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Models in which scalar field dark energy interacts with dark matter via a pure momentum coupling
have previously been found to potentially ease the structure formation tension between early- and
late-universe observations. In this article we explore the physical mechanism underlying this feature.
We argue analytically that the perturbation growth equations imply the suppression of structure
growth, illustrating our discussion with numerical calculations. Then we generalise the previously
studied quadratic coupling between the dark energy and dark matter to a more general power law
case, also allowing for the slope of the dark energy exponential potential to vary. We find that the
structure growth suppression is a generic feature of power law couplings and it can, for a range of
parameter values, be larger than previously found.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

During the past two decades, cosmological observations
have achieved a remarkable degree of precision. Measure-
ments of Type Ia supernovae [1], the cosmic microwave
background (CMB) [2], and large scale structure [3, 4],
indicate that around 96% of the energy content of the
universe is in the form of so-called dark energy and dark
matter. These exotic species may be described by the
standard cosmological model, ΛCDM, in which dark en-
ergy takes the form of a cosmological constant and dark
matter is taken to be cold, in other words having an
equation of state equal to zero.

While ΛCDM fits the available data very well, it suf-
fers from a number of issues that motivate the study of
alternatives. These include the fine-tuning [5] and coinci-
dence [6] problems. In addition, there are certain tensions
between early- and late-universe observations in ΛCDM.
The present-day expansion rate of the universe, H0 and
the growth of structure, quantified by σ8, can be calcu-
lated using the best-fit ΛCDM parameters to cosmological
data, including the CMB. This gives rise to a smaller H0

and a larger σ8 than the results of local, late-universe
measurements (for a recent discussion see Ref. [7]). At
present the tension in H0 appears to be the more prob-
lematic of the two, though either or both issues may be
caused by systematic effects that have not been accounted
for. Future data from surveys such as EUCLID should
confirm or resolve these tensions [8]. In the meantime
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it is worth exploring alternative explanations involving
new physics. In this work we are especially interested
in possible resolutions to the σ8 tension. The value of
σ8 inferred from CMB data is 0.811 ± 0.006 [2], while
cluster counts from the SZ effect give σ8 = 0.77± 0.02 [9]
and weak lensing gives values of σ8 ranging from 0.65 to
0.75 [10–12].

A popular class of modifications to ΛCDM is
quintessence [13], in which the cosmological constant Λ
is set to zero and a scalar field φ is introduced whose dy-
namical properties produce a negative equation of state
giving rise to the observed late-time accelerated expan-
sion of the universe. Normally it is assumed that the
scalar field does not interact with dark matter. How-
ever there is no reason why this must be the case, and
the consequences of relaxing this assumption have been
widely studied. See Ref. [14] and references therein for a
discussion of recent research on interacting dark energy.

Traditionally, couplings between dark energy and dark
matter are introduced at the level of the equations of
motion, for example:

∇µT (c)
µν = Jν , ∇µT (DE)

µν = −Jν , (1)

such that the overall energy–momentum tensor Tµν =

T
(c)
µν + T

(DE)
µν , where (c) denotes cold dark matter and

(DE) dark energy, is conserved as usual. Jν is the flow
of energy and momentum between dark energy and dark
matter. A notable example was pioneered by Wetterich
and Amendola [15–17], in which Jν = βT (c)∇νφ, where
β is a constant, φ is the quintessence field and T (c) is
the trace of the dark matter energy–momentum tensor.
Other couplings that have been proposed in the literature
include promoting β to be a function of φ [18, 19], intro-
ducing a direct dependence on the expansion rate [20, 21],
and couplings with non-linear dependence on the energy–
momentum tensor or the scalar field gradient [22, 23].
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In Ref. [24], a construction was developed using the
pull-back formalism for fluids to introduce dark energy–
dark matter couplings at the level of the action. Defining
the coupling at the level of the action is desirable for
several reasons. It is often a more intuitive way to see
the coupling, and it is easier to connect it to more funda-
mental physics. Perhaps more importantly, instabilities
can often be more easily identified and avoided, saving
time and computation when studying new models. The
construction of Ref. [24] leads to three distinct classes, or
‘Types’ of models. Type 1 has been shown to include the
commonly considered coupled quintessence model [16, 17]
as a sub-class [24, 25]. Type 2 models have not been
widely studied, but allow for both energy and momen-
tum transfer between dark energy and dark matter. We
focus on Type 3 models, which have a pure momentum
coupling between dark energy and dark matter.

Type 3 models are interesting for several reasons. Due
to the absence of a coupling at the background level be-
tween dark energy and dark matter, they are much less
tightly constrained than Types 1 and 2 [24]. They give
rise to a varying speed of sound of dark energy, the con-
sequences of which were studied in Ref. [26]. Perhaps
most significantly, Type 3 models have been shown to
provide a basis for easing the tension between early- and
late-universe probes of structure formation by reducing
the predicted value of σ8 inferred from early-universe
data [27].

In this paper we investigate the mechanism by which
Type 3 models provide this reduction in structure growth
and also study a more general form of the coupling func-
tion than previously considered. In Sec. II we present the
cosmological equations of motion for the Type 3 models
under consideration. In Sec. III we describe in broad
terms the way in which the structure growth suppres-
sion comes about, before explaining in detail the impact
of a Type 3 coupling on the background cosmological
evolution in Sec. IV and how the linear perturbations
are affected in Sec. V. Finally in Sec. VI we present our
conclusions and discuss possible avenues for future work.

II. EQUATIONS OF MOTION

In the formalism of Ref. [24], a Type 3 model is de-
scribed by the Lagrangian:

L(n, Y, Z, φ) = F (Y,Z, φ) + f(n) . (2)

where n is the fluid number density, Y = (1/2)∇µφ∇µφ
is the usual kinetic term, and

Z = uµ∇µφ , (3)

is a direct coupling between the gradient of the scalar
field and the fluid velocity uµ.

We consider a coupled quintessence model of the form:

F = Y + V (φ) + γ(Z) , (4)

where V (φ) is the scalar field potential and γ(Z) is the
coupling function. In this work we limit our analysis to
power-law couplings of the form γ(Z) = βn−2Z

n, where n
is an integer and n ≥ 2. The background equations of mo-
tion may be found by assuming a spatially flat Friedmann–
Lemâıtre–Robertson–Walker metric:

ds2 = a2(τ)(−dτ2 + dxidx
i) , (5)

where a(τ) is the scale factor and τ is the conformal time.
a evolves according to the usual Friedmann equation:

H2 =
1

3M2
P

(ρ̄b + ρ̄c + ρ̄γ + ρ̄φ)a2 , (6)

expressing the conformal Hubble parameter H in terms
of the background energy densities of baryons (ρ̄b), dark
matter (ρ̄c), radiation (ρ̄γ) and the scalar field (ρ̄φ). MP

denotes the reduced Planck mass. The energy density
and pressure of the scalar field are given by [24]

ρ̄φ =
1

2

˙̄φ2

a2
+

˙̄φ

a
γ,Z + γ(Z) + V (φ) , (7)

p̄φ =
1

2

˙̄φ2

a2
− γ(Z)− V (φ) , (8)

where φ̄ is the background value of the scalar field and
dots denote differentiation with respect to conformal time.

The background part of Z is given by Z̄ = − ˙̄φ/a. The
scalar field obeys

(1− γ,ZZ)( ¨̄φ−H ˙̄φ) + 3aH(γ,Z − Z̄) + a2V,φ = 0 , (9)

and the background energy density of the cold dark mat-
ter is not modified by the Type 3 coupling:

˙̄ρc + 3Hρ̄c = 0 . (10)

To perturb the equations of motion to linear order we
work in the synchronous gauge, where the metric tensor
reads:

ds2 = a2(τ)

{
−dτ2 +

[(
1 +

1

3
h

)
γij +Dijν

]
dxidxj

}
.

(11)
Here, h and ν are scalar perturbation variables, Dij is the

traceless derivative operator Dij = ~∇i~∇j − (1/3)~∇2γij
and ~∇i is the covariant derivative associated with the
3-space metric γij . The unit time-like vector field uµ is
perturbed as

uµ = a(1, ~∇iθ) . (12)

The cold dark matter density contrast δc = δρc/ρ̄c obeys
the standard continuity equation (in Fourier space):

δ̇c = −k2θc −
1

2
ḣ , (13)
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while the velocity divergence θc obeys the modified Euler
equation [24]:

θ̇c +Hθc =
(3Hγ,Z + γ,ZZ

˙̄Z)δφ+ γ,Z ˙δφ

a(ρ̄c − Z̄γ,Z)
, (14)

and the scalar field perturbation, δφ, obeys

(1− γ,ZZ)(δ̈φ+ 2H ˙δφ)− γ,ZZZ ˙̄Z ˙δφ

+ (k2 + a2V,φφ)δφ+
1

2
( ˙̄φ+ aγ,Z)ḣ+ ak2γ,Zθc = 0 .

(15)

The perturbed Einstein field equations are not modified
by a Type 3 coupling and take their standard form, see
e.g. Ref. [28].

III. OVERVIEW OF SUPPRESSION OF
STRUCTURE FORMATION

As found in Ref. [27], Type 3 models can result in a
suppression of structure growth relative to ΛCDM. We
examine the mechanism by which this suppression oc-
curs with reference to the underlying equations of mo-
tion. Following Ref. [27], we consider a Type 3 coupled
quintessence model with an exponential potential of the
form

V (φ) = Ae−λφ/MP , (16)

and a power-law Type 3 coupling function given by

γ(Z) = βn−2Z
n , (17)

where for n = 2 we recover the quadratic coupling studied
in Ref. [27]. We consider only values of βn−2 such that
γ(Z) is negative, as positive γ(Z) can result in a ghost
instability if γ,ZZ > 1 [24]. Since Z always takes negative
values, this means that we consider only negative values of
βn−2 for n even and only positive βn−2 for n odd. We use
the modified version of the Boltzmann code CLASS [29–32]
developed by the authors of Ref. [27], further modifying
it to compute the evolution of power-law couplings with
n > 2.

The matter power spectrum at a time t is given by

P (k, t) =
2π2

k3
T 2(k, t)P(k) , (18)

where P(k) is the primordial power spectrum, which is as-
sumed to have the form P(k) = As(k/k∗)

ns−1, and T (k, t)
is the transfer function describing the evolution of the
matter density perturbation δm(k, t) [33]. All perturbed
quantities, and the transfer function, are computed nu-
merically by CLASS. The present-day matter power spec-
trum P (k, t0) is denoted by P (k) for compactness. Since
the primordial power spectrum is close to scale-invariant,
with ns ≈ 1 [2], the matter power spectrum P (k) derives

all its interesting features from the transfer function. Due
to the gravitational interaction between dark matter and
baryons, their density contrasts obey δc ≈ δb ≈ δm to a
very good approximation. In our numerical evolution we
took ns = 0.97 [2].

The amplitude of the late-time matter density pertur-
bations is commonly parameterised in terms of σ8, defined
as

σ2
R =

1

2π2

∫
WR(k)2P (k)k2dk , (19)

with R = 8h−1Mpc, where WR(k) is the Fourier trans-
form of the spherical top-hat window function:

WR(k) =
3

k3R3
[sin(kR)− kR cos(kR)] . (20)

The structure growth suppression is illustrated for the
n = 2 case by Figs. 1 and 2, which show the linear matter
power spectrum and σ8 for the quadratic coupling func-
tion and an exponential potential. Following Ref. [27]
here we fix the slope of the potential to be λ = 1.22,
which is within the range of values providing a good fit to
cosmological data [27]. In Sec. IV and V we investigate
the effect of varying λ. We have set the sound horizon
at recombination, which is tightly constrained by CMB
measurements [2], to θs = 0.0104. Except where stated
otherwise, we keep λ and θs fixed throughout. Figure 1 is
the analogue of the right-hand panel of Fig. 2 in Ref. [27].
The slightly different value of P (k) in the large k limit is
due to different input parameters used in Ref. [27]. For
moderate values of β0 there is a slight reduction in σ8

relative to uncoupled quintessence (given by the limit of
small |β0|). For large values of |β0| we see enhancement
of σ8 relative to uncoupled quintessence. Qualitatively,
the suppression arises because the Type 3 coupling gives
the CDM fluid a non-zero velocity divergence θc, given
by Eq. (14). This results in a suppression of the CDM
density contrast. We find numerically that the two terms
on the right hand side of Eq. (13) are always of opposite
signs, and the second term is larger in magnitude, which
means that the larger |θc|, the smaller |δc| is.

The steps by which the Type 3 coupling γ(Z) im-
pacts the parameter σ8 are shown schematically in Fig. 3.
In Sec. IV we discuss how the Type 3 coupling affects
the background cosmological evolution and in Sec. V we
demonstrate its effect on the perturbations, in particu-
lar how the CDM density contrast θc depends on the
coupling.

IV. EFFECT OF TYPE 3 COUPLING ON THE
BACKGROUND EVOLUTION

For a Type 3 coupled quintessence model with power
law coupling γ(Z) = βn−2Z

n and an exponential poten-
tial V (φ) = Ae−λφ/MP the scalar field evolution equation,
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FIG. 1. The linear matter power spectrum, P (k), for an

exponential potential, V (φ) = Ae−λφ/MP and a coupling
γ(Z) = β0Z

2 for various values of β0. The slope of the poten-
tial is set to λ = 1.22 and the sound horizon at recombination
is held fixed at θs = 0.0104.
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FIG. 2. The dependence of σ8 on β0 for a quadratic coupling
function and an exponential potential, as in Fig. 1.

Eq. (9), becomes1− n(n− 1)βn−2

(
−

˙̄φ

a

)n−2
 ¨̄φ+ 2H ˙̄φ

+ n(4− n)aHβn−2

(
−

˙̄φ

a

)n−1

− a2 λA

MP
e−λφ̄/MP = 0 ,

(21)

where we have used Z̄ = − ˙̄φ/a. To understand the be-
haviour of the scalar field it is instructive to consider
certain limiting cases.

In the interest of readability, in the following we use
the general quantity γ,ZZ in place of its specific form for

Type 3 coupling
γ(Z) = βn−2Z

n

CDM velocity
divergence θc,
see Eq. (14)

CDM density
contrast δc,
see Eq. (13)

Matter power
spectrum P (k),

see Eq. (18)

Amplitude of
fluctuations σ8,

see Eq. (19)

Background
φ̄ → ρ̄φ → H,

see Sec. IV

FIG. 3. A schematic illustration of the steps by which the
Type 3 coupling affects the amplitude of fluctuations σ8.

the power law coupling, n(n − 1)βn−2(− ˙̄φ/a)n−2. First
we consider the case in which 1 � |γ,ZZ |. This can

result from either |βn−2| or | ˙̄φ| being very small. In this
limit, the second term in the square bracket of Eq. (21)
becomes negligible, as does the third term of the equation
and hence

¨̄φ+ 2H ˙̄φ− a2 λA

MP
e−λφ̄/MP = 0 , (22)

which is simply the scalar field equation for uncoupled
quintessence. In this case the scalar field will roll down

the potential with φ̄ and ˙̄φ increasing with time.
In the opposite case, where 1 � |γ,ZZ |, Eq. (21) be-

comes

− n(n− 1)βn−2

(
−

˙̄φ

a

)n−2

¨̄φ

+ n(4− n)aHβn−2

(
−

˙̄φ

a

)n−1

− a2 λA

MP
e−λφ̄/MP = 0 .

(23)

Note that for n = 4 the second term in Eq. (23) is equal

to zero and therefore one would not neglect the 2H ˙̄φ
term in Eq. (21). For our present purposes, however, this
distinction is not vital. What is important to note is that,
since we are considering the regime where |γ,ZZ | � 1,

Eq. (23) predicts a slower evolution of ˙̄φ and hence φ̄ due

to the large factor multiplying ¨̄φ.
Provided n 6= 2, we can now see that a Type 3 coupled

quintessence model will transition from the first limit,

when ˙̄φ is very small, to the second limit, since ˙̄φ grows
with time. Larger |βn−2| will result in an earlier transition
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from the uncoupled quintessence regime of Eq. (22) to
the ‘slowed’ regime of Eq. (23). This is demonstrated

by Fig. 4, which shows the evolution of ˙̄φ for n = 3 and
n = 4.

To understand the way in which ˙̄φ scales with βn−2 it
is instructive to consider the special case in which n = 2.
In this case, the scalar field equation Eq. (21) becomes:

(1− 2β0)( ¨̄φ+ 2H ˙̄φ)− a2 λA

MP
e−λφ̄/MP = 0 . (24)

The factor multiplying the kinetic term is now indepen-
dent of time, implying that the transition described above
for general n is not present for n = 2. Instead, one can
see that for small |β0| the uncoupled quintessence case is
recovered for all time, and for large |β0| the scalar field

evolution is slowed; while for all β0, ˙̄φ scales as 1/(1−2β0),
which we have confirmed numerically.

We can obtain the scaling behaviour for general n, illus-
trated by Fig. 4, in a schematic way as follows. In analogy

to the n = 2 case in which ˙̄φ scales with 1/(1− 2β0), let

us suppose that ˙̄φ for general n will scale as the inverse
of the term in square brackets of Eq. (21):

˙̄φ ∼ 1

1− n(n− 1)βn−2(− ˙̄φ/a)n−2
. (25)

This relation is of little use in its present form because

it contains ˙̄φ on both sides. However, as above, we can
consider the two limits: 1 � |γ,ZZ | and 1 � |γ,ZZ |.
In the first case there is no scaling with βn−2 as the
uncoupled quintessence case is recovered. In the second
case, however, Eq. (25) becomes:

˙̄φ ∼ 1

−n(n− 1)βn−2(− ˙̄φ/a)n−2
, (26)

and we can now rearrange to obtain

˙̄φ ∼ |βn−2|−
1

n−1 , (27)

which agrees with the late time, large |βn−2| regime in
Fig. 4.

A. Impact on expansion rate

In order to understand how the expansion rate depends
on the Type 3 coupling it is necessary to consider the
evolution of the scalar field energy density ρ̄φ. The energy
density and pressure are given by Eqs. (7) and (8). For
a power-law coupling and exponential potential:

ρ̄φ =
1

2

(
˙̄φ

a

)2

−(n−1)βn−2

(
−

˙̄φ

a

)n
+Ae−λφ̄/MP , (28)

and

p̄φ =
1

2

(
˙̄φ

a

)2

− βn−2

(
−

˙̄φ

a

)n
−Ae−λφ̄/MP . (29)

The energy density of the scalar field obeys the usual
conservation equation:

˙̄ρφ + 3H(ρ̄φ + p̄φ) = 0 , (30)

⇒ ˙̄ρφ = −3H

( ˙̄φ

a

)2

− nβn−2

(
−

˙̄φ

a

)n . (31)

Once again it is instructive to consider this expression in
the small and large βn−2 limits separately. In the limit
where 1� |γ,ZZ |, the second term in the square bracket
of Eq. (31) is negligible and the uncoupled quintessence
case is recovered. In the limit where 1� |γ,ZZ |, however,
the first term in the square bracket can be neglected and
one obtains

˙̄ρφ = 3nHβn−2

(
−

˙̄φ

a

)n
. (32)

We have already established that in this limit, ˙̄φ scales
according to Eq. (27), so we can infer ˙̄ρφ scales with βn−2

as

˙̄ρφ ∼ |βn−2|−
1

n−1 . (33)

Finally, since βn−2(− ˙̄φ/a)n is always negative for the
choices of βn−2 we consider, we can conclude that ρ̄φ
falls with time, and does so more slowly the larger |βn−2|
is. Thus for very large values of |βn−2| the scalar field be-
haves similarly at the background level to a cosmological
constant.

As in the case of uncoupled quintessence, a steeper
scalar field potential also results in a faster evolution of
φ̄ and hence a drop in ρ̄φ. In terms of the background
evolution we therefore find that the potential parameter λ
and the Type 3 coupling parameter βn−2 act in opposition
to each other, with an increase in the former tending to
speed up the scalar field evolution and the latter tending
to slow it. Both of these effects are illustrated by Fig. 5
for a Type 3 coupling with n = 2.

The expansion rate can be calculated using the Fried-
mann equation. At early times, the contribution of the
scalar field is negligible compared to those of matter and
radiation but at late times it is the dominant species. A
small value of |βn−2|, allowing ρ̄φ to fall, will give rise to
a smaller present-day expansion rate than a large value
of |βn−2|, which slows the evolution of ρ̄φ and gives an
expansion rate close to that expected from a cosmological
constant. Figure 6 illustrates the impact of the slope of
the potential and the Type 3 coupling parameter on the
present-day expansion rate for a Type 3 coupling with
n = 2. It can be seen that steep potentials give rise to un-
realistically low values of H0 unless the Type 3 coupling
is sufficiently strong.
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FIG. 4. The evolution of the conformal time derivative of the scalar field with the scale factor a for a Type 3 coupling of the
form γ(Z) = βn−2Z

n, for different values of the coupling parameter |βn−2|. The left panel shows the n = 3 case and the right
panel shows n = 4. The units of βn−2 are (Mpc/MP)n−2.
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FIG. 5. The evolution of the background energy density of the
scalar field ρ̄φ as a function of the scale factor,a, for two values
of the coupling parameter β0 and the potential parameter λ.

V. EVOLUTION OF LINEAR PERTURBATIONS

A. Dependence on coupling parameter

Type 3 models affect the cosmological perturbations
through the modified equation for the CDM velocity di-
vergence, Eq. (14). In the case of a power-law coupling,
Eq. (14) can be written:

θ̇c +Hθc =
nβn−2[a4−n(− ˙̄φ)n−1δφ]̇

a4[ρ̄c − nβn−2(− ˙̄φ/a)n]
. (34)

It turns out that the second term in the denominator
is always significantly smaller than the first. Thus to
understand the behaviour of θc it suffices to consider the

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108
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FIG. 6. The present-day value of the Hubble parameter, H0,
as a function of the coupling parameter, |β0|, for a range
of potential parameters, λ, for a quadratic coupling function
γ(Z) = β0Z

2 and an exponential potential V (φ) = Ae−λφ/MP .

numerator. Let us separately consider how βn−2(− ˙̄φ)n−1

and δφ depend on βn−2.
From Eq. (27) we can see that, for sufficiently large

|βn−2|, the factor βn−2(− ˙̄φ)n−1 is approximately constant
and any β-dependence of θc must come from δφ. In the
limit of small |βn−2|, however, we have already seen that
˙̄φ is approximately independent of βn−2 so the factor

βn−2(− ˙̄φ)n−1 rises linearly with βn−2.
As illustrated by Fig. 7, δφ is constant with βn−2 for

small |βn−2|, and drops as

δφ ∼ |βn−2|−
1

n−1 , (35)

for large |βn−2|, with the transition from the approxi-
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mately constant regime to the |βn−2|−1/(n−1) regime oc-
curring at larger |βn−2| on smaller scales. For the special
case of n = 2, we can make a more precise statement and
say that δφ scales as 1/(1 − 2β0) on large scales. The
black line in the top panel of Fig. 7 illustrates this scaling,
closely matching the form of the magenta and cyan lines
which correspond to large scales, while the blue line, cor-
responding to small scales, is constant for a wide range
of β0.

The above scaling arguments for the factors in Eq. (34)
allow us to understand how θc depends on βn−2. For
small |βn−2|, we expect |θc| to rise linearly with |βn−2|,
while for large |βn−2| we expect it to fall as |βn−2|−1/(n−1).
This behaviour is illustrated in Fig. 8. The broad peak
of |θc| on small scales results from the fact that δφ is
approximately constant for a wide range of βn−2 on small
scales. Once again, we can be more precise in the special

case in which n = 2. Inserting the scalings for ˙̄φ and δφ
into Eq. (34), we find that θc scales as β0/(1− 2β0)2 on
large scales (black solid line in the top panel of Fig. 8)
and as β0/(1− 2β0) on small scales (black dashed line in
the top panel of Fig. 8).

B. Dependence on potential

The slope of the potential, λ, also has an impact on the
growth of matter perturbations. Figure 9 demonstrates
for a coupling with n = 2 that a steeper potential can
give rise to a very large reduction in σ8, certainly large
enough to resolve the discrepancy between early- and late-
universe observations. It should be noted that increasing
the slope λ of the potential has the effect of reducing the
expansion rate, which is to be avoided since this exacer-
bates the Hubble tension. (See Ref. [7] for a recent discus-
sion.) The lines in Fig. 9 stop once H0 < 30 kms−1Mpc−1

but even much smaller reductions in H0 are problematic.
However, from Figs. 6 and 9 one can see that there are
choices for λ and β0 that give rise to significant reduc-
tion in σ8 without having a noticeable impact on H0, for
example λ = 3, β0 = −102.

To understand how structure growth depends on λ one
needs to consider the CDM velocity divergence. Figure 10
shows, again for the n = 2 case, how the evolution of
θc is affected by the potential parameter λ: larger λ,
corresponding to a steeper potential, results in |θc| rising
more rapidly. Larger θc at a given time reduces the time
derivative of the CDM density contrast δc (see Eq. (13)),
resulting in a smaller |δc| at the present epoch and hence
a reduction of σ8 for large λ as seen in Fig. 9. The λ-
dependence of θc can be seen in the θc equation (Eq. (14)).

Substituting for ¨̄φ using Eq. (24), Eq. (14) becomes

θ̇c = −Hθc +

2β0

1−2β0
a2V,φδφ− 2β0

˙̄φ ˙δφ

(ρ̄ca2 − 2β0
˙̄φ2)

, (36)

which, for an exponential potential V (φ) = Ae−λφ/MP ,
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1
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k=10−4 Mpc−1

FIG. 7. The present-day value of the scalar field perturbation
δφ for a Type 3 coupling γ(Z) = βn−2Z

n as a function of
βn−2 for different scales k. The top panel shows the n = 2
case and the bottom panel shows n = 3.

yields

θ̇c = −Hθc +
− 2β0

1−2β0
a2Aλe−λφ/MPδφ− 2β0

˙̄φ ˙δφ

(ρ̄ca2 − 2β0
˙̄φ2)

. (37)

Both of the terms in the numerator become larger in mag-
nitude when λ is large. In the first term this is obvious; in
the second it is a consequence of the V,φφ term in Eq. (15).
Hence, a large slope λ results in a large (negative) θc lead-
ing to a reduction in δc and a suppression of structure
growth.

C. Metric perturbation

As can be seen in Eq. (13), the CDM density contrast
depends not only on the CDM velocity divergence but
also on the time derivative of the metric perturbation
h. This latter quantity has a weak indirect dependence



8
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FIG. 8. The present-day CDM velocity divergence θc for a
Type 3 coupling γ(Z) = βn−2Z

n as a function of βn−2 for
several scales k. The top panel shows the n = 2 case and the
bottom panel shows n = 3.

on the Type 3 coupling through its dependence on the
background expansion rate. In general, a larger expansion
rate at a given time results in a smaller value of ḣ, which
in turn reduces |δc| and suppresses structure growth. For
all of the cases we have considered, this effect is much
smaller than the effect due to θc.

VI. CONCLUSIONS

Unlike most coupled dark energy models that have been
studied in the literature, Type 3 models, as classified at
the Lagrangian level in Ref. [24], consist of a coupling
between the momentum of the dark matter and the gra-
dient of the dark energy scalar field. It was demonstrated
in Ref. [27] using MCMC methods that such models can
ease the tension between early- and late-universe mea-

10-4 10-3 10-2 10-1 100 101 102 103 104 105 106 107 108

−β0
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0.4

0.5

0.6

0.7

0.8

0.9

σ
8

λ=1

λ=3

λ=5

λ=9

λ=15

FIG. 9. The amplitude of matter fluctuations σ8 as a func-
tion of the coupling parameter |β0| for a range of potential
parameters λ for a quadratic coupling function γ(Z) = β0Z

2

and an exponential potential V (φ) = Ae−λφ/MP .

0.0 0.2 0.4 0.6 0.8 1.0

a
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0.2

0.4
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1.2

1.4

1.6

1.8

−
θ c

λ=1

λ=3

λ=5
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λ=15

FIG. 10. The evolution of the CDM velocity divergence θc as a
function of the scale factor a for a range of different potential
parameters λ with a coupling parameter β0 = −102, at a scale
k = 0.1 Mpc−1. The sound horizon at recombination is held
fixed at θs = 0.0104.

surements of the degree of structure formation in the
universe.

In this work we have presented an explanation, using
both analytical and numerical methods, of why Type 3
models suppress the growth of structure. We considered
a fairly general power-law coupling function, finding that
it gives rise to similar structure suppression behaviour to
the quadratic case previously studied.

We explored in detail the behaviour of the background
cosmological evolution of Type 3 coupled quintessence
models, demonstrating how the scalar field evolution de-
pends on the coupling and the scalar field potential, and
how the expansion rate is affected. In particular, we find
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that, as with uncoupled quintessence, a steeper slope of
the scalar field potential gives rise to faster evolution of
the scalar field and thus a reduced present-day expan-
sion rate H0. On the other hand, increasing the strength
of the coupling via the parameter βn−2 slows down the
scalar field evolution and gives rise to a present-day ex-
pansion rate similar to that predicted by ΛCDM. In the
models we have studied there is no mechanism for increas-
ing H0 beyond the value predicted by ΛCDM and hence
resolving the existing Hubble constant tension.

This understanding of the background evolution was
then applied to the perturbed equations of motion. A
Type 3 coupling between dark energy and CDM gives
rise to a non-zero CDM velocity divergence, θc, which
suppresses structure growth via its role in the evolution
of the density contrast of CDM, δc (see Eq. (13)). We
found that the value of |θc| rises and falls with |βn−2|,
with a maximum corresponding to the maximum possible
structure suppression. We demonstrated this behaviour
using both approximate analytic arguments based on the
equations of motion and a numerical analysis using an
appropriately modified version of CLASS.

We also demonstrated how the structure suppression
depends on the slope λ of the scalar field potential. In
particular, increasing λ gives rise to a stronger suppres-
sion of structure growth. As our background analysis
demonstrated, this can have the unwanted side effect of
reducing the predicted value of H0, thus worsening the
Hubble tension. However, for appropriate values, such
as λ = 3 and β0 = −102, the structure suppression can
be achieved without the Hubble constant being reduced.
Thus our results indicate an even greater suppression of
structure formation is possible than what has previously
been realised.

In order to understand the physical origin of the sup-
pression of structure, we have held most cosmological
parameters fixed. To fully explore the interplay between
model parameters such as βn−2 and λ and cosmological
parameters such as σ8 and H0 a multi-parameter MCMC
analysis is needed. In Ref. [26] such an analysis was

carried out using CMB data from Planck for a Type 3
model with a cubic coupling, allowing the potential pa-
rameter λ to vary between 0 and 2.1. They found the
Type 3 model to be consistent with the CMB data but
marginally disfavoured when compared to ΛCDM.

We have not discussed the physical origin of the Type 3
coupling. Presenting a more physically motivated model
would be a worthwhile avenue for future study. Recently
in [34, 35] the authors have considered the presence of re-
lated interactions in the context of Horndeski theories of
modified gravity. We note that our analysis has involved
the use of large dimensionless numbers for the coupling
parameter β0. Without reference to a deeper underly-
ing theory it is difficult to say whether such values are
reasonable, but the requirement of large dimensionless
numbers is somewhat unappealing. This would be a chal-
lenge for any future physically motivated Type 3 theory.
Another possible focus of future research would be to
study Type 3 models in a more model-independent way,
using the PPF formalism developed in Ref. [25]. In this
approach, there is a certain set of non-zero parameters
that define a Type 3 model, which can in principle be
constrained by observational surveys. Type 3 interact-
ing dark energy is still a young and little-studied area of
research but it has been shown to have interesting conse-
quences for the structure and evolution of the universe.
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