at
consolidation events. (b) The total energy is composed of the energy to occasionally consolidate and the energy to support transient plasticity.
Here it is minimal for an intermediate consolidation threshold. (c) The amount of energy required for learning with synaptic caching, in the absence
of decay of the transient weights (black curve). When there is no decay and no maintenance cost the energy equals the minimal one (green line)
and the e�ciency gain is maximal. As the maintenance cost increases, the optimal consolidation threshold decreases (lower panel) and the total
energy required increases, until no e�ciency is gained at all by synaptic caching.
Figure 2–Figure supplement 1. Synaptic caching in a spiking neuron with a biologically plausible perceptron-like learning rule.

are forms of plasticity - anaesthesia resistant memory in �ies and early-LTP/LTD in mammals - that108

decay and do not require protein synthesis. Such transient synaptic changes can be induced using109

a massed, instead of a spaced, stimulus presentation protocol. Fruit-�y experiments show that110

this form of plasticity is much less energy-demanding than long-term memory (Mery and Kawecki,111

2005; Plaçais and Preat, 2013; Plaçais et al., 2017). In mammals there is evidence that synaptic112

consolidation, but not transient plasticity, is suppressed under low energy conditions (Potter et al.,113

2010). Inspired by these �ndings we propose that the transient form of plasticity constitutes a114

synaptic variable that accumulates the synaptic changes across multiple updates in a less expensive115

transient form of memory; only occasionally the changes are consolidated. We call this synaptic116

caching.117

Speci�cally, we assume that each synapse is comprised of a transient component si and a118

persistent component li. The total synaptic weight is their sum, wi = si + li. We implement synaptic119

caching as follows, Figure 2A: For every presented pattern, changes in the synaptic strength are120

calculated according to the perceptron rule and are accumulated in the transient component that121

decays exponentially to zero. If, however, the absolute value of the transient component of a122

synapse exceeds a certain consolidation threshold, all synapses of that neuron are consolidated123

(vertical dashed line in Figure 2A), the value of the transient component is added to the persistent124

weight, and the transient weight is reset to zero.125

The e�ciency gain of synaptic caching depends on the limitations of transient plasticity. If the126

transient synaptic component could store information inde�nitely at no metabolic cost, consolida-127

tion could be postponed until the end of learning and the energy would equal the minimal energy128

Eq. 2. Hence the e�ciency gain would be maximal. However, we assume that the e�ciency gain of129

synaptic caching is limited because of two e�ects: 1) The transient component decays exponentially130

(with a time-constant ⌧). 2) There might be a maintenance cost associated to maintaining the tran-131

sient component. Biophysically, transient plasticity might correspond to an increased/decreased132
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vesicle release rate (Padamsey and Emptage, 2014; Costa et al., 2015) so that it diverges from its133

optimal value (Levy and Baxter, 2002).134

To estimate the energy saved by synaptic caching, we assume that the maintenance cost is135

proportional to the transient weight itself and incurred every time-step �t (shaded area in the top136

traces of Figure 2A)137

Mtrans = c
…

i

…

t
si(t).

While experiments indicate that transient plasticity is metabolically far less demanding than the138

persistent form, the precise value of the maintenance cost is not known. We encode it in the139

constant c; the theory also includes the case that c is zero. It is straightforward to include a cost140

term for changing the transient weight (Methods); such a cost would reduce the e�ciency gain141

attainable by synaptic caching.142

Next we need to include the energetic cost of consolidation. Currently it is unknown how143

di�erent components of synaptic consolidation, such as signaling, protein synthesis, transport to144

the synapses and changing the synapse, contribute to this cost. We assume the metabolic cost145

to consolidate the synaptic weights isMcons =
≥

i
≥

t li(t) * li(t * 1). This is identical to Eq. 1, but in146

contrast to standard perceptron learning where synapses are consolidated every time a weight147

is updated, now changes in the persistent component li only occur when consolidation occurs.148

One could add a maintenance cost term to the persistent weight as well, in that case postponing149

consolidation would save even more energy.150

E�ciency gain from synaptic caching151

To maximize the e�ciency gain achieved by synaptic caching one needs to tune the consolidation152

threshold, Figure 2B. When the threshold is low, consolidation occurs often and the energy ap-153

proaches the one without synaptic caching. When on the other hand the consolidation threshold154

is high, the expensive consolidation process occurs rarely, but the maintenance cost of transient155

plasticity is high, moreover the decay will lead to forgetting of unconsolidated memories, slowing156

down learning and increasing the energy cost. Thus the consolidation energy decreases for larger157

thresholds, whereas the maintenance energy increases, Figure 2B (see Methods and Materials). As158

a result of this trade-o� there is an optimal threshold, which depends on the decay and the mainte-159

nance cost, that balances persistent and transient forms of plasticity. To analyze the e�ciency gain160

below we numerically optimize the consolidation threshold.161

First we consider the case when the transient component does not decay. Figure 2C shows the162

energy required to train the perceptron. When the maintenance cost is absent (c = 0), consolidation163

is best postponed until the end of the learning and the energy is as low as the theoretical minimal164

bound. As c increases, it becomes bene�cial to consolidate more often, i.e. the optimal threshold165

decreases, Figure 2C bottom panel. The required energy increases until the maintenance cost166

becomes so high that it is better to consolidate after every update, the transient weights are not167

used, and no energy is saved with synaptic caching. The e�ciency is well estimated by analysis168

presented in the Methods and Materials, Figure 2C (theory).169

Next, we consider what happens when the transient plasticity decays. We examine the energy170

and learning time as a function of the decay rate for various levels of maintenance cost, Figure 3.171

As stated above, if there is no decay, e�ciency gain can be very high; the consolidation threshold172

has no impact on the learning time, Figure 3 bottom. In the other limit, when the decay is rapid173

(right-most region), it is best to consolidate frequently as otherwise information is lost. As expected,174

the metabolic cost is high in this case.175

The regime of intermediate decay is quite interesting. When maintenance cost is high, it is of176

primary importance to keep learning time short, and in fact the learning time can be lower than in177

a perceptron without decay, Figure 3, bottom, light curves. When on the other hand maintenance178

cost is low, the optimal solution is to set the consolidation threshold high so as to minimize the179
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Figure 3. Synaptic caching and decaying transient plasticity. The amount of energy required, the optimal
consolidation threshold, and the learning time as a function of the decay rate of transient plasticity for various
values of the maintenance cost. Broadly, stronger decay will increase the energy required and hence reduce
e�ciency. With weak decay and small maintenance cost, the most energy-saving strategy is to accumulate as
many changes in the transient forms as possible, thus increasing the learning time (darker curves). However,
when maintenance cost is high, it is optimal to reduce the threshold and hence learning time. Dashed lines
denote the results without synaptic caching.
Figure 3–Figure supplement 1. The e�ects of consolidation threshold on energy cost and learning time.

number of consolidation events, even if this means a longer learning time, Figure 3, bottom, dark180

curves.181

For intermediate decay rates, the consolidation threshold trades o� between learning time and182

energy e�ciency, Figure 3–Figure supplement 1A. That is, by setting the consolidation threshold the183

perceptron can learn either rapidly or e�ciently. Such a trade-o� could be of biological relevance.184

We found a similar trade-o� in multi-layer perceptrons (see below), Figure 3–Figure supplement 1B.185

(although we found no evidence that learning can be sped up there).186

In summary, when the transient component decays the learning dynamics is altered, and187

synaptic caching can not only reduce metabolic cost but can also reduce learning time.188

Next, to show that synaptic caching is a general principle, we implement synaptic caching189

in a spiking neural network with a biologically plausible perceptron-like learning rule proposed190

by D’Souza et al. (2010). The optimal scenario where the transient weights do not decay and have191

no maintenance cost is assumed. The network is able to save 80% of the energy with synaptic192

caching, Figure 2–Figure supplement 1. Hence, e�ciency gains from synaptic caching do not rely on193

exact implementation.194

In the above implementation of synaptic caching, consolidation of all synapses was triggered195

when transient plasticity at a single synapse exceeded a certain threshold. This resembles the196

synaptic tagging and capture phenomenon where plasticity induction leads to transient changes197

and sets a tag; only strong enough stimulation results in proteins being synthesized and being198

delivered to all tagged synapses, consolidating the changes (Frey and Morris, 1997; Barrett et al.,199

2009). There is a number of ways synapses could interact, Figure 4A. First, consolidation might be200

set to occur whenever transient plasticity at a synapse crosses the threshold and only that synapse201

is consolidated. Second, a hypothetical signal might send to the soma and consolidation of all202

synapses occurs once transient plasticity at any synapse crosses the threshold (used in Figs. 2203

and 5). Thirdly, a hypothetical signal might be accumulated in or near the soma and consolidation of204
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consolidation threshold and only that synapse is consolidated. 2) Consolidation of all synapses occurs once transient plasticity at any synapse
crosses the threshold. 3) Consolidation of all synapses occurs once the total transient plasticity across synapses crosses the threshold. (b) Energy
required to teach the perceptron is comparable across algorithm variants. Consolidation thresholds were optimized for each algorithm and each
maintenance cost of transient plasticity individually. In this simulation the transient plasticity did not decay.

all synapses occurs once this total transient plasticity across synapses crosses the threshold. Only205

cases 2 and 3 are consistent with synaptic tagging and capture experiments, where consolidation of206

one synapse also leads to consolidation of another synapse that would otherwise decay back to207

baseline (Frey and Morris, 1997; Sajikumar et al., 2005). However, all variants lead to comparable208

e�ciency gains, Figure 4B.209

In summary we see that synaptic caching can in principle achieve large e�ciency gains, bringing210

e�ciency close to the theoretical minimum.211

Synaptic caching in multi-layer networks212

Since the perceptron is a rather restrictive framework, we wondered whether the e�ciency gain of213

synaptic caching can be transferred to multi-layer networks. Therefore we implement a multi-layer214

network trained with back-propagation. Back-propagation networks learn the associations of215

patterns by approaching the minimum of the error function through stochastic gradient descent.216

We use a network with one hidden layer with by default 100 units to classify hand-written digits from217

the MNIST dataset. As we train the network, we intermittently interrupt the learning to measure218

the energy consumed for plasticity thus far and measure the performance on a held-out test-set.219

This yields a curve relating energy to accuracy.220

Similar to a perceptron, learning without synaptic caching is metabolically expensive in a back-221

propagation network. Until reaching maximal accuracy, energy rises approximately exponentially222

with accuracy, after which additional energy do not lead to further improvement. When the learning223

rate is su�ciently small, the metabolic cost of plasticity is independent of the learning rate. At224

larger learning rates, learning no longer converges and energy goes up steeply without an increase225

in accuracy, Figure 5A. With the exception of these very large rates, these results show that lowering226

the learning rate does not save energy.227

Similar to the perceptron, we evaluate how much energy would be required to directly set the228

synaptic weights to their �nal values. Traditional learning without synaptic caching is once again229

energetically ine�cient, expending at least Ì 20 times more energy compared to this theoretical230

minimum whatever the desired accuracy level is, Figure 5B. However, by splitting the weights into231

persistent synaptic weights and transient synaptic caching weights, the network can save substantial232

amounts of energy. As for the perceptron, depending on the decay and the maintenance cost the233
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energy ranges from as little as the minimum to as much as the energy required without caching.234

Thus the e�ciency gain of synaptic caching found for the perceptron carries over to multi-layer235

networks.236

It might seem that smaller networks would be metabolically less costly, because small networks237

simply contain fewer synapses to modify. On the other hand, we saw above that for the perceptron238

metabolic costs rise rapidly when cramming many patterns into it. We wondered therefore how239

energy cost depends on network size in the multi-layer network. Since the number of input units is240

�xed to the image size and the number of output units equals the ten output categories, we adjust241

the number of hidden units.242

The network fails to reach the desired accuracy if the number of hidden units is too small,243

Figure 5C. When the network size is barely above the minimum requirement, the network has to244

compensate the lack of hidden units with longer training time and hence a larger energy expenditure.245

However, very large networks also require more energy. These results show that from an energy246

perspective there exists an optimal number of neurons to participate in memory formation. The247

optimal number depends on the accuracy requirement; as expected, higher accuracies require248

more hidden units and energy.249

Discussion250

Experiments on formation of a long-term memory of a single association suggest that synaptic251

plasticity is an energetically expensive process. We have shown that energy requirements rise252

steeply as memory load or designated accuracy level increase. This indicates trade-o�s between253

energy consumption, and network capacity and performance. To improve e�ciency we have254

proposed an algorithm named synaptic caching that temporarily stores changes in the synaptic255

strength in transient forms of plasticity, and only occasionally consolidates into the persistent256

forms. Depending on the characteristics (decay and maintenance cost) of transient plasticity, this257

can lead to large energy savings in the energy required for synaptic plasticity. We stress that from258

an algorithmic point of view, synaptic caching can be applied to any synaptic learning algorithm259

(unsupervised, reinforcement, supervised) and does not have speci�c requirements. Further savings260

might be possible by adjusting the consolidation threshold as learning progresses and by being261

pathway-speci�c (Leibold and Monsalve-Mercado, 2016).262

The implementation of a consolidation threshold is similar to what has been observed in263

physiology, in particular in the synaptic tagging and capture literature (Redondo and Morris, 2011).264
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Our results thus give a novel interpretation of those �ndings. Synaptic consolidation is known to be265

a�ected by reward, novelty and punishment (Redondo and Morris, 2011), which is compatible with266

a metabolic perspective as energy is expended only when the stimulus is worth remembering. In267

addition, our results for instance explain why consolidation is competitive, but transient plasticity is268

less so (Sajikumara et al., 2014), namely the formation of long-termmemory is precious. Consistent269

with this, there is evidence that encouraging consolidation increases energy consumption (Plaçais270

et al., 2017). We also predict that the transient weight changes act as an accumulative threshold271

for consolidation. That is, su�cient transient plasticity should trigger consolidation, even in the272

absence of other consolidation triggers. Future characterization of the energy budget of synaptic273

plasticity should allow more precise predictions of our theory.274

Combining persistent and transient storage mechanisms is a strategy well known in traditional275

computer systems to provide a faster and often energetically cheaper access to memory. In276

computer systems permanent storage of memories typically requires transmission of all information277

across multiple transient cache systems until reaching a long-term storage device. The transfer of278

information is often a bottleneck in computer architectures and consumes considerable power in279

modern computers (Kestor et al., 2013). However, in the nervous system transient and persistent280

synapses appear to exist next to each other. Local consolidation in a synapse does not require281

moving information. Using this setup, biology appears to have found a more e�cient way to store282

information.283

Memory stability has long fascinated researchers (Richards and Frankland, 2017), and in some284

cases forgetting can be bene�cial (Brea et al., 2014). Splitting plasticity into transient and persistent285

forms might prevent catastrophic forgetting in networks (Leimer et al., 2019). Here we argue that286

the main bene�t of more transient forms of plasticity is to permit the network to explore the weight287

space to �nd a desirable weight con�guration using less energy. While this work focuses solely on288

the metabolic cost of synaptic plasticity, the brain also expends signi�cant amounts of energy on289

spiking, synaptic transmission, and maintaining resting potential. Learning rules can be designed290

to reduce costs associated to computation once learning has �nished (Sacramento et al., 2015). It291

would be of interest to next understand the precise interaction of computation and plasticity cost292

during and after learning.293

Methods and Materials294

Energy e�ciency of the perceptron295

For perceptron we can calculate the energy e�ciency of both the classical perceptron and the296

gain achieved by synaptic caching. We �rst consider the case that transient plasticity does not297

decay, as this allows important theoretical simpli�cations. In the perceptron learning to classify298

binary patterns Eq. 8, the weight updates are either +⌘ or *⌘, where ⌘ is the learning rate, so that299

the energy spent (Eq. 1, ↵ = 1) per update per synapse equals ⌘. Hence the total energy spent to300

classify all patterns Mperc = NK⌘, where K is the total number of updates. Opper (1988) showed301

that learning time diverges as K Ì (2 * P_N)*2. We found the numerator numerically to yield302

K = 2P_(2 * P_N)2.303

To calculate the e�ciency we compare this to the minimal energy necessary to reach the �nal304

weight vector in the perceptron. We approximate the weight trajectory followed by the perceptron305

algorithm by a random walk. After K updates of step-size ⌘ the weights approximate a Gaussian306

distribution with zero mean and variance K⌘2. By short-cutting the random walk, the minimal307

energy required to reach the weight vector isMmin = NÍwiÎ =
t

2
⇡
⌘N

˘

K. Hence, we �nd for the308

ine�ciency (see Figure 1D)309

Mperc

Mmin
=

˘

⇡P
2 * P_N .

Simulations show that the variance in the weights is actually about 20% smaller than a random walk,310

likely re�ecting correlations in the learning process not captured in the random walk approximation.311
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This explains most of the slight deviation in the ine�eciency between theory and simulation, Fig.1.D.312

E�ciency of synaptic caching313

To calculate the e�ciency gained with synaptic caching we need to calculate both the consolidation314

energy and the maintenance energy. The consolidation energy equals the number of consolidation315

events times the size of the updates. The size of the weight updates is equal to the consolidation316

threshold ✓, while the number of consolidation events follows from a random walk argument as317

NK_ ‰✓_⌘Â2. The ceiling function expresses the fact that when the threshold is smaller than learning318

rate, consolidation will always occur; we temporarily ignore this scenario. In addition, at the end319

of learning all remaining transient plasticity is consolidated, which requires an energy N Ísi(T )Î.320

Assuming that the probability distribution of transient weights, Ps(s), has reached steady state at321

the end of learning, it has a triangular shape (see below) and mean absolute value Ísi(T )Î =
1
3
✓, so322

that the total consolidation energy323

Mcons = ⌘2NK
✓

+ 1
3N✓.

The energy associated to the transient plasticity is (again assuming that Ps(s) has reached steady324

state)325

Mtrans = cNT✓_3, (4)

where T is the number of time-steps required for learning. We �nd numerically that T = P 3_2

(2*P_N)2
.326

Hence the total energy when using synaptic caching isMcache = Mcons+Mtrans = N
⌧

⌘2K_✓ + 1
3
✓(1 + cT )

�

.327

The optimal threshold Ç✓ is given by d
d✓

⌅

Mcons +Mtrans
⇧

= 0, or328

Ç✓2 = ⌘2 3K
1 + cT

at which the energy is Mcache = 2⌘N
˘

K
˘

1 + cT _
˘

3. And so the e�ciency of synaptic caching is329

Mcache
Mmin

=
t

2⇡
3

˘

1 + cT . However, as consolidation can maximally occur only once per time-step,Mcons330

cannot exceedMperc so that the ine�ciency is331

Mcache
Mmin

= min
H

u

2⇡
3 (1 + cT ),

u

⇡
2K

I

.

This equation reasonably matches the simulations, Figure 2C (labeled ’theory’).332

One can include a cost for changing the transient weight, so that Mtrans = c
≥

i
≥

t si(t) +333

b
≥

i
≥

t si(t + 1) * si(t), where b codes the cost of making a change. Assuming that consolidat-334

ing immediately after a weight change does not incur this cost, this yields an extra term in Eq.4 of335

bNK(1 * 1_ ‰✓_⌘Â2). Such costs will reduce the e�ciency gain achievable by synaptic caching. When336

b g 1, it is always cheaper to consolidate.337

Decaying transient plasticity338

When transient plasticity decays, the situation is more complicated as the learning time depends on339

the strength of the decay and to our knowledge no analytical expression exists for it. However, it is340

still possible to estimate the power, i.e. the energy per time unit, for both the transient component,341

denotedmtrans, and the consolidation component, mcons. Under the randomwalk approximation every342

time the perceptron output does not match the desired output, the transient weight si is updated343

with an amount �si drawn from a distribution Q, with zero mean and variance �2. Given the update344

probability p, i.e. the fraction of patterns not yet classi�ed correctly, one has Qs(⌘) = Qs(*⌘) = p_2345

and Qs(0) = 1 * p, so that �2
s = p⌘2. We assume that the synaptic update rate decreases very slowly346

as learning progresses, hence p is quasi-stationary.347

Every time-step �t = 1 the transient weights decay with a time-constant ⌧. The synapse is348

consolidated and si is reset to zero whenever the absolute value of the caching weight si exceeds349
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✓. Given p and ⌧, we would like to know: 1) how often consolidation events occur which gives350

consolidation power and 2) the maintenance power mtrans = cNÍsiÎ. This problem is similar to351

the random walk to threshold model used for integrate-and-�re neurons, but here there are two352

thresholds: ✓ and *✓.353

Under the assumptions of small updates and a smooth resulting distribution, the evolution of354

the probability distribution Ps(si) is described by the Fokker-Planck equation, which in the steady355

state gives356

0 = *1
⌧

)
)si

[siPs(si)] +
1
2�

2
s
)2

)s2i
Ps(si) + r�(si).

The last term is a source term that describes the re-insertion of weights by the reset process. The357

boundary conditions are Ps(si = ±✓) = 0. While Ps(si) is continuous in si, the source introduces a358

cusp in Ps(si) at the reset value. Conservation of probability ensures that r equals the outgoing �ux359

at the boundaries. One �nds360

Ps(si) =
1
Z

exp
L

*
s2i
�2

M

4

erf i
0

si
�

1

* erf i
⇠ ✓
�

⇡

5

,

where erf i(x) = *ierf(ix), �2 = ⌧
�t
�2
s and with normalization factor

Z = 2✓2
˘

⇡�
2F2

⇠

1, 1; 32 , 2;*(
✓
�
)2
⇡

*
˘

⇡�erf
⇠ ✓
�

⇡

erf i
⇠ ✓
�

⇡

,

where 2F2 is the generalized hypergeometric function. (In the limit of no decay this becomes a361

triangular distribution Ps(si) = [✓ * si]_✓2.)362

We obtain maintenance power

mtrans =cNÍsiÎ (5)

= cN
Z

L

2✓�
˘

⇡
* �2erf i

⇠ ✓
�

⇡

M

. (6)

For small ✓_�, i.e. small decay, this is linear in ✓, mtrans ˘
cN✓
3
. It saturates for large ✓ because then363

the decay dominates and the threshold is hardly ever reached.364

The consolidation rate follows from Fick’s law

r = 1
2�

2P ®
s (*✓) *

1
2�

2P ®
s (✓)

= *2�
Z
˘

⇡
.

The consolidation power is365

mcons = N✓r. (7)

In the limit of no decay one has r = �2_✓2, so that mcons = pN⌘2_✓. Strictly speaking this approxi-366

mates learning with a random walk process and assumes local consolidation, Figure 4A. However,367

Eqs. 6 and 7 give a good prediction of the simulation when provided with the time-varying update368

probability from the simulation, Figure 6.369

Simulations370

Perceptron371

Unless stated otherwise, we use a perceptron with N = 1000 input units to classify P = N random372

binary (±1 with equal probability) input patterns x(p), each to be associated to a randomly assigned373

desired binary output d(p). Each input unit is connected with a weight wi signifying the strength374

of the connection. An ’always-on’ bias unit with corresponding weight is included to adjust the375

threshold of the perceptron. The perceptron output y of a pattern is determined by the Heaviside376
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Figure 6. Maintenance and consolidation power. Power (energy per epoch) of the perceptron vs epoch.
Solid curves are from simulation, dashed curves are the theoretical predictions, Eqs. 6 and 7, with � calculated
by using the perceptron update rate p extracted from the simulation. Both powers are well described by the
theory. Parameters: ⌧ = 500, c = 0.01, ✓ = 5.

step function ⇥, y = ⇥(w.x). If for a given pattern p, the output does not match the desired pattern377

output, w is adjusted according to378

�wi = ⌘
�

d(p) * y(p)
�

x(p)
i , (8)

where the learning rate ⌘ can be set to one without loss of generality. The perceptron algorithm379

cycles through all patterns until classi�ed correctly. In principle the magnitude of the weight vector,380

and hence the minimal energy, can be arbitrarily small for a noise-free binary perceptron. However,381

this paradox is resolved as soon as robustness to any post-synaptic noise is required.382

Multi-layer networks383

For the multi-layer networks trained on MNIST, we use networks with one hidden layer, logistic384

units, and one-hot encoding at the output. Weights are updated according to the mean squared385

error back-propagation rule without regularization.386

Simulation scripts for both the perceptron and the multilayer network can be found at https:387

//github.com/vanrossumlab/li_vanrossum_19.388
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Figure 1–Figure supplement 1. The energy ine�ciency of perceptron learning for various
energy variants. The energy ine�ciency of perceptron learning when the energy associated to
synaptic update is ⌃i,twi(t) *wi(t * 1)↵ and the exponent ↵ is varied (green curve). The case ↵ = 1 is
used throughout the main text. The ine�ciency is the ratio between the energy needed to train the
perceptron and the energy required to set the weights directly to their �nal value. When ↵ = 0, the
energy is equal to the number of updates made. When ↵ = 1, the energy is the sum of individual
update amounts. When ↵ > 1 it costs less energy to make many small weight updates compared to
one large one. When ↵ ¿ 2, this e�ect is so strong that even the random walk of the perceptron
is less costly than directly setting the weights to their �nal value. We consider 0 f ↵ f 1 to be the
biologically relevant regime. Also shown is the ine�ciency when only potentiation costs energy,
and depression comes at no cost i.e. M = ⌃i,t

⌅

wi(t) *wi(t * 1)
⇧↵
+ (overlapping cyan curve). This has

virtually identical (in)e�ciency.
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Figure 2–Figure supplement 1. Synaptic caching in a spiking neuron with a biologically plau-
sible perceptron-like learning rule. To demonstrate the generality of our results, independent
of learning rule or implementation, we implement a spiking biophysical perceptron. D’Souza et al.
(2010) proposed perceptron-like learning by combining synaptic spike-time dependent plasticity
(STDP) with spike-frequency adaptation (SFA). In their model the leaky integrate-and-�re neuron
receives auditory input and delayed visual input. The neuron’s objective is to balance its auditory
response A = w � x to its visual response V by adjusting the weights w of its auditory synapses
through STDP. The visual input is the supervisory signal. We use 100 auditory inputs, and measure
the energy for the neuron to learn w so that each auditory input pattern becomes associated to a
(binary) visual input. We repeatedly present patterns x(p), each with two activated auditory inputs
until w stabilized as D’Souza et al. The training is considered successful if the auditory responses of
all the input patterns associated to the same binary visual input fall within two standard deviations
from the mean auditory response of those patterns, and are at least �ve standard deviations away
from the mean auditory response of other patterns. Synaptic caching is implemented as in the
main text by splittingw into persistent forms and transient forms. We consider the optimal scenario
where the transient weights do not decay and have no maintenance cost. Also in the biophysical
implementation of perceptron learning, synaptic caching (green curve) saves a signi�cant amount of
energy compared to without caching (red curve), suggesting that synaptic caching works universally
regardless of learning algorithm or biophysical implementation.
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Figure 3–Figure supplement 1. The e�ects of consolidation threshold on energy cost and
learning time. (a) Parametric plot of learning time vs energy while the consolidation threshold
✓ is varied. The threshold value runs from 0 to 10 in steps of 0.5. For small maintenance costs,
the threshold determines a trade-o� between either a short learning time or a low energy (e.g.
black curve). At higher maintenance costs, the most energy e�cient threshold also leads to a short
learning time. Average over 100 runs; parameter: ⌧ = 103. (b) Similar to the perceptron results in
panel a, the e�ects of consolidation threshold on energy cost and learning time for training in a
multi-layer network vary depending on the maintenance cost c. Here, the threshold starts at 0.005
and is in increments of 0.005. When c = 0 (black dots, each representing a unique consolidation
threshold), there is a trade-o� between shorter learning time and lower energy cost. When c = 0.001
(red dots), the result is similar to the perceptron result with c = 0.01, where optimizing learning time
or energy cost leads to a similar threshold. Parameters: ⌘ = 0.1, ⌧ = 104, required accuracy = 0.93.
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