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Variability in the dynamical function of nodes comprising a complex network impacts upon cascading
failures that can compromise the network’s ability to operate. Node types correspond to sources,
sinks or passive conduits of a current flow, applicable to renewable electrical power micro-grids
containing a variable number of intermittently operating generators and consumers of power. The
resilience to cascading failures of ensembles of synthetic networks with different topology is examined
as a function of the edge current carrying capacity and mix of node types, together with exemplar
real-world networks. Whilst a network with homogeneous node type can be resilient to failure, one
with identical topology but heterogeneous node function can be strongly susceptible to failure. For
networks with similar numbers of sources, sinks and passive nodes the mean resilience decreases as
networks become more disordered. Nevertheless all network topologies have enhanced regions of
resilience, accessible by manipulation of node composition and functionality.

Naturally occurring examples of complex networks in-
clude, inter alia, transportation, economic and social
structures, biological systems and power grids. When
a dynamic is imposed upon these structures, their ability
to operate can be compromised by a part of the net-
work, be it an edge or node, developing a fault which
then spreads in a cascade throughout the entirety [1, 2].
Catastrophic events such as blackouts in electrical grids
[3], crashes in financial markets [4, 5] and the spread of
congestion and overloads in the Internet and transporta-
tion networks [6], can be described as cascading failures.
A threshold cascade model was introduced in [7], in which
a node in a network fails with probability proportional to
the number of adjacent failed nodes. It showed that net-
works with heterogeneous degree distributions have in-
creased resilience. A flow based cascade model, applied
to large-scale electrical grids and the Internet, was stud-
ied in [8, 9] and highlighted the vulnerability of networks
whose nodes posses heterogeneous capacities and bear a
load proportional to their degree. Selective pruning of a
network topology was shown to help arrest cascades in
[10, 11], whilst a rewiring scheme to suppress cascades
was considered in [12]. Cascades have been studied on
large scale power grid topologies in [13], and in [14] which
showed that large scale cascades are most likely to be
triggered by edges in the vicinity of a network’s core.
Cascades have also been investigated using a continuous
time model [15], oscillator networks [16, 17] and in so-
called interdependent or multiplex networks [18, 19].

These studies consider networks with fixed node types
and behaviour; however, [20] showed that different node-
types affect network efficiency and redundancy, which is
allied to resilience. This paper will identify regimes of re-
silience to cascading failure in terms of such heterogene-
ity of node types, be they generators, consumers or pas-
sive carriers of flow. This is motivated by the increasing
proliferation of small renewable energy resources in mod-
ern electrical grids. Such micro-grids possess a variable
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number of mutable consumers and generators of power
that are typically spread throughout the networks, and
these intermittent sources and sinks generally have small
output and consumption. This contrasts with the rigid
structure of traditional power grids which contain a small
number of large-capacity generators. Understanding how
this increased spread in location and variability in node
function affects the operation, stability and robustness
of electrical networks is an important and ongoing inter-
disciplinary problem [21–24] that we address.

We consider networks G = (V, E), with n = |V| nodes
and m = |E| edges, wherein ns nodes are sources of flow,
nd are sinks and the remaining np are passive or empty.
Each edge e ∈ E has a flow volume Fe, computed using
the linearised DC power flow equation [25]

Fe = 〈Ee, θ〉/xe. (1)

Here xe is the reactance of edge e and E ∈ Rn×m is the
node-edge incidence matrix, with Ee its eth column. The
inner product is denoted by 〈·, ·〉 and θ ∈ Rn is the vector
of node voltage phases determined from

Lθ = P, (2)

where L = E diag(Y )ET is the weighted graph Laplacian
and Y ∈ Rm the vector with entries 1/xe. The flow
injection vector P ∈ Rn has entries

Pv =


(1 + ζv)P tot/ns, if node v is a source,

−(1 + ζv)P tot/nd, if node v is a sink,

0, otherwise,

(3)

with P tot the total power injected into the network and ζv
a random variable used to induce heterogeneity in source
and sink strength.

Solutions of eqs. (1,2) describe a flow where supply and
demand is matched, and this will be enforced through-
out a cascading failure, which proceeds as follows. A
maximum capacity α is assigned to each edge of the net-
work and a cascade is initiated by computing the equilib-
rium flow from eqs. (1,2) and removing the most heavily
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FIG. 1: The mean fraction S of surviving edges as a
function of edge capacity α for ensembles of 200
Watts–Strogatz networks with n = 50, K = 4, ns = 10
and nd = 40. (a,b) are for q = 0.1, 1 respectively.

loaded edge, then recaculating the flow Fe on each edge in
this modified network. If Fe > α on any edge, that edge
is deemed overloaded and removed. This process con-
tinues until the network attains a final equilibrium with
all edges carrying a flow ≤ α. During this cascade the
network may fragment into separate connected compo-
nents, and so the algorithm must be recursively applied
for each new connected component in which conserva-
tion of flow must be ensured. Flow surplus or deficit is
prevented by adjusting source and sink strengths. We
assume that sources and sinks alter their demand and
supply reciprocally. If a component contains n′s sources,
n′d sinks and a flow supply surplus δ, then each source
decreases its output by δ/2n′s and each sink increases its
demand by δ/2n′d. If the component contains either no
sources or no sinks then the flow cannot be balanced and
the entire component is removed. Balancing of power by
non-reciprocal source/sink behaviour is discussed later,
together with other models for initiating the cascade.

The network eventually attains a final state, with the
fraction of surviving edges relative to the original num-
ber denoted by S. A value of S = 0 indicates an en-
tire network failure; S = 1 denotes complete resilience.
To assess the resilience of networks to failure, S is com-
puted as a function of α, as displayed in Fig. 1(a,b) for
an ensemble of 200 random networks generated by the
Watts–Strogatz method [26]. These are of size n = 50,
comprising ns = 10 and nd = 40 nodes, with locations
chosen uniformly at random, and chosen rewiring param-
eters q = 0.1, 1 characteristic of small-world and Poisson
networks respectively. Both networks are susceptible to
substantial disruption for capacities α . 0.06 and are
essentially robust for α & 0.2. Half of the network sur-
vives at the critical value αc, for which S(αc) = 1/2: the
smaller αc is, the more resilient the network will be to
failure. Fig. 1 shows that αc increases as the networks
become more Poissonian. To operate non-trivially the
network must initially contain some non-zero capacity
α∗, and this is defined from the initial flow configuration
F0 to be α∗ = max(F0). The ensemble average values of
α∗ are also shown in Figs. 1(a,b).

The fraction of surviving edges S depends on network
size, topology, and both composition and location of the
node types. To gain insight into this dependence it is

instructive to consider an exemplar network of n nodes
with a simple ring-structure, such as that illustrated in
Fig. 2(a) that has ns = 2, nd = n − 2, common de-
gree K = 2, and shortest path distance between the two
sources d. The dependence of S on the configuration
space of α/α∗ and d is shown in Fig. 2(b), within which
distinct regions with defined boundaries can be identi-
fied analytically [27], as overlaid in the figure. Crucially
for α/α∗ > 2, this network is resilient to cascading fail-
ures independent of the relative location of the sources,
whereas for α/α∗ < 2 the network is less robust with
resilience conditional on the flow capacity and d. For
networks of larger degree K these conditional boundaries
erode due to the multiple paths along which the flow can
equilibrate, as shown in Fig. 2(c). Nevertheless, the re-
silience boundary remains robust, being independent of
d and occurring where α/α∗ ≈ K/(K − 1) [27]. This
can be understood by considering the ring-network with
common degree K when ns = 1, nd = n− 1, with initial
flow apportioned equally across the K edges emanating
from the single source. These edges are the most heavily
loaded and so α∗ ≈ P tot/K. When one of these edges
is removed to initiate a cascade, the flow is redistributed
among the K−1 remaining edges connected to the source
and these must now supply flow to the rest of the net-
work. Consequently αc ≈ P tot/(K − 1) and therefore
αc/α∗ ≈ K/(K − 1). This relationship holds for larger
networks, as shown in Fig. 2(d). The observed resilience
boundary prompts defining a metric ρ to be

ρ =
αc

α∗
≡ S−1(1/2)

max(F0)
, (4)

which gauges the relative increase in edge capacity re-
quired to survive a cascade. The smaller the value of ρ
the more resilient is the network.

For ensembles of random networks ρ does not take a
single value but rather is a random variable. The ap-
proximation for ρ when ns = 2, nd = n−2 is replaced by
ρ̄ ≈ K̄/(K̄−1), where K̄ is the mean degree that depends
on n and q as shown in Fig. 3(a). For Watts-Strogatz
networks the probability density P (ρ) is log-normal with
mean value ρ̄ that scales with network size n but with
similar standard deviation σ ≈ 0.255 across the full
range of rewiring parameters q ∈ [0, 1] that encompass
small-world to Poisson network topologies. This data
collapse is illustrated in Fig. 3(b)(i,ii) for q = 0.1, 0.6, re-
spectively; panel (b)(iii,iv) shows P (ρ) for two scale-free
networks that have power-law degree distribution with
initial node degree m0 = 3, 4, which are generated us-
ing the Albert–Barabasi preferential attachment method
[28]. The range of ρ is smaller than that found for Watts–
Strogatz networks, thereby indicating a greater resilience,
and this agrees with earlier studies predicated on random
edge removal [29, 30]. When ns ≈ nd the distribution is
bimodal, with the larger component of the distribution
corresponding to when the edge initiating the cascade is
connected to a hub. Networks grown by preferential at-
tachment, such as social networks and the Internet, pos-
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FIG. 2: (a) Periodic ring-lattice with K = 2 containing
ns = 2 sources and nd = n− 2 sinks with source
separation d. (b) S(α/α∗, d) for K = 2. (c) S for
K = 10. (d) ρ(K) for periodic ring-lattices of different
sizes, with composition ns = 1 and nd = n− 1, showing
the approximation K/(K − 1).

sess a scale-free structure, whereas electrical grids and
road/rail transportation networks do not because their
structures are often dictated by geographical constraints.
This paper is concerned chiefly with electrical grids, so
from here networks generated by the Watts–Strogatz pro-
cedure shall provide the structural substrate on which
general results regarding resilience to failures can be de-
duced.
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FIG. 3: Variation of ρ in ensembles of 2000 random
networks. (a) ρ̄(K̄) in Watts–Strogatz networks of size
n and rewiring parameter q, with ns = 2, nd = n− 2.
The dashed line is K̄/(K̄ − 1). (b) P (ρ) in random
networks with (ns, nd, np) = (30, 30, 0). (i) q = 0.1 and
(ii) q = 0.6. Both are fitted to Lognormal(µ, σ2) with
µ = 1.18, 1.63, and σ = 0.25, 0.26 respectively and
confirmed with Kolmogorov–Smirnov tests. (iii) and
(iv) are for scale-free networks with m0 = 3, m = 4
respectively.

To explore the dependence of ρ on the composition of
node types, note that the condition ns+nd+np = n con-
strains the space of possible node configurations to a tri-
angular simplex as illustrated in Fig. 4(a). The length of
an edge of the simplex is the size n of the network and any

point on the triangle represents a network with a unique
node-type composition; the dot in the figure represents
(ns, nd, np) = (5, 10, 5). Selecting a network with given
(q,K, n), and node-types according to (ns, nd, np) that
are located uniformly at random, the mean resilience ρ̄ is
calculated from 200 realisations and its value projected
onto the corresponding location on the simplex.

Figure 4(b) shows ρ̄ for regular lattices (i.e. q = 0)
with n = 100, K = 4. The largest values of ρ̄ and there-
fore the lowest resilience are located down two edges of
the simplex, corresponding to networks with large num-
bers of sinks and very few sources, or vice versa. This
means that the few source (or sink) nodes must generate
(or absorb) the flow, and so incident edges must carry
large flow volumes, making the network susceptible to
failure. Resilient networks are spread throughout the in-
terior region, which agrees with the intuition that a mix
of node-types has a high degree of redundancy and is
therefore resilient because of the multiple flow paths such
networks contain.

As q increases and the network structure becomes more
random the morphology of ρ̄ changes, the trend being
shown in Figs. 4(c–e). A band of greatest ρ̄ broadens
from the edges, moving into the interior region, until for
q ≈ 0.12 the largest values of ρ̄ are found in the interior of
the simplex. This represents an inversion in the resilience
measure, counter-intuitively showing that for networks
in this regime of q a more heterogeneous mix of node-
types give less resilience than does a network with a few
large suppliers of power. This behaviour of ρ̄ continues
progressively until q = 1 (a Poisson network), where ρ̄
has largest values in the centre of the simplex and lowest
values along two edges. In all cases the morphology of ρ̄ is
symmetric about the centre line, reflecting the reciprocity
between sources and sinks.

The inversion in the behaviour of ρ̄ with q can be
gauged by determining the value of ∆ρ = ρ̄Left− ρ̄Centre,
where ρ̄Left and ρ̄Centre are the values of ρ̄ at the bottom-
left and centre of the simplex respectively. For regular
lattices ∆ρ > 0, whereas for Poisson networks ∆ρ < 0.
Figure 5(a) shows that for networks with n = 60, ∆ρ(q)
decreases monotonically, the inversion occurring at the
value of q where the network transitions from approxi-
mate order to the small-world regime. Figure 5(b) shows
the dependence of ∆ρ with q and n; ∆ρ = 0 is shown by
the line and denotes the locus of the inversion, which is
approximately independent of network size.

Preceding results consider homogeneous flow injection
(i.e. ζv = 0 in eq. (3)) and edge capacity, reciprocal
source-sink behaviour, and cascades triggered by the re-
moval of the most heavily loaded edge, which serve as
a model for overloading failure. The impact of vary-
ing these model choices, and thus introducing several
different types of heterogeneity, will now be considered.
Cascades may be triggered by other unpredictable events
such as lightening strikes or software failures and, more-
over, generator output and consumer usage will vary.
The behaviours and symmetry properties highlighted
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FIG. 4: (a) A sketch of the node configuration space simplex. The black dot represents a configuration of
(ns, nd, np) = (5, 10, 5). (b–e) ρ̄ projected onto the simplex for networks of size n = 100, K = 4 and with
q = 0, 0.2, 0.4 and 1 respectively.

(b)(a)

FIG. 5: (a) ∆ρ(q) for n = 60. (b) ∆ρ(q, n) where the
dashed line is the locus of the inversion ∆ρ = 0. All
data points averaged over 200 realisations.

above persist if the cascade is initiated with a probabil-
ity proportional to its initial load [27] and/or if the flow
injection is perturbed by normally distributed noise with
zero mean and the standard deviation selected to model
generator variability, whilst still preserving node type
in all realisations that we consider. These behaviours
also persist for sources and sinks with gamma distributed
strengths; see [27]. Unlike [8, 10], this paper has consid-
ered networks whose edge capacities are homogeneous.
This choice is motivated by smaller scale power networks
that form our primary motivation, and whose dominant
source of heterogeneity is node behaviour rather than
edge capacity. Nonetheless, the impact of edge capacity
heterogeneity is investigated by perturbing α with Gaus-
sian noise. These results, shown in [27], demonstrate that
the features observed in the homogeneous case persist.
However, for networks wherein source-sink reciprocity is
broken, the morphology of the simplex plots is likewise
no longer symmetric. This is illustrated in [27] for the
case when only sink nodes have the ability to adjust their
flow output to match supply and demand.

The resilience of the Austrian national grid is consid-
ered in Fig. 6(b). This network comprises n = 67, m = 85
and K̄ = 2.53 where each node represents a sub-network
of node-types and edges at both meso- and micro-scales
that are unresolved by the data of [31]. Figure 6(b) shows
ρ̄ with each pixel entry averaged from 100 realisations of
node-type location and with the sources and sinks as-
sumed to have reciprocal strengths. The resilience land-
scape is characteristic of a state intermediate of those
shown in Figs 4 (c) and (d). [27] includes two real-world

examples of power grids which conform to the archetypes
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FIG. 6: (a) Power grid topology of Austria, constructed
using data from [31]. (b) ρ̄ for this grid projected onto
the node configuration simplex. Each pixel is an
ensemble average over 100 source-sink locations.

in Fig. 4.
This paper has considered how the resilience of net-

works to cascading failures is affected by the composition
of node-types in addition to their topology. For the case
of grids comprising a few large generators Fig. 3(a) shows
that the resilience can be approximated by K̄/(K̄ − 1),
where K̄ = K̄(q, n). For the case of renewable energy
electrical-grids, the resilience is found using simplexes of
the type shown in Fig.4. Here the appropriate node-types
correspond to locations of passivity, generation or con-
sumption of power, and these functions will mutate diur-
nally in response to changes in demand [24]. Crucially, al-
though networks with homogeneous node-type of a given
topology can be resilient to failure, this is no longer the
case for a network of the same topology but with a het-
erogeneous composition of node-types. Regular lattices
and ordered networks are most resilient when the num-
ber of node-types are similar. This changes as network’s
structure becomes increasingly disordered, with the least
resilient configurations becoming those with similar num-
bers of node-types. Despite this trend, there still exist
regimes of resilience with a range of node-type composi-
tions that can be accessed for highly randomised network
structures.
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