
Computers and Mathematics with Applications 155 (2024) 110–125

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

A velocity-based moving mesh virtual element method

H. Wells a,∗, M.E. Hubbard a, A. Cangiani b

a School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
b Mathematics Area, SISSA, Via Bonomea 265, Trieste, 34136, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Moving mesh method

Virtual element method

Arbitrary Lagrangian-Eulerian schemes

Polygonal meshes

Porous medium equation

We present a velocity-based moving mesh virtual element method for the numerical solution of PDEs involving
boundaries which are free to move. The virtual element method is used for computing both the mesh velocity
and a conservative Arbitrary Lagrangian-Eulerian solution transfer on general polygonal meshes. The approach
extends the linear finite element method to polygonal mesh structures, achieving the same degree of accuracy. In
the context of moving meshes, a major advantage of the virtual element approach is the ease with which nodes
can be inserted on mesh edges. Demonstrations of node insertion techniques are presented to show that moving
polygonal meshes can be simply adapted for situations where a boundary encounters a solid object or another
moving boundary, without reduction in degree of accuracy.
1. Introduction

We propose a new numerical method for the simulation of free
boundary problems over general polygonal meshes based on combining
a moving mesh algorithm with the Virtual Element Method (VEM). The
new approach is presented focusing on the solution of the free boundary
problem for the porous medium equation as a model problem. To show-

case its generality, we also briefly discuss an extension to a nonlinear
fourth-order problem.

Moving mesh methods form part of a large class of adaptive mesh
refinement techniques alongside ℎ- and 𝑝-refinement strategies. The
primary advantage of moving mesh methods is the ability to optimize
mesh structures without requiring any change in the mesh connectivity,
which can cause computational challenges, particularly when parallel
implementations are considered. They also provide a natural framework
for tracking physical features of a time-dependent PDE, such as blow-up
problems [22], phase change modelling [10], fluid-structure interaction
problems [45], and more general time-dependent PDEs [5,41,31].

Here we consider a velocity-based moving mesh algorithm [6,8,9,

35,38,7] for the numerical solution of free boundary problems. The
method is closely related to the Geometric Conservation Law method
(GCL) [25] and also forms part of a larger family of adaptive mov-

ing mesh methods [33]. It uses a Lagrangian formulation of the given
PDE to solve directly for the mesh velocities which are integrated over
time to evolve the mesh. The solution computed on any given time-

step is then transferred to the following time-step using an Arbitrary

* Corresponding author.

E-mail address: harry.wells@nottingham.ac.uk (H. Wells).

Lagrangian Eulerian (ALE) scheme [27] based on a weak distribution of
a given monitor function.

We combine the velocity-based moving mesh algorithm with the
virtual element method for spatial discretisation on general polygonal
meshes [12]. The VEM was first introduced in [12] for the conform-

ing discretisation of linear elliptic problems; cf. also [1,13,24,46] for
extensions and implementation details. It provides a flexible discretiza-

tion framework for the design of compatible general mesh methods that
incorporate, at the discrete level, fundamental properties of the contin-

uous problem at hand, such as topology, conservation, symmetry, and
positivity. To achieve compatibility, discrete virtual element spaces are
typically defined on individual polygonal elements implicitly through
local boundary value problems. These are understood through a set of
degrees of freedom instead of explicit basis functions. The use of lo-

cal polynomial projections of the virtual discrete functions permits the
definition of virtual element weak formulations which are computable
at a cost on par with that of standard Finite Element Methods (FEMs).
Here we consider the lowest-order VEM, which can be seen as a gen-

eralisation of the standard linear FEM to general polygonal/polyhedral
meshes. The benefit of this generalisation is that typical issues such as
node tangling, contact with obstacles, and topological changes of the
moving domain [33,7] can be dealt with fully by local changes in the
mesh topology. In particular, we highlight the possible issues with a
remeshing strategy for complex problems with a FEM in which changes
to mesh topology have to be carefully chosen and monitored to preserve
shape-regular elements and avoid hanging nodes. The VEM provides a
https://doi.org/10.1016/j.camwa.2023.12.005

Received 26 April 2023; Received in revised form 3 October 2023; Accepted 4 Dece

Available online 12 December 2023

0898-1221/Crown Copyright © 2023 Published by Elsevier Ltd. This is an open acc

0/).
mber 2023

ess article under the CC BY license (http://creativecommons .org /licenses /by /4 .

https://doi.org/10.1016/j.camwa.2023.12.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2023.12.005&domain=pdf
mailto:harry.wells@nottingham.ac.uk
https://doi.org/10.1016/j.camwa.2023.12.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
simpler and more flexible approach to these, permitting hanging nodes
and arbitrarily small edges.

To demonstrate this, we present a simple node insertion/removal al-

gorithm for problems involving collision between a moving boundary
and fixed obstacles. Just like linear FEM, the lowest-order VEM can be
set up using only vertex information and in particular without the use
of computationally expensive quadrature on polygons. As such, our ap-

proach can be interpreted as a generalisation of the linear finite element
moving mesh method [7].

Numerical results demonstrate that optimal orders of convergence
are achieved when applying a virtual element discretization on a diverse
range of polygonal mesh structures. To simplify the presentation, the
novel moving mesh VEM is developed for the two-dimensional porous
medium equation (PME). The PME is a parabolic non-linear diffusion
equation [51]. It is an ideal benchmark for a moving mesh method as
it provides time-varying solutions with compact support and a moving
boundary. However, the moving mesh VEM proposed here may be im-

mediately generalised to other free boundary problems. Generalisations
of the velocity-based method to other PDEs can be found in the liter-

ature [6,7] and the VEM has already been generalised to the solution
of a wide range of PDEs [14,50,48], including flow in porous media
[49,56,52]. Hence we expect our approach to be extendable to a range
of problems. To hint to the generality of the approach, in the numerical
examples section we demonstrate the application of the moving mesh
VEM to a fourth-order diffusion problem with a moving boundary.

In recent years, several works have been published which involve
time-dependent and moving polygonal domains. These developments
include: ALE maps between two meshes using virtual element and
discontinuous Galerkin (dG) methods [37], a cut-based dG scheme
for fluid-structure interaction problems [2], an ALE scheme on time-

dependent reconstructed Voronoi meshes [30], adaptive methods using
elliptic reconstruction techniques on moving meshes [23], polygonal
mesh quality measures for an anisotropic MMPDE scheme [34], and
a VEM for long term simulations of moving landforms [40]. The ben-

efits of using polygonal discretizations for moving mesh methods in-

clude representing moving boundaries and interfaces with a minimal
number of degrees of freedom and localized mesh refinement when a
change in mesh connectivity is required, such as in contact problems.
To showcase the potential of the moving mesh VEM in this respect,
we test the method for the numerical treatment of both obstacle and
self-intersecting moving interface problems.

The layout of the remaining sections of this paper is as follows. In
Section 2 we introduce the moving mesh algorithm, including the weak
formulations necessary for the method. The components of the VEM
discretisation are split into two sections. Section 3 reviews the fun-

damentals of the VEM and formulates a method for computing mesh
velocities at a fixed point in time. Section 4 presents a framework for
moving virtual elements along with a VEM for a conservative ALE up-

date scheme. An overview of the algorithm and implementation details
is given in Section 5. Node insertion/removal algorithms are discussed
in Section 6. A set of numerical experiments is presented in Section 7

for the PME and a fourth-order diffusion problem before drawing some
conclusions in Section 8.

2. The moving mesh framework

In this section we present the key components of the velocity-based
moving mesh framework for a general time-dependent PDE of the form

𝜕𝜌

𝜕𝑡
=𝜌, (1)

with 𝑡 ∈ (0, 𝑇], 𝑇 ∈ℝ+, indicating time and  a generic spatial differen-

tial operator in ℝ𝑑 . The choice of spatial operator will be made specific
later on when we introduce the porous medium equation as the model
problem. Further details on a finite element discretisation of this mov-

ing mesh method for general parabolic problems can be found in [6,7]

and the references therein.
111
The time-dependent support of the evolving solution to Equation
(1) will be denoted by Ω𝑡 ⊆ℝ𝑑 , with boundary 𝜕Ω𝑡 which is allowed to
move. The temporal superscript 𝑡 will be swapped for 𝑛 when consider-

ing discrete time levels 𝑡𝑛 or, when no confusion arises, the superscript
notation will be dropped entirely for ease of reading.

A moving coordinate system is defined by 𝐱 = 𝐱(𝝃, 𝑡) where 𝐱(𝝃, 0) =
𝝃 is the coordinate system on the initial domain Ω0, which is used as
the reference domain for simplicity. It is assumed that, for all 𝑡 ∈ [0, 𝑇],
the map 𝐱(⋅, 𝑡) is Lipschitz with Lipschitz inverse. The evolution of Ω𝑡 is
determined by the velocity field

𝐯 = 𝜕𝐱
𝜕𝑡
. (2)

Following [18], we shall also refer to the space-time domain

𝑇 = {(𝐱, 𝑡) ∶ 𝑡 ∈ [0, 𝑇],𝐱 = 𝐱(𝝃, 𝑡),𝝃 ∈Ω0}.

2.1. The velocity field

The movement of the mesh is derived by specifying the time evo-

lution of the distribution of the spatial integral of some solution-

dependent monitor function, 𝕄(𝜌). Specifically, the velocity field 𝐯 is
determined by requiring that the initial distribution of the monitor func-

tion 𝕄(𝜌) is conserved as time progresses. Namely, we look for 𝐯 = 𝜕𝐱
𝜕𝑡

such that, for all 𝑤 ∈𝐿2(𝑇), the coordinates 𝐱(𝝃, 𝑡) satisfy

∫Ω𝑡 𝑤(𝐱, 𝑡)𝕄(𝜌(𝐱, 𝑡)) 𝑑𝐱
∫Ω𝑡 𝕄(𝜌(𝐱, 𝑡)) 𝑑𝐱

=
∫Ω0 𝑤(𝝃,0)𝕄(𝜌(𝝃,0)) 𝑑𝝃

∫Ω0 𝕄(𝜌(𝝃,0)) 𝑑𝝃
∀ 𝑡 ∈ [0, 𝑇].

(3)

The derivation of the moving mesh method is based on application of
the Reynolds transport theorem and on the assumption that the material
derivatives of the weighting functions 𝑤(𝐱, 𝑡) are zero with respect to
the velocity field 𝐯 (see Equation (2)). Namely,

𝑡𝑤 = 𝜕𝑤
𝜕𝑡

+ 𝐯 ⋅∇𝑤 = 0. (4)

This is a common assumption made in finite element approaches to
moving mesh algorithms [37,18,17] and is equivalent to assuming that
𝑤(𝐱(𝝃, 𝐭), 𝑡) =𝑤(𝝃, 0) in Equation (3).

Equidistribution-based mesh movement algorithms typically at-

tempt to reduce the global approximation error without changing the
number of degrees of freedom by choosing a finite set of weighting func-

tions 𝑤𝑖(𝐱, 𝑡), so that each one has a direct association with a mesh node
or element. The monitor function 𝕄(𝜌) is then selected to act as a local
error indicator, and the mesh is adjusted in an attempt to equidistribute
the values of the weighted monitor integrals

𝜇𝑡(𝑤𝑖) = ∫
Ω𝑡

𝑤𝑖𝕄(𝜌) 𝑑𝐱, (5)

and hence to equidistribute the local error across the mesh. Such an ap-

proach could be followed within our framework [38,7]. However, in
this paper we adopt the following approach which is more akin to La-

grangian mesh movement algorithms, which attempt to move the mesh
with the ‘flow’ velocity.

Choosing 𝕄(𝜌) = 𝜌 in Equation (5) naturally leads to a weak approx-

imation of the Lagrangian ‘flow’ velocity of the PDE when 𝜌 =∇ ⋅ 𝐟 for
some flux 𝐟 in Equation (1). This has two benefits: (a) it allows us to
predict the movement of free boundaries; (b) it reduces interpolation
error of the computed mesh and solution between time-steps because
the mesh (and hence the solution) is transported with the velocity field
inherent to the PDE.

In many PDEs (including the PME), 𝜌 represents a density, i.e. its
integral in space is a mass, so we will refer to 𝕄(𝜌) = 𝜌 as the mass
monitor. For clarity of presentation, we will assume use of this mass
monitor from now on. Hence, each weight function 𝑤(𝐱, 𝑡) is assigned
its own ‘mass’ 𝜇𝑡(𝑤), which contributes towards the total mass 𝜃𝑡:

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
𝜇𝑡(𝑤) = ∫
Ω𝑡

𝑤𝜌 𝑑𝐱 where 𝜃𝑡 = ∫
Ω𝑡

𝜌 𝑑𝐱. (6)

Having selected 𝕄(𝜌) = 𝜌, Equation (3) takes the form

𝜇𝑡(𝑤)
𝜃𝑡

= 𝜇
0

𝜃0
∶= 𝑐(𝑤), (7)

in which we have defined distribution coefficients 𝑐(𝑤) which we can
compute from the initial conditions and will assume remain constant
in time when we derive our velocity field. It is this assumption that
provides local mass conservation, i.e. each weight function 𝑤 retains
the same proportion 𝑐(𝑤) of the total mass 𝜃𝑡 as the solution evolves
in time. The evolution of 𝜌 is governed by Equation (1), so Equation
(6) provides us with a way to prescribe the evolution of the coordinate
system in a way which retains the initial ‘mass’ distribution.

Remark 1. The original moving mesh finite element method [6,7]

chose the weight functions to be the standard linear Lagrange finite
element test functions on meshes of simplices. This associates a fixed
proportion of the total mass of the system with each node of the mesh,
so the values of 𝜇𝑡(𝑤) depend not only on 𝜌, but also on the mesh node
positions. In this situation, Equation (6) provides a way to compute
mesh node velocities using standard finite element techniques, in a way
which is consistent with local mass conservation when this is a property
of the underlying PDE. Our results to follow demonstrate that the same
principle can be applied on polygonal meshes within a virtual element
framework.

Let 𝑡 ∈ [0, 𝑇] and consider all 𝑤 ∈𝐻1(𝑇) such that 𝑡𝑤(𝑡) = 0, cf.
Equation (4). We differentiate the first equality in (6) with respect to
time and apply the Reynolds transport theorem [53,42,18]:

Theorem 2.1 (Reynolds transport theorem). For any 𝑓 ∈𝑊 1,1(𝑇) and
𝑡 ∈ [0, 𝑇] there holds

𝑑

𝑑𝑡 ∫
Ω𝑡

𝑓 𝑑𝐱 = ∫
Ω𝑡

𝜕𝑓

𝜕𝑡
+∇ ⋅ (𝑓𝐯) 𝑑𝐱. (8)

This immediately leads to

𝜇̇𝑡(𝑤) = ∫
Ω𝑡

𝑤

{
𝜕𝜌

𝜕𝑡
+∇ ⋅ (𝜌𝐯)

}
𝑑𝐱. (9)

Noting that (9) does not fully determine the velocity, we further require
that each weighting function retains a fixed proportion of 𝜃𝑡 as the mesh
evolves i.e. the distribution coefficients 𝑐(𝑤) defined in Equation (7)

remain constant in time. Hence we impose the constraints

𝜇̇𝑡(𝑤) = 𝑐(𝑤)𝜃̇𝑡. (10)

It is this choice which allows us to generate mesh velocities which
approximate the Lagrangian flow velocities. Inserting (10) in (9), us-

ing (1), and integrating by parts results in

𝑐(𝑤)𝜃̇𝑡 + ∫
Ω𝑡

𝜌∇𝑤 ⋅ 𝐯 𝑑𝐱 = ∫
Ω𝑡

𝑤𝜌 𝑑𝐱 + ∫
𝜕Ω𝑡

𝑤𝜌𝐯 ⋅ 𝐧 𝑑𝑠, (11)

with 𝐧 the outward unit normal on 𝜕Ω𝑡. Similarly, a direct application
of the Reynolds transport theorem to the second equality in (6), yields

𝜃̇𝑡 = ∫
Ω𝑡

𝜌 𝑑𝐱 + ∫
𝜕Ω𝑡

𝜌𝐯 ⋅ 𝐧 𝑑𝑠. (12)

In fact, 𝜃̇𝑡 is typically known explicitly because 𝜌𝐯 ⋅ 𝐧 is known on
the whole of 𝜕Ω𝑡, and the boundary conditions provided with the PDE
will enable evaluation of the integral of 𝜌. Furthermore, for mass-

conservative problems, 𝜃̇𝑡 = 0. Note also that assuming that 𝑐(𝑤) re-

mains constant preserves the initial distribution of the mass (or a more
112
general monitor integral) so a monitor which is initially equidistributed
between a set of weighting functions should remain equidistributed as
the coordinate system evolves with this velocity field.

Equations (11) and (12) are used to compute an instantaneous ve-

locity 𝐯 which is consistent with conserving the proportion of mass
associated with each weighting function. This provides a form of lo-

cal mass conservation when 𝜃̇𝑡 = 0. However, it still does not uniquely
define 𝐯 in multiple space dimensions. To overcome this issue, the ve-

locity field is written in terms of its Helmholtz decomposition

𝐯 = 𝐪+∇𝜙, (13)

where 𝜙 is a scalar potential and 𝐪 must be specified. This constraint
is equivalent to imposing the curl of the velocity field because ∇ × 𝐪 =
∇ × 𝐯. Moreover, for simplicity, we may further assume that 𝐪 = 𝟎. This
is the natural choice for the porous medium equation, which is derived
under the assumption of a curl-free flow velocity field. An example of
the method applied with a rotational velocity field is presented in [7].
The problem for determining the velocity potential is therefore: find
𝜙 ∈𝐻1(Ω𝑡) such that

∫
Ω𝑡

𝜌∇𝑤 ⋅∇𝜙 𝑑𝐱 = ∫
Ω𝑡

𝑤𝜌 𝑑𝐱 + ∫
𝜕Ω𝑡

𝑤𝜌𝐯 ⋅𝐧 𝑑𝑠 − 𝑐(𝑤)𝜃̇𝑡 ∀𝑤 ∈𝐻1(Ω𝑡),

(14)

where 𝜙 = 0 is specified at one point in Ω𝑡 to ensure uniqueness.

The velocity field is finally obtained as the solution of Equation (13)

written in weak form with 𝐪 = 𝟎 and 𝜙 given by (14). That is, we find
𝐯 ∈ [𝐻1(Ω𝑡)]𝑑 such that

∫
Ω𝑡

𝑧𝐯 𝑑𝐱 = ∫
Ω𝑡

𝑧∇𝜙 𝑑𝐱 ∀𝑧 ∈𝐻1(Ω𝑡), (15)

with 𝐯 ⋅ 𝐧 imposed on any part of the boundary where it is known. For
instance, in case of contact with an obstacle, we would impose 𝐯 ⋅ 𝐧 = 0
on the contact boundary. Note that (15) is just the component-wise 𝐿2-

projection.

Remark 2. The velocity field in the interior of Ω𝑡 could be discarded at
this stage, and replaced by one derived using a different approach which
is constrained by the boundary velocity derived above. For example,
interior mesh nodes could be moved using our approach with a different
monitor function or a Laplacian smoothing could be applied [38,45].

2.2. Solution update

The velocity field 𝐯 derived using Equations (14) and (15) can now
be used in the update of the solution. Integration of Equation (9) by
parts and substitution of Equation (1) results in

𝜇̇𝑡(𝑤) = ∫
Ω𝑡

𝑤𝜌 𝑑𝐱 − ∫
Ω𝑡

𝜌∇𝑤 ⋅ 𝐯 𝑑𝐱 + ∫
𝜕Ω𝑡

𝑤𝜌𝐯 ⋅ 𝐧 𝑑𝑠 ∀𝑤 ∈𝐻1(Ω𝑡).

(16)

This is a standard conservative ALE update. Along with Equation (2), it
gives a system of ODEs governing the evolution of the coordinate system
and the distribution of the mass monitor which can be approximated us-

ing standard solvers such as explicit Runge-Kutta methods [7,35]. With
these at hand, the solution can be recovered by solving the problem:
find 𝜌 ∈𝐻1(Ω𝑡) such that

∫
Ω𝑡

𝑤𝜌 𝑑𝐱 = 𝜇𝑡(𝑤) ∀𝑤 ∈𝐻1(Ω𝑡). (17)

In the special case where 𝜃̇𝑡 = 0 and 𝑐(𝑤) is assumed constant in time,
Equation (16) is redundant because 𝜇̇𝑡(𝑤) ≈ 0 by design. In fact, with-

out the velocity recovery from the potential through (14) and (15), we

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
would have 𝜇̇𝑡(𝑤) ≡ 0. However, the practical steps of the recovery pro-

cedure may introduce small perturbations. Alternatively, one may use
the knowledge that 𝜇̇𝑡(𝑤) ≡ 0 and hence resort directly to the initial
values 𝜇0(𝑤), avoiding the need to calculate the ALE update (16) al-

together: we refer to this as direct recovery. However, direct recovery
can only be used with the specific choice of the mass monitor and with
mass-conservative PDEs. In other situations the interior velocity field
will not correspond to 𝜇̇𝑡(𝑤) = 0 and the ALE update is essential.

Remark 3. An alternative, non-conservative, ALE formulation can be
derived which would give an equation for 𝜌̇ instead of 𝜇̇ (see [38]).
This derivation does not require that the weight functions evolve with
zero material derivative, but conservation of mass is lost as a result.

We complete this subsection by providing a high level summary of
the main steps of the moving mesh algorithm, using a subscript ⋅ℎ to in-

dicate (in a very general sense) discrete approximations on a polygonal
domain Ωℎ. As stated above, the evolution of the mesh and solution can
be expressed in the form of a system of ordinary differential equations
in time:

𝑑

𝑑𝑡

(
𝐱ℎ
𝜇(𝑤ℎ)

)
= 𝐅(𝐱ℎ,𝜇(𝑤ℎ)). (18)

The following steps can be used to compute 𝐅(𝐱ℎ, 𝜇(𝑤ℎ)).

(1) Given 𝐱ℎ and 𝜇(𝑤ℎ), compute 𝜌ℎ by solving a discrete form of (17),

∫
Ωℎ

𝑤ℎ𝜌ℎ 𝑑𝐱 = 𝜇(𝑤ℎ). (19)

(2) Given 𝜌ℎ, compute 𝑐(𝑤ℎ) using a discrete form of (7),

𝑐(𝑤ℎ) = ∫
Ωℎ

𝑤ℎ𝜌ℎ 𝑑𝐱
/

∫
Ωℎ

𝜌ℎ 𝑑𝐱 . (20)

This step is omitted for the PME in the following sections because
in that case 𝜃̇ = 0, which eliminates the requirement for 𝑐(𝑤ℎ) in
step (3).

(3) Given 𝜌ℎ and 𝑐(𝑤ℎ), compute 𝜙ℎ by solving discrete forms of (14)

and (12),

𝑐(𝑤ℎ)𝜃̇ℎ + ∫
Ωℎ

𝜌ℎ∇𝑤ℎ ⋅∇𝜙ℎ 𝑑𝐱 (21)

= ∫
Ωℎ

𝑤ℎ(𝜌)ℎ 𝑑𝐱 − ∫
Ωℎ

𝜌ℎ∇𝑤ℎ ⋅ 𝐪ℎ 𝑑𝐱 + ∫
𝜕Ωℎ

𝑤ℎ𝜌ℎ𝐯ℎ ⋅ 𝐧 𝑑𝑠,

𝜃̇ℎ = ∫
Ωℎ

(𝜌)ℎ 𝑑𝐱 + ∫
𝜕Ωℎ

𝜌ℎ𝐯ℎ ⋅ 𝐧 𝑑𝑠. (22)

For uniqueness, it is necessary to specify 𝜙ℎ at one point in Ωℎ.
Furthermore, 𝐪ℎ and, on the boundary, 𝜌ℎ𝐯ℎ ⋅ 𝐧 must be provided.
In this work we set 𝜙ℎ = 0 at an arbitrary mesh vertex and 𝐪ℎ = 𝟎
throughout the domain. For the PME, 𝜌ℎ𝐯ℎ ⋅ 𝐧 is provided in terms
of the solution by the kinematic boundary condition and 𝜃̇ℎ = 0.

(4) Given 𝜙ℎ, compute 𝐱̇ℎ by solving a discrete form of (15),

∫
Ωℎ

𝑧ℎ𝐱̇ℎ 𝑑𝐱 = ∫
Ωℎ

𝑧ℎ(∇𝜙ℎ + 𝐪ℎ) 𝑑𝐱, (23)

where in this work 𝐪ℎ = 𝟎. Note that 𝐱̇ℎ is being used here instead
of 𝐯ℎ to indicate the discrete velocity to make it clear that this is
being used to provide the right-hand side of the ODE system (18).
113
(5) Given 𝜌ℎ and 𝐱̇ℎ, compute 𝜇̇(𝑤ℎ) using a discrete form of (16),

𝜇̇(𝑤ℎ)=∫
Ωℎ

𝑤ℎ(𝜌)ℎ 𝑑𝐱 − ∫
Ωℎ

𝜌ℎ∇𝑤ℎ ⋅ 𝐱̇ℎ 𝑑𝐱 + ∫
𝜕Ωℎ

𝑤ℎ𝜌ℎ𝐯ℎ ⋅ 𝐧 𝑑𝑠.

(24)

This is a standard conservative ALE update in which the boundary
integral is computed using the appropriate boundary conditions.

Equations (23) and (24) provide the right-hand side 𝐅(𝐱ℎ, 𝜇(𝑤ℎ)) of the
ODE system (18), which can be approximated by the user’s method of
choice.

2.3. Porous medium equation

On an open, bounded domain Ω̃ ⊂ ℝ𝑑 , we consider the following
initial-boundary value problem for the Porous Medium Equation (PME):
find 𝜌 ∶ Ω̃ ×ℝ+ →ℝ such that

𝜕𝜌

𝜕𝑡
(𝐱, 𝑡) = ΔΦ(𝜌(𝐱, 𝑡)) (𝐱, 𝑡) ∈ Ω̃ × (0,∞], (25)

𝜌(𝐱, 𝑡) = 0 (𝐱, 𝑡) ∈ 𝜕Ω̃ × (0,∞], (26)

𝜌(𝐱,0) = 𝜌0(𝐱) 𝐱 ∈ Ω̃, (27)

where Φ = 𝜌𝑚+1∕(𝑚 + 1), for some 𝑚 > 0, and 𝜌0 ≥ 0 having compact
support in Ω̃. The PME belongs to the broader class of Generalized
Porous Medium Equations (GPME), also known as filtration equations,
obtained with Φ ∶ℝ+ →ℝ+ any increasing function. The mathematical
analysis of the GPME is well developed; see the monograph [51] and
the references therein. In particular, the notion of appropriate weak so-

lutions is discussed in [51] where it is shown that, for non-negative
𝜌0 ∈𝐿1(Ω̃) and for Ψ(𝜌0) ∈𝐿1(Ω̃), where Ψ is the anti-derivative of Φ,
if Ψ(𝜌) > 0 for 𝜌 > 0, there exists a unique non-negative weak solution
to the GPME globally in time.

The PME models a number of physical processes such as fluid flow,
heat transfer, and diffusion. It exhibits several interesting properties,
including the existence of a family of radially symmetric similarity so-

lutions [42], which are used to test the numerical method in Section 7.
Other properties of the PME are discussed in [51,7,43].

It is a fundamental example of a degenerate parabolic equation,
stemming from the condition that Ψ is non-negative, rather than simply
positive.

Solutions that exhibit an evolving compact support are ideal for the
class of moving mesh methods considered herein because considering
as unknown the support of the solution leads to a moving boundary
problem that can be simulated over time without having to discretize
the entire geometry of Ω̃.

Introducing the time-dependent support of 𝜌 as Ω𝑡, we define the
time-dependent coordinate system 𝐱(𝝃, 𝑡) with a velocity field 𝐱̇ = 𝐯(𝐱, 𝑡)
that corresponds, at 𝜕Ω𝑡, with the movement of the free boundary of Ω𝑡
for all 𝑡 ∈ [0, ∞]. Additionally, we consider the free boundary problem
for the PME in which part of the boundary may be obstructed by a fixed
object. To this end, the boundary is divided into a moving part 𝜕Ω𝑡

𝑀

and a fixed part 𝜕Ω𝑡
𝐹

, such that 𝜕Ω𝑡 = 𝜕Ω𝑡
𝑀

∪ 𝜕Ω𝑡
𝐹

and 𝜕Ω𝑡
𝑀

∩ 𝜕Ω𝑡
𝐹
= ∅.

Thus, we arrive to the following classical free boundary problem for the
PME, whose smooth solutions are weak solutions of (25)-(27), cf. [51].

Problem 2.1 (The Porous Medium Equation (PME)). Let 𝑇 > 0 and 𝑚 > 0.
Find 𝜌 = 𝜌(𝐱, 𝑡) such that 𝜌(𝐱, 0) = 𝜌0(𝐱) for 𝐱 ∈Ω0 and, for all 𝑡 ∈ (0, 𝑇],

𝜕𝜌

𝜕𝑡
=∇ ⋅ (𝜌𝑚∇𝜌) 𝐱 ∈Ω𝑡,

𝜌 = 0 𝐱 ∈ 𝜕Ω𝑡
𝑀
,

𝜌𝑚∇𝜌 ⋅ 𝐧 = 0 𝐱 ∈ 𝜕Ω𝑡
𝐹
.

Here, 𝐧 is the outward pointing unit normal to the boundary 𝜕Ω𝑡. Note that
an additional (kinematic) boundary condition,

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
𝜌𝐯 ⋅ 𝐧 = −𝜌𝑚∇𝜌 ⋅ 𝐧 𝐱 ∈ 𝜕Ω𝑡
𝑀
,

which imposes zero flux through the moving boundary, is required to deter-

mine the boundary velocity 𝐯. On 𝜕Ω𝐹 , the boundary velocity is specified
and 𝜌𝐯 ⋅ 𝐧 = 0.

Given a transformed coordinate system 𝐱 and a distribution 𝜇 of the
variable 𝜌, our method for solving the PME Problem 2.1 requires the
solution of the following problems successively.

Problem 2.2 (Solution reconstruction – equation (17)). Given 𝜇𝑡(𝑤) ∈ℝ,
find 𝜌 ∈𝐻1(Ω𝑡) such that

𝑚(𝜌,𝑤) = 𝜇𝑡(𝑤) ∀𝑤 ∈𝐻1(Ω𝑡), (28)

where

𝑚(𝜌,𝑤) = ∫
Ω𝑡

𝑤𝜌 𝑑𝐱. (29)

Problem 2.3 (Velocity potential – equation (14)). Given 𝜌 ∈𝐻1(Ω𝑡), find
𝜙 ∈𝐻1(Ω𝑡)∕ℙ0(Ω𝑡), where ℙ0(Ω𝑡) is the space of constants, such that

𝐴(𝑤,𝜙) = 𝑑(𝑤) ∀𝑤 ∈𝐻1(Ω𝑡)∕ℙ0(Ω𝑡), (30)

where

𝐴(𝜙,𝑤) = ∫
Ω𝑡

𝜌∇𝜙 ⋅∇𝑤 𝑑𝐱, (31)

𝑑(𝑤) = −∫
Ω𝑡

𝜌𝑚∇𝜌 ⋅∇𝑤 𝑑𝐱. (32)

This has been derived by substituting 𝜌 = ∇ ⋅ (𝜌𝑚∇𝜌) in (14) and
applying the boundary conditions from Problem 2.1. To reconstruct the
velocity field we introduce the following space[
𝐻1
𝜕Ω𝑡
𝐹

(Ω𝑡)
]𝑑

=
{
𝐰 ∈

[
𝐻1(Ω𝑡)

]𝑑 ∶ 𝐰 ⋅ 𝐧|𝜕Ω𝑡
𝐹
= 0

}
, (33)

in which we have the following reconstruction problem.

Problem 2.4 (Velocity reconstruction – equation (15)). Given 𝜙 ∈𝐻1(Ω𝑡),

find 𝐯 ∈
[
𝐻1
𝜕Ω𝑡
𝐹

(Ω𝑡)
]𝑑

such that

𝑀(𝐯, 𝑧) = 𝑏(𝑧) ∀𝑧 ∈𝐻1(Ω𝑡), (34)

where

𝑀(𝐯, 𝑧) = ∫
Ω𝑡

𝑧𝐯 𝑑𝐱, (35)

𝑏(𝑧) = ∫
Ω𝑡

𝑧∇𝜙 𝑑𝐱. (36)

To compensate for the fact that the velocity is reconstructed from the
potential (see the comments in Section 2.2), an a posteriori computation
of the ALE update may be used [27]. Specifically, substituting 𝜌 =
∇ ⋅ (𝜌𝑚∇𝜌) and the PME boundary conditions into (16) we arrive to the
following.

Problem 2.5 (ALE update – equation (16)). Given 𝜌 ∈𝐻1(Ω𝑡) and 𝐯 ∈[
𝐻1(Ω𝑡)

]𝑑
, fix

𝜇̇𝑡(𝑤) = ∫
𝑡

−𝜌∇𝑤 ⋅
{
𝜌𝑚−1∇𝜌+ 𝐯

}
𝑑𝐱 ∀𝑤 ∈𝐻1(Ω𝑡). (37)
Ω

114
Once again we note that, when 𝜇̇𝑡(𝑤) = 0 is assumed, Equation (37)

is redundant and Equation (30) is equivalent to a weak form of the PDE

∇ ⋅ (𝜌𝐯) = −∇ ⋅ (𝜌𝑚∇𝜌), (38)

where ∇ × 𝐯 = 𝟎 has been assumed. In other words, the formulation
recovers the Lagrangian flow field associated with the porous medium
equation.

Equations (37) and 𝐱̇ = 𝐯(𝐱, 𝑡) can now be combined to give a sys-

tem of ODEs which determine the evolution of the coordinate system
and the monitor distribution. These can be discretized in time using an
appropriate solver for first-order ODEs. Specifically, the forward Euler
method is used to perform the tests presented in Section 7. A first-order
time-stepping approach is sufficient for this work because it considers
only the lowest-order VEM, providing second-order accuracy in space,
and the explicit nature of the method means that, for the PME, the
time-step is required to scale in proportion with the square of the spa-

tial mesh size to retain stability. Higher-order explicit time-stepping
schemes have been presented in [35,7] for the FEM implementation
of the moving mesh method.

We now proceed to describe how Problems 2.2–2.5 can be approxi-

mated in space on two-dimensional polygonal meshes using the virtual
element method.

3. Virtual element method for the velocity

In this section we introduce the VEM and apply it for the discreti-

sation of Problems 2.3 and 2.4 to determine the domain velocity field.
We follow the framework introduced in [12,1,24] for the discretisation
of linear elliptic problems. For simplicity, we consider the lowest-order
(linear) VEM in two dimensions. Hence, for the rest of the paper, it is
assumed that 𝑑 = 2 and the solution space is of degree 𝑘 = 1.

In the following we let 0 = 𝑡0 < 𝑡1 <… 𝑡𝑁𝑡 = 𝑇 denote a given se-

quence of discrete time levels at which the PME is discretised.

3.1. A moving polygonal mesh

The polygonal representation of the moving domain Ω𝑡 at the dis-

crete time level 𝑡𝑛 is denoted by Ω𝑛
ℎ

and the corresponding polygonal
mesh partitioning Ω𝑛

ℎ
is denoted by  𝑛

ℎ
. Polygonal elements and edges

within the mesh are denoted by 𝐸 and 𝑒, respectively. For a given polyg-

onal element 𝐸, |𝐸| denotes the area, ℎ𝐸 the diameter, and (𝑥𝑐, 𝑦𝑐) the
centroid.

The following conditions are sufficient to guarantee convergence
of the VEM and are assumed to hold true at each time level 𝑡𝑛,
𝑛 = 0, 1, … , 𝑁𝑡; see, for example, [12].

Assumption 1 (Mesh partitioning). The mesh  𝑛
ℎ

provides a partition of
Ω𝑛
ℎ

into non-overlapping simple polygons.1

Assumption 2 (Shape regularity). Every 𝐸 ∈  𝑛
ℎ

is a star-shaped domain
or a finite union of star shaped domains with respect to a ball of radius
greater than 𝛾ℎ𝐸 for some uniform 𝛾 > 0. Additionally, for all edges
𝑒 ∈ 𝜕𝐸, the length of 𝑒 is greater than 𝛿ℎ𝐸 for some uniform 𝛿 > 0.

Remark 4. The shape regularity assumption on the edges required by
Assumption 2 can be entirely removed following, for example, [19] or
[15]. Small edges are relevant, for instance, for the various types of
contact problems considered below.

1 A polygon is simple if its boundary forms a closed graph with no intersecting
edges other than at each vertex which intersects exactly two edges.

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
3.2. The Π∇ and Π0 projections

Given a subset 𝜔 ⊂ℝ𝑑 , 𝑑 = 1, 2, representing an element or an edge,
with ℙ𝑘(𝜔) we denote the space of polynomials of degree 𝑘 on 𝜔. Fur-

thermore, we use (⋅, ⋅)𝜔 to denote the 𝐿2 inner product over 𝜔.

Critical to the construction of a VEM is the judicious choice of dis-

crete spaces and degrees of freedom that permit the computation of
local polynomial projections of virtual functions using only the degrees
of freedom.

Specifically, the definition of the VEM space to be introduced below
is based on an 𝐻1-type projection operator Π∇

1 onto ℙ1(𝐸) given, for
any 𝑤 ∈𝐻1(𝐸), by{ (

∇Π∇
1𝑤,∇𝑝

)
0,𝐸 = (∇𝑤,∇𝑝)0,𝐸 ∀𝑝 ∈ ℙ1(𝐸)(

𝑤−Π∇
1𝑤,1

)
0,𝜕𝐸 = 0. (39)

Further, the VEM requires the availability of the 𝐿2-projection operator
Π0
1 onto ℙ1(𝐸) defined, for 𝑤 ∈𝐿2(𝐸), by(
Π0
1𝑤,𝑝

)
0,𝐸 = (𝑤,𝑝)0,𝐸 ∀𝑝 ∈ ℙ1(𝐸). (40)

Additionally, the VEM requires the 𝐿2-projection onto constants of ∇𝑤
which we denote by Π0

0, thus(
Π0
0∇𝑤,𝐩

)
0,𝐸 = (∇𝑤,𝐩)0,𝐸 ∀𝐩 ∈ [ℙ0(𝐸)]2. (41)

The same operator applied component-wise to vector-valued functions
will be denoted by Π0

1.

3.3. Virtual element spaces

Virtual element discrete functions are defined implicitly as solutions
of element-wise boundary value problems. These functions are only ac-

cessed through their degrees of freedom with which specific projections
can be computed; in this way, no evaluation of the (implicitly known)
discrete functions is required. Here we consider the linear virtual ele-

ment space of [1] which is a modification of the original space proposed
in [12] for which both the 𝐻1 and 𝐿2 projections introduced in the pre-

vious section are computable from the degrees of freedom.

Given a polygonal element 𝐸 ∈  𝑛
ℎ

, we first define the elemental
boundary space as

𝔹(𝜕𝐸) = {𝑤ℎ ∈ 𝐶0(𝜕𝐸) ∶ 𝑤ℎ|𝑒 ∈ ℙ1(𝑒) ∀𝑒 ⊂ 𝜕𝐸}. (42)

Then the local virtual element space of [12] is defined as

𝑊 (𝐸) = {𝑤ℎ ∈𝐻1(𝐸) ∶ 𝑤ℎ|𝜕𝐸 ∈ 𝔹(𝜕𝐸), Δ𝑤ℎ|𝐸 = 0}. (43)

Note that ℙ1(𝐸) ⊆ 𝑊 (𝐸). In fact, it is immediate to check that the
space 𝑊 (𝐸) corresponds to the elemental linear finite element space
whenever 𝐸 is a triangle, that is 𝑊 (𝐸) ≡ ℙ1(𝐸). In this respect, the
VEM can be seen as a generalisation of the linear FEM to polygonal
meshes. It is clear from the definition that the only degrees of freedom
in the choice of a function 𝑤ℎ ∈𝑊 (𝐸) are related to its values on the
boundary and, given that 𝑤ℎ is linear on each edge, ultimately they
depend only on the nodal values; a rigorous proof that these constitute
a unisolvent set of degrees of freedom for 𝑊 (𝐸) is presented in [12].
Hence, in analogy to classical continuous linear finite element spaces,
we identify the VEM functions by their nodal values.

Additionally, the nodal values allow for the computation of the local
Π∇
1 projection of any 𝑤ℎ ∈𝑊 (𝐸). Indeed, in order to compute the first

equation in (39) we need to be able to evaluate, for any 𝑝 ∈ ℙ1(𝐸), the
right-hand side term:(
∇𝑤ℎ,∇𝑝

)
0,𝐸 = −

(
𝑤ℎ,Δ𝑝

)
0,𝐸 +

(
𝑤ℎ,𝐧 ⋅∇𝑝

)
0,𝜕𝐸 =

∑
𝑒∈𝜕𝐸

(
𝑤ℎ,𝐧 ⋅∇𝑝

)
0,𝑒 ,

(44)
115
as Δ𝑝 = 0. This shows that such terms only depend on the value of 𝑤ℎ
on the boundary of 𝐸, which are known and are determined by the
nodal values. The same is clearly true for the second equation in (39),
hence the local Π∇

1 projection is fully computable just by accessing the
degrees of freedom. However, the 𝐿2 projection is not computable for
this space. Hence, following [1], we first consider the enriched space ob-

tained by allowing the Laplacian of virtual functions to range in ℙ1(𝐸),

𝑉 (𝐸) = {𝑤ℎ ∈𝐻1(𝐸) ∶ 𝑤ℎ|𝜕𝐸 ∈ 𝔹(𝜕𝐸), Δ𝑤ℎ ∈ ℙ1(𝐸)}, (45)

from which a new enhanced local virtual element space can be defined
as

𝑉 (𝐸) = {𝑤ℎ ∈ 𝑉 (𝐸) ∶ (𝑤ℎ −Π∇
1𝑤ℎ, 𝑞)0,𝐸 = 0 ∀𝑞 ∈ ℙ1(𝐸)}. (46)

Notice that the space 𝑉 (𝐸) is characterised by the following four prop-

erties: (i) we still have that ℙ1(𝐸) ⊆ 𝑉 (𝐸); (ii) the dimension of 𝑉 (𝐸) is
equal to that of 𝑊 (𝐸) and we can still use the nodal values as degrees
of freedom (see [1]); (iii) the local Π∇

1 projection is still computable;
(iv) if 𝑤ℎ ∈ 𝑉 (𝐸) then Π0

1𝑤ℎ = Π∇
1𝑤ℎ by construction, hence also the

𝐿2-projection Π0
1 is computable. The proof that the gradient projection

into constants Π0
0∇𝑤ℎ is also computable is similar.

The global virtual element space is then defined for a given time 𝑡𝑛
as

𝑉 𝑛
ℎ
= {𝑤ℎ ∈𝐻1(Ω𝑛

ℎ
) ∶𝑤ℎ|𝐸 ∈ 𝑉 (𝐸) ∀𝐸 ∈  𝑛

ℎ
}. (47)

The dimension of this space is equal to the number of nodes in the mesh,
which we shall denote by 𝑁dof.

Remark 5. When required, homogeneous Dirichlet boundary condi-

tions can be embedded in the virtual element space by fixing the
relevant boundary nodes. Hence, given a Γ ⊆ 𝜕Ω𝑛

ℎ
, we denote the con-

strained space by 𝑉 𝑛
ℎ,Γ = {𝑤ℎ ∈ 𝑉 𝑛ℎ ∶ 𝑤ℎ|Γ = 0}.

3.4. Discretisation of the velocity problems

Having defined the virtual element space in Section 3.3, we are
ready to present the VEM for the solution of the velocity Problems 2.3

and 2.4. The VEM is based on the construction of approximate weak
forms which are computable through the elemental projection operators.
In particular, the VEM bilinear forms typically involve two terms. The
polynomial consistency term acts on the projection of the discrete func-

tions and is responsible for the accuracy of the method; the stabilization
term is complementary to the consistency term and is required to ensure
the coercivity of the VEM bilinear forms. See, for example, [12,1,24] for
more details including proofs of stability and convergence.

Assume that a discrete solution at time level 𝑡𝑛 has been computed as
𝜌ℎ ∈ 𝑉 𝑛ℎ on the current mesh  𝑛

ℎ
. When 𝑛 = 0, 𝜌ℎ is defined as the virtual

element interpolation of the initial condition of the PME Problem 2.1.
Otherwise, 𝜌ℎ is the current time discrete solution.

The VEM discretisation of the velocity potential Problem 2.3 reads:
given 𝜌ℎ ∈ 𝑉 𝑛ℎ , find 𝜙ℎ ∈ 𝑉 𝑛ℎ such that

𝐴ℎ(𝜙ℎ,𝑤ℎ) = 𝑑ℎ(𝑤ℎ) ∀𝑤ℎ ∈ 𝑉 𝑛ℎ (48)

with the approximate bilinear form 𝐴ℎ and linear form 𝑑ℎ built by sum-

ming element-wise contributions as typical of FEM, hence

𝐴ℎ(𝜙ℎ,𝑤ℎ) =
∑
𝐸∈ 𝑛

ℎ

𝐴𝐸
ℎ
(𝜙ℎ,𝑤ℎ) and 𝑑ℎ(𝑤ℎ) =

∑
𝐸∈ 𝑛

ℎ

𝑑𝐸
ℎ
(𝑤ℎ).

As anticipated above however, the preceding definition of the local VEM
forms necessitates the use of projections as follows:

𝐴𝐸
ℎ
(𝜙ℎ,𝑤ℎ) = ∫

𝐸

(Π0
1𝜌ℎ)0 Π

0
0∇𝜙ℎ ⋅Π

0
0∇𝑤ℎ 𝑑𝐱

+ (Π0𝜌ℎ)0 𝑆𝐸 (𝜙ℎ −Π𝜙ℎ,𝑤ℎ −Π𝑤ℎ), (49)
1 𝐴

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
𝑑𝐸
ℎ
(𝑤ℎ) = −∫

𝐸

(Π0
1𝜌ℎ)

𝑚
0 Π0

0∇𝜌ℎ ⋅Π
0
0∇𝑤ℎ 𝑑𝐱, (50)

where (Π0
1𝜌ℎ)0 is the constant component of Π0

1𝜌ℎ. Here, following [12],
the stabilization form 𝑆𝐸

𝐴
(⋅, ⋅) is defined by

𝑆𝐸
𝐴
(𝑣ℎ,𝑤ℎ) =

𝑚𝐸∑
𝑙=1

dof𝑙(𝑣ℎ) ⋅ dof𝑙(𝑤ℎ), (51)

with 𝑚𝐸 denoting the dimension of 𝑉 (𝐸), which for the space consid-

ered here is equal to the number of vertices of 𝐸, and with dof𝑙(𝑤)
representing the 𝑙-th degree of freedom of the function 𝑤. Hence,
dof𝑙(𝑣ℎ) = 𝑣ℎ(𝐱𝑙) with 𝐱𝑙 denoting the 𝑙-th vertex of 𝐸. The integration
constant is fixed by constraining a single vertex value of 𝜙ℎ to zero. A
variety of suitable stabilization choices are admissible [14,24] but we
adopt the simplest choice in this paper. In particular, in the case when
arbitrarily small edges appear in the mesh we refer to [19] for more
appropriate stabilization terms.

The velocity reconstruction Problem 2.4 is a global 𝐿2 projection.
Its VEM discretisation reads: given 𝜙ℎ ∈ 𝑉 𝑛ℎ , the solution of (48), find
𝐯ℎ ∈

[
𝑉 𝑛
ℎ

]2
such that 𝐯ℎ ⋅𝐧 = 0 on the portion of Ω𝑛

ℎ
approximating 𝜕Ω𝑛

𝐹

and

𝑀ℎ(𝐯ℎ,𝑤ℎ) = 𝑏ℎ(𝑤ℎ) ∀𝑤ℎ ∈ 𝑉 𝑛ℎ . (52)

As before, the forms 𝑀ℎ and 𝑏ℎ are obtained summing the respective
elemental forms

𝑀𝐸
ℎ
(𝐯ℎ,𝑤ℎ) = ∫

𝐸

Π0
1𝐯ℎ Π

0
1𝑤ℎ 𝑑𝐱 + 𝑆𝐸

𝑀
(𝐯ℎ −Π0

1𝐯ℎ,𝑤ℎ −Π0
1𝑤ℎ), (53)

𝑏𝐸
ℎ
(𝑤ℎ) = ∫

𝐸

Π0
1𝑤ℎ Π

0
0∇𝜙ℎ 𝑑𝐱, (54)

with the stabilization term 𝑆𝐸
𝑀
(⋅, ⋅) given by [1]

𝑆𝐸
𝑀
(𝐯ℎ,𝑤ℎ) = |𝐸| 𝑚𝐸∑

𝑙=1
dof𝑙(𝐯ℎ) ⋅ dof𝑙(𝑤ℎ). (55)

3.5. Moving the mesh

The mesh is transferred between discrete time levels by displacing
the nodes of the mesh and maintaining the mesh connectivity between
𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛+1. For each mesh node 𝐱𝑛 the new position is obtained
by the forward Euler method applied to 𝐱̇ = 𝐯ℎ(𝐱), yielding 𝐱𝑛+1 = 𝐱𝑛 +
(𝑡𝑛+1 − 𝑡𝑛)𝐯ℎ(𝐱𝑛). Thus, consistent with the VEM philosophy, only the
values of 𝐯ℎ at the nodes, that is the degrees of freedom of 𝐯ℎ, are
required to compute the mesh movement.

Remark 6. We note that the mesh velocities computed in this way do
not guarantee a priori that Assumptions 1 and 2 hold true indefinitely.
For instance, when performing the numerical experiments for contact
problems of Section 7, we observed a degradation of mesh quality near
the contact boundary as a result of node tangling, which violates As-

sumption 1 as elements eventually overlap. The ease with which VEM
allows local node insertion mitigates some of the mesh quality issues
which would occur with FEM on triangles, but it does not completely
prevent mesh tangling when the node velocities cause the mesh to be-

come highly distorted. To compensate for this, a harmonic extension
operator is used to regularise the velocity field and maintain element
structure. Further details are provided in Section 7.

4. Virtual element method for the solution

Once the new mesh node positions have been computed, we consider
the process of updating the solution. This is performed in two steps cor-

responding, respectively, to the conservative ALE update of the mass
116
monitor Problem 2.5 and the actual solution update Problem 2.2. Be-

fore presenting the details on their VEM discretisation, a discussion on
the hypothesis leading to such problems is in order. The original mov-

ing mesh method in [7] was based on the linear FEM for which the
validity at the discrete level of the material derivatives assumption (4)

leading to the ALE update (9) has been proven in [36]. In the VEM
setting, instead, we exploit the fact that virtual element functions are
only accessed through their nodal values: in close alignment with the work
presented in [37], only the mesh skeleton velocity is known and used.
Hence, in view of the solution update through the time step [𝑡𝑛, 𝑡𝑛+1], we
can assume that (4) is satisfied by the space-time discrete basis which
are then interpolated at the new time level, again, just by accessing the
nodal values of the solution.

4.1. Discretisation of the solution problems

The initial condition 𝜌0
ℎ

is approximated by interpolating the degrees
of freedom of 𝜌0 into the VEM space 𝑉 0

ℎ
. Then, the initial mass monitor

distribution is computed via

𝜇0
ℎ
(𝑤0
ℎ
) =

∑
𝐸∈ 0

ℎ

∫
𝐸

Π0
1𝜌

0
ℎ
Π0
1𝑤

0
ℎ
𝑑𝐱. (56)

The next task is the update of the mass monitor over time levels. Once
again, this is performed via the forward Euler method: the new monitor
is thus given by 𝜇𝑛+1

ℎ
(𝑤𝑛+1
ℎ

) = 𝜇𝑛
ℎ
(𝑤𝑛
ℎ
) + (𝑡𝑛+1 − 𝑡𝑛)𝜇̇𝑛

ℎ
(𝑤𝑛
ℎ
). This, in turn,

requires the approximation of the ALE equation (37) which is performed
still on the old time level (superscript omitted) by

𝜇̇ℎ(𝑤ℎ) = −
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
1𝜌ℎΠ

0
0∇𝑤ℎ ⋅

{(
Π0
1𝜌ℎ

)𝑚−1
0 Π0

0∇𝜌ℎ +Π0
1𝐯ℎ

}
𝑑𝐱.

(57)

Once the monitor is updated, we set the time level to the new time
and update the solution using a VEM discretisation of Problem 2.2: find
𝜌𝑛+1
ℎ

∈ 𝑉 𝑛+1
ℎ

such that

𝑚ℎ(𝜌𝑛+1ℎ ,𝑤𝑛+1
ℎ

) = 𝜇ℎ(𝑤𝑛+1ℎ) ∀𝑤𝑛+1
ℎ

∈ 𝑉 𝑛+1
ℎ
. (58)

Similarly to the velocity reconstruction, the discrete form 𝑚ℎ(⋅, ⋅) is
computed on the new time level by summing over element contribu-

tions

𝑚ℎ(𝜌ℎ,𝑤ℎ) =
∑
𝐸∈ 𝑛

ℎ

𝑚𝐸
ℎ
(𝜌ℎ,𝑤ℎ), (59)

where

𝑚𝐸
ℎ
(𝜌ℎ,𝑤ℎ) = ∫

𝐸

Π0
1𝜌ℎ Π

0
1𝑤ℎ 𝑑𝐱 + 𝑆𝐸

𝑚
(𝜌ℎ,𝑤ℎ), (60)

with the stabilization term 𝑆𝐸
𝑚
(⋅, ⋅) being given by

𝑆𝐸
𝑚
(𝜌ℎ,𝑤ℎ) = |𝐸| 𝑚𝐸∑

𝑙=1
dof𝑙(𝜌ℎ) ⋅ dof𝑙(𝑤ℎ). (61)

4.2. Partition of unity and conservation

A beneficial property of the linear virtual element method is that
the basis functions form a partition of unity on Ω𝑛

ℎ
at any discrete time

level, i.e.

𝑁dof∑
𝑖=1
𝜑𝑖 = 1, (62)

where the set
{
𝜑𝑖
}𝑁dof

𝑖=1 refers to the set of canonical VEM basis functions
associated to the vertices of the mesh [12]; that is 𝜑𝑖(𝐱𝑗) = 𝛿𝑖𝑗 for 𝑖 =
1, ..., 𝑁dof where 𝐱𝑗 is the j-th node in the mesh.

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
For a given 𝜌ℎ ∈𝑊 𝑛
ℎ

the monitor integral 𝜃𝑛 reads

𝜃𝑛 = ∫
Ω𝑛

𝜌ℎ 𝑑𝐱, (63)

from which the polynomial consistency and partition of unity property
of the VEM gives

𝜃𝑛 =
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
1𝜌ℎ 𝑑𝐱 (64)

=
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
1𝜌ℎ

𝑚𝐸∑
𝑗=1
𝜑𝑗 𝑑𝐱 (65)

=
𝑁dof∑
𝑖=1

∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
1𝜌ℎ Π

0
1𝜑𝑖 𝑑𝐱. (66)

Therefore the global conservation of the mass monitor is only dependent
on the polynomial component of the discrete solution and weighting
functions. Further, the exact value of the monitor can also be recovered
via

𝜃𝑛 =
𝑁dof∑
𝑖=1
𝜇𝑛
ℎ
(𝜑𝑖). (67)

Finally, considering the partition of unity property, the ALE update
equation (16) and equation (67) for the PME, we get

𝜃̇𝑛 = 0, (68)

which agrees with the conservation of mass principle for this particular
PDE. In fact, virtual elements preserving relevant global conservation
laws in different contexts can be constructed, an example of which is
given in [50] for the heat equation.

5. Implementation details

This section presents a complete overview of the moving mesh vir-

tual element method. The construction of the required algebraic equa-

tions and imposition of boundary conditions are reviewed along with
some practical remarks regarding the implementation of this method.
The initial weak distribution of the monitor is stored in the vector 𝝁0

and can be computed using equation (56) whilst the mass matrix 𝐌𝑛

is computed by assembling the contributions from equation (60). In
order to compute the discrete potential 𝜙ℎ ∈ 𝑉 𝑛ℎ from equation (48),
we solve the linear system 𝐀𝑛𝝓 = 𝐝𝑛 with 𝐀𝑛 and 𝐝𝑛 computed us-

ing equations (49) and (50), respectively. The solution of the resulting
linear system determines 𝜙ℎ up to an additive constant which is inher-

ited from the continuous formulation of the method; here we impose
dof1(𝜙ℎ) = 0. Once 𝜙ℎ is recovered, the velocity field is reconstructed
solving 𝐌𝑛

𝑅
𝐯 = 𝐛𝑛, with 𝐌𝑛

𝑅
and 𝐛𝑛 given by equations (53) and (54),

respectively. The ALE update of vector 𝝁̇𝑛 is then obtained using equa-

tion (57) and, along with the mesh nodal velocities 𝐱̇𝑛
𝑖
= 𝐯ℎ(𝜑𝑖), pro-

vides a system of ODEs which can be approximated using the forward
Euler method. The main method is outlined in Algorithm 1.

In this work we strongly impose any Dirichlet boundary conditions
on the solution in the standard manner. However, we note here that in
doing so, the test functions we consider in our discretisation do not sat-

isfy the partition of unity property (62). As a consequence, mass is not
conserved exactly. This issue is investigated in detail in [35], where a
methodology was proposed for the finite element method which allows
exact mass conservation and strong imposition of Dirichlet boundary
conditions to be achieved simultaneously. A near-identical approach
can be applied to virtual elements on polygons: the test space is aug-

mented by adding boundary-lying test functions to adjacent interior test
functions and then modifying the test space accordingly (see Section 2.2
of [35]). In practice, this is achieved by lumping terms of 𝐌𝑛 and of 𝝁𝑛
117
Algorithm 1: Moving mesh VEM.

input : The initial condition 𝜌0
ℎ
∈𝑊 0

ℎ
and mesh  0

ℎ
, the final time 𝑇 .

Set 𝑛 = 0;

Compute 𝝁0 according to equation (56);

while 𝑡𝑛 < 𝑇 do

Construct and solve 𝐀𝑛𝝓 = 𝐝𝑛 using equations (49) and (50) for 𝜙ℎ ∈𝑊 𝑛
ℎ

;

Reconstruct the velocity via 𝐌𝑛
𝑅
𝐯 = 𝐛𝑛 ;

Compute the ALE update 𝝁̇𝑛 from equation (57);

Select Δ𝑡 and set 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡;
Update the mesh node by 𝐱𝑛+1 = 𝐱𝑛 +Δ𝑡𝐯;

Update the monitor distribution by 𝝁𝑛+1 = 𝝁𝑛 +Δ𝑡𝝁̇𝑛 ;

Reconstruct and solve 𝐌𝑛+1𝝆𝑛+1 = 𝝁𝑛+1 for 𝜌𝑛+1
ℎ

∈𝑊 𝑛+1
ℎ

;

Update 𝑛 = 𝑛 + 1;

end

output : The final solution 𝜌𝑇
ℎ

, the final mesh  𝑇
ℎ

before reconstructing the solution. The differences we observed in the
numerical results were negligible, so we only present the standard ap-

proach in Section 7 and do not discuss the conservative version in any
more detail.

6. A contact algorithm

In this section we discuss two occurrences of contact and present
corresponding basic node insertion algorithms that allow for localised
and minimal changes to the mesh structure. In all mesh refinements
considered, the change in mesh topology is only performed at the dis-

crete time-levels. Hence, to ease notation, the superscript used to denote
time-steps is omitted. Modified discrete functions, operators, and vec-

tors are denoted using a hat symbol.

6.1. Contact scenarios

Here we present two contact scenarios that are numerically inves-

tigated in Section 7. The first scenario concerns the collision of the
moving boundary with itself (see Fig. 1) whereas the second situation
involves collision with fixed geometric obstacles (see Fig. 2).

Self-intersection handles the situation where two parts of the moving
boundary collide with each other. Typically, a remeshing is required
in this instance. By using a VEM, the remeshing can be kept local and
simple for colliding elements. A motivational case for a disconnected
initial condition of the PME is given in Fig. 1. Moving mesh finite ele-

ment simulations of this type of problem are presented and discussed in
[43].

Obstacle contact is encountered when the evolution of Ω𝑡 is ob-

structed by external obstacles. An example of this is the presence of
a solid phase in porous media. Fig. 2 presents an example of collision
with impermeable obstacles. By using a collision detection and node in-

sertion algorithm, the moving mesh is capable of simulating the contact
and the interaction between the moving mesh and a set of obstacles. As
with the self-intersection problem, the VEM allows for this with min-

imal changes to the mesh topology. Additionally, the VEM is capable
of performing local changes to polygonal elements such that the mesh
boundary can move around the object boundaries without requiring ad-

ditional mesh refinements.

We note that the use of the VEM for handling problems with col-

liding meshes was first studied in [55] to deal with elastic contact
problems. Although we consider here a different model problem which
is purely geometric, as in [55] a standard contact detection algorithm
based on orthogonal projections between boundary nodes and bound-

ary edges is used to determine contact between meshes. However, in
our work, we use the mesh velocities to trace the exact contact time
between meshes instead of projecting nodes to edges when a contact
tolerance is met.

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125

Fig. 1. A demonstration of the mesh self-intersection problem. The initial condition has disconnected support in Ω̃ (left). The disconnected 𝜕Ω𝑡 continues to move
until some time 𝑡∗ where the boundary collides with itself (centre). A new connected boundary is formed over time and the topology of Ω𝑡 is now connected.

Fig. 2. A demonstration of the obstacle contact problem. The initial condition is contained in a region of obstacles (left). After some time 𝑡∗ the moving boundary
collides with the first obstacle (centre). A time-dependent interface now forms between the obstacles and 𝜕Ω𝑡 (right).
6.2. Collision detection

For detecting mesh contact we use an adaptation of the classical
node-to-segment collision detection algorithm [32,54,55]. We only con-

sider boundary mesh and obstacle edges and nodes, thus ensuring that
the additional computational cost is 𝑂(𝑁2

𝐵
), where 𝑁𝐵 is the number

of boundary nodes. We consider triplets of points
(
𝐱𝑡1,𝐱

𝑡
2,𝐱

𝑡
3
)

where 𝐱𝑡1
and 𝐱𝑡2 form a time-dependent edge 𝑒𝑡 and 𝐱𝑡3 is boundary node dis-

connected from 𝑒𝑡. This triplet is referred to as a node-to-edge pair. In
our implementation, we choose to compare all boundary node and edge
pairings where the node is not connected to the edge.

Given a set of linear velocities
(
𝐱̇1, 𝐱̇2, 𝐱̇3

)
, by defining the vectors

𝐱 =
⎡⎢⎢⎣
𝑥1
𝑥2
𝑥3

⎤⎥⎥⎦ , 𝐲 =
⎡⎢⎢⎣
𝑦1
𝑦2
𝑦3

⎤⎥⎥⎦ , 𝐱̇ =
⎡⎢⎢⎣
𝑥̇1
𝑥̇2
𝑥̇3

⎤⎥⎥⎦ , 𝐲̇ =
⎡⎢⎢⎣
𝑦̇1
𝑦̇2
𝑦̇3

⎤⎥⎥⎦ , (69)

the contact time Δ𝑡∗ between the line of 𝑒𝑡 and 𝐱𝑡3 is given as the mini-

mum positive root of the quadratic equation

0 = 𝑎(Δ𝑡∗)2 + 𝑏(Δ𝑡∗) + 𝑐, (70)

where the coefficients are defined by

𝑎 =
3∑
𝑖=1

(𝐲̇ × 𝐱̇)𝑖 𝑏 =
3∑
𝑖=1

(𝐲̇ × 𝐱 + 𝐲 × 𝐱̇)𝑖 𝑐 =
3∑
𝑖=1

(𝐲 × 𝐱)𝑖 . (71)

In practise, we choose the contact time that makes physical sense (e.g.
we discard negative roots as infeasible contact time) and only admit a
singular contact time value for Δ𝑡∗. In the case of no feasible contact
times we set Δ𝑡∗ =∞ and when two feasible contact times are given by
equation (70) we choose the minimum of the two. By solving equation
(70) for a set of node-to-edge pairing, a set of contact times can be
computed. In the context of the moving mesh method, each node-to-

edge pair on the boundary of the mesh and (when given) obstacle mesh
is considered. If any cases indicate contact, the time step is scaled down
to the minimum contact time and the corresponding node-to-edge pair
is marked for contact. The detection method is outlined in Algorithm 2

for a single node-to-edge pairing.
118
Algorithm 2: Contact Detection.

input : A node-to-edge pairing (𝐱𝑡1,𝐱𝑡2,𝐱𝑡3), a set of nodal velocities (𝐱̇𝑡1, 𝐱̇𝑡2, 𝐱̇𝑡3),
the current time step Δ𝑡

Solve equation (70) and set Δ𝑡∗ to the minimum positive root;

for each value of Δ𝑡∗ ∈ℝ do

Compute 𝐱𝑡+Δ𝑡∗3 and 𝑒𝑡+Δ𝑡∗ ;

if Δ𝑡∗ ∈ [0, Δ𝑡] and 𝐱𝑡+Δ𝑡∗3 ∈ 𝑒𝑡+Δ𝑡∗ then
Mark the node-to-edge pair for contact;

else

Set the contact pair to no contact;

end

end

output : the node-to-edge contact pair, the contact time step Δ𝑡∗

6.3. Node insertion algorithm

Since the mesh allows for general polygonal element shapes, the
insertion of a new node into a mesh edge can simply be performed
by adding a vertex to the polygons sharing that edge. Then, a solu-

tion value associated with the new vertex must be introduced which
requires an interpolation technique between the old and new global
discrete spaces. In [23], an elliptic reconstruction operator is employed
to preserve the quality of the discrete spatial derivative of the PDE.
Instead, here we choose to preserve the polynomial component of the
solution Π0

1𝜌ℎ between refinements through a redistribution of 𝝁𝑛. The
reason for this choice is that, by preserving the polynomial component
of 𝜌ℎ, the global mass conservation of 𝜃𝑛

ℎ
is maintained. This would not

be the case if interpolation of the degrees of freedom was employed
instead.

On a given element 𝐸 ∈ ℎ with an inserted node on the boundary,
we impose that the polynomial component of the solution is preserved
so that the reconstruction 𝜌̂ℎ ∈ 𝑉 (𝐸) satisfies

Π̂0
1𝜌̂ℎ =Π0

1𝜌ℎ, (72)

where Π̂0
1 denotes the projection operator constructed on the refined

VEM space 𝑉 (𝐸).
The arguments in Section 4.2 can be easily modified to show that

this approach conserves both locally and globally the mass of the dis-

crete solution. When introducing a new node onto a mesh edge of a
given element 𝐸 under the assumption of equation (72), the local con-

tribution to 𝝁̂ is given by,

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125

Fig. 3. A demonstration of the self intersection algorithm. A sample of elements is shown (left) where a collision is expected. Algorithm 4 is applied with contact
nodes marked by a square (centre). Following subsequent mesh updates certain degrees of freedom no longer lie on the boundary (right). The highlighted degrees
of freedom are now treated as internal degrees of freedom.
𝜇̂𝐸
ℎ
(𝜑̂𝑖) = ∫

𝐸

Π0
1𝜌ℎΠ̂

0
1𝜑̂𝑖 𝑑𝐱 𝑖 = 1, ...,𝑁dof + 1. (73)

The algorithm for node insertion is given in Algorithm 3.

Algorithm 3: Node Insertion.

input : An element 𝐸, a position 𝐱 ∈ 𝜕𝐸 to insert a node, the monitor
distribution 𝝁, the solution 𝜌ℎ ∈𝑊ℎ , the mesh ℎ

Compute Π0
1𝜌ℎ on 𝐸;

Compute the new mesh ̂ℎ by inserting the node;

Compute the new monitor distribution 𝝁̂ using equation (73);

Reconstruct the new solution 𝜌̂ℎ ∈ 𝑊̂ℎ by solving 𝐌̂𝝆̂ = 𝝁̂;

output : the new solution 𝜌̂ℎ , the new monitor distribution 𝝁̂, the new mesh ̂ℎ

6.4. Self-intersection algorithm

Due once more to the VEM flexibility in element geometries, the self-

intersection problem does not require any introduction of additional
degrees of freedom. Instead, the local connectivity of the disconnected
mesh is updated to include the new node-to-edge pairing. Then, the
node insertion algorithm is applied to recompute the solution and mon-

itor distribution. As the boundary node velocities are not arbitrarily set,
small edges are likely to appear during node insertion. This has not
presented any stability issues within the numerical experiments of sec-

tion 7 and we expect that the method remains robust in the presence of
degenerate edges [19]. The subsequent mesh velocity problem is then
solved based on the updated mesh and corresponding virtual element
space. A simple demonstration is provided in Fig. 3; the method at a
given time step 𝑡𝑛 is presented in Algorithm 4.

Algorithm 4: Self-intersection.

input : A mesh  𝑛
ℎ

, a solution 𝜌𝑛
ℎ
, a velocity field 𝐯, a time step size Δ𝑡.

Apply Algorithm 2 for boundary node-to-edge pairs in  𝑛
ℎ

;

Update Δ𝑡;
Compute  𝑛+1

ℎ
, 𝝁𝑛+1 , 𝜌𝑛+1

ℎ
;

if any contact pairs are marked then

find the element 𝐸 ∈  𝑛+1
ℎ

which contains the marked edge;

Apply Algorithm 3;

end

Update the boundary conditions of 𝜌𝑛+1
ℎ

;

6.5. Obstacle contact and pivot node algorithm

We denote a time-independent polygonal discretization of the set of
obstacles by ℎ and consider the mesh node-to-edge pairings of bound-

ary nodes from  𝑛
ℎ

and edges of ℎ and vice versa. In the case of
obstacle-node to mesh-edge contact, the node insertion Algorithm 3 is
applied to introduce an additional degree of freedom to the system; we
119
refer to this new node, which is a fixed point on the obstacle geometry,
as a “pivot node”.

For contact between  𝑛
ℎ

and ℎ a no-penetration condition on the
nodal velocities is strongly imposed on the formulation of the potential
Problem 2.3 and velocity reconstruction Problem 2.4; namely,

𝐯 ⋅ 𝐧 =∇𝜙 ⋅ 𝐧 = 0. (74)

Hence, movement tangential to the obstacle’s boundary is allowed. This
is except when a pivot node is introduced, in which case we constrain
its velocity to zero to preserve the geometry of the interface between
the domain and the obstacle. The obstacle contact algorithm is outlined
in Algorithm 5.

Given that the pivot node mesh velocity is constrained to zero, it
is possible for the other boundary nodes laying on the obstacle (which
have experienced mesh-node to obstacle-edge contact) to pass through
the pivot node. When this occurs, the connectivity of the mesh is up-

dated to transfer the pivot node from one mesh edge to another as well
as swapping the boundary node from one obstacle face to another.

Detection for pivot node collision is performed using Algorithm 2

for connected mesh boundary nodes moving from one obstacle edge to
another.

A node is considered to be on 𝜕Ω𝑛
𝐹

only if both boundary edges shar-

ing that node are in contact with the obstacle. We define a node to be
“connected” if it lies on an edge of the obstacles. Degrees of freedom
associated to connected nodes are constrained by equation (74) in the
mesh velocity computations. If a node is connected by mesh edges to
other connected boundary nodes we consider this to be an “interface”
node and consequently change the boundary conditions from Dirich-

let to Neumann defined in Problem 2.1 (i.e. we change the degree of
freedom from 𝜕Ω𝑛

𝑀
to 𝜕Ω𝑛

𝐹
). If a connected node is not also an in-

terface node, the homogeneous boundary condition and no-penetration
condition are maintained. The structure of the boundary conditions are
updated once every time step.

Algorithm 5: Obstacle contact.

input : A mesh  𝑛
ℎ

, a solution 𝜌𝑛
ℎ
, a velocity field 𝐯, a time step size Δ𝑡, an

obstacle mesh ℎ .
Apply Algorithm 2 for boundary nodes in  𝑛

ℎ
and boundary edges in ℎ ;

Apply Algorithm 2 for boundary nodes in ℎ and boundary edges in  𝑛
ℎ

;

Select the contact pair with the smallest Δ𝑡∗ and set Δ𝑡 =Δ𝑡∗ ;

Compute  𝑛+1
ℎ

, 𝝁𝑛+1 , 𝜌𝑛+1
ℎ

;

if obstacle node to mesh edge is marked then

find the element 𝐸 ∈  𝑛+1
ℎ

which contains the marked edge;

Apply Algorithm 3 to introduce a pivot node 𝐱𝑝𝑖𝑣𝑜𝑡 ;
set 𝐯 = 𝟎 at 𝐱𝑝𝑖𝑣𝑜𝑡 ;

end

if Mesh node to obstacle edge is marked then

Set 𝐯 ⋅ 𝐧 = 0 at mesh node;

Update Neumann conditions for 𝜌𝑛+1
ℎ

;

end

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
Fig. 4. Examples of each of the four mesh types used in numerical tests for a
circular domain: the Voronoi Tessellation (top left), the CVT (top right), the
grid mesh (bottom left) and the mixed mesh (bottom right).

When a mesh node 𝐱𝑖 and a pivot node coincide (while the mesh
node is moving along the obstacle boundary) the test function associ-

ated to a pivot node is chosen to satisfy 𝜑𝑝𝑖𝑣𝑜𝑡 ≡ 𝜑𝑖. In other words, we
duplicate the original VEM basis function and add it to the new discrete
space.

Remark 7. The extension of the above algorithms to three-dimensional
problems is by all means possible. We refer, for instance, to [16] for
insights on the implementation of mesh intersection detection relevant
to contact algorithms.

7. Numerical results

We report a series of numerical tests for the velocity-based moving
mesh virtual element method proposed in the previous sections. Firstly,
we present basic convergence test results using a known similarity solu-

tion of the PME Problem 2.1 for specific choices of velocity and solution
recovery. Then, we investigate the effect on the solution of the node
insertion algorithms described in Section 6. Finally, we present demon-

strations of the contact algorithms of Section 6.

7.1. Sample meshes

We have tested four different mesh types used to subdivide the ini-

tial domain; representative examples of each are shown in Fig. 4. The
first mesh is the Voronoi Tessellation produced by randomly sampling
mesh seeds in the domain [44,4]. The second mesh is a Centroidal
Voronoi Tessellation (CVT) produced by the Lloyd algorithm which
smooths a given Voronoi tessellation such that the generator points are
the barycentric coordinates for each polygon [28]. The MATLAB pack-

age PolyMesher [47] was used to produce these two mesh types. The
third mesh is constructed by overlaying the domain with a grid of uni-

form squares and cutting the mesh along the boundary. The last mesh
type is a mixture of uniform Cartesian and polar tessellations. Note that
the first three initial mesh types may present arbitrarily small edges
and, moreover, arbitrarily small elements may appear near the bound-

ary in the grid mesh type, as such potentially contradicting the mesh
120
regularity assumptions stated in Section 3.1. In this respect, we note
that the VEM is known to be quite robust, as we have also witnessed.
We refer to the mesh size in each case as the largest element diameter
in  0

ℎ
.

7.2. The PME similarity solution

There exists a family of radially symmetric solutions on a given ini-

tial circular domain of radius 𝑟0 for the Problem 2.1 defined in [42] and
given by

𝜌(𝑟, 𝑡) =
⎧⎪⎨⎪⎩

1
𝜆(𝑡)𝑑

(
1 −

(
𝑟

𝑟0𝜆(𝑡)

)2
) 1
𝑚 |𝑟| ≤ 𝑟0𝜆(𝑡)

0 otherwise

, (75)

where 𝑑 is the spatial dimension, 𝑟0 is the initial radius, and

𝜆(𝑡) =
(
𝑡

𝑡0

) 1
2+𝑑𝑚

, 𝑡0 =
𝑟20𝑚

2(2 + 𝑑𝑚)
.

Because of the nature of Equation (75), the solution is expected to have
finite slope normal to the moving boundary for 𝑚 ≤ 1 whilst, for 𝑚 > 1,
the solution presents an infinite slope normal to the boundary. Further
properties of this analytical solution are discussed in [43,7].

7.3. Error computation

The numerical error is computed for both the solution and mesh by
generalising the discrete approximations from [7]. An 𝑙1 solution error
is given by,

‖𝜌𝑛 − 𝜌𝑛
ℎ
‖𝑠𝑜𝑙 = 1

𝑁dof

𝑁dof∑
𝑖=1

|||dof𝑖(𝜌𝑛) − dof𝑖(𝜌𝑛ℎ)
||| , (76)

while, for the mesh error, an 𝑙1 norm is considered for the radial dis-

tance 𝑟(𝑡) from the boundary of the mesh to the origin; thus

‖𝑟𝑛 − 𝑟𝑛
ℎ
‖𝑚𝑒𝑠ℎ = 1

𝑁𝐵

𝑁𝐵∑
𝑖=1

||𝑅𝑛𝑖 − 𝑟0𝜆(𝑡𝑛)|| . (77)

Here, 𝑁𝐵 denotes the number of boundary nodes in the mesh and 𝑅𝑛
𝑖

denotes the radial distance from the origin of the 𝑖-th boundary node
at time 𝑡𝑛. A uniform Δ𝑡 that is small enough to ensure numerical sta-

bility is set for each initial sample mesh. Note that the meshes used in
these numerical tests are not hierarchical. Furthermore, each Voronoi
mesh is generated independently from randomly generated seeds. For
each reduction of initial mesh size by a factor of 2, the time-step Δ𝑡 is
reduced by a factor of 4 to ensure numerical stability. By reducing the
time-step size by this factor we also expect that the temporal error to be
𝑂(ℎ2) when using the Forward Euler method for the refinement path of
the four mesh types.

7.4. Convergence test

In this first convergence test the solution of the similarity solution
for 𝑚 = 1, 𝑑 = 2, and 𝑟0 = 0.5 is compared against the numerical solution
for 𝑡 = 𝑡0 + 𝑇 . The method is tested on each of the four mesh types for a
circular domain. The time step sizes for the coarsest meshes are chosen
according to

Δ𝑡 = 1
250
ℎ2
𝑚𝑒𝑎𝑛
, (78)

where ℎ𝑚𝑒𝑎𝑛 is the average element diameter of the initial mesh  0
ℎ

.
In each mesh case we observe that the initial time-step size is approx-

imately 10−4. From the coarse-mesh time-step sizes we reduce Δ𝑡 by
a factor of 4 each time the mesh is refined, which corresponds to the
mesh size approximately halving with each refinement. In choosing the

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
Fig. 5. PME similarity solution with 𝑚 = 1: the 𝑙1 solution and mesh errors (76)

and (77), respectively, at time 𝑇 = 0.01 for each mesh type: Voronoi (top left),
CVT (top right), Grid (bottom left), Mixed (bottom right).

time step sizes we made conservative choices such that the numerical
method was stable and presented the expected orders of convergence. A
more robust approach would be to use adaptive time-stepping schemes
but in this work we present convergence results for a uniform reduction
in the time-step. As shown in Fig. 5, second order accuracy is observed
for the solution error for all mesh cases when 𝑇 = 0.01. In the case of
the Voronoi and Grid meshes, the empirical order of convergence (EOC)
is less smooth compared to the CVT and mixed mesh types. This is most
likely due to the weaker shape regularity of elements in these mesh
types, but further studies are required. The mesh error EOC appears
to have a long pre-asymptotic regime: the EOC grows monotonically
towards the expected rate in all cases with the final computed values
ranging between 1.55 (Voronoi) and 1.83 (mixed). This is consistent
with finite element approximations of Darcy flow which observed the
order of convergence of the velocity field to be lower than that of the
pressure field [20,39]. Conservation of mass in the numerical solution
is observed up to machine precision in all test cases.

Setting 𝝁̇ = 𝟎 produces similar results to those reported in Fig. 5.
This is referred to as a “direct recovery” approach in the literature, see
[7]. For brevity, the corresponding results are not presented here.

When 𝑚 > 1, the solution of the PME presents a low regularity as the
gradient is unbounded at the moving boundary [51]. Unsurprisingly,
applying the moving mesh VEM to the PME with 𝑚 = 2, we found that
the method remains robust but only attains first order accuracy (results
not shown), in line with what already observed for discretizations based
on the FEM [6]. We expect that appropriately grading the mesh in the
vicinity of the moving boundary can be used to improve the order of
convergence as demonstrated in the FEM case in [6].

7.5. Node insertion convergence test

Our next numerical experiment considers the case of the one-

dimensional PME extended in the 𝑥 direction to a two-dimensional
problem. This experiment has two interesting features. Firstly, the ini-

tial domain is geometrically exact (Ω0 ≡Ω0
ℎ
) unlike the circular meshes.

Secondly, it allows us to test the obstacle contact and node insertion al-

gorithm numerically against a known analytical solution derived from
the one-dimensional case of equation (75).

This is obtained by considering once again Equation (75) with the
values 𝑚 = 1, 𝑑 = 1, 𝑟0 = 0.5, and 𝑟 = 𝑦 on the initial domain given by
Ω0 = [−0.5, 0.5]2 with initial condition
121
𝜌(𝐱,0) = 1 − 4𝑦2.

The mesh is connected to two vertical planes at 𝑥 = −0.5 and 𝑥 = 0.5
with a no-penetration condition strongly imposed in the 𝑥 direction;
namely,

𝑥̇ = 0 when |𝑥| = 1∕2.

Solution snapshots at time 𝑇 = 0.1 are shown in Fig. 6 for the CVT
mesh type. The mesh error is exclusively computed on the top and bot-

tom faces of the rectangular domain.

In this test we only focus our attention on the CVT mesh type.
We test the accuracy of the node insertion algorithm by including a
discretization of the two planes into intervals in the 𝑦 direction. In
reference to the fixed domain PME (25) we define Ω̃ ∶= [−1, 1]2 and dis-

cretize the boundary 𝜕Ω̃ into N uniformly spaced intervals to construct
an 𝑁 -gon. Vertices are then removed that intersect Ω0. This results in
uniformly discretized intervals along both contact planes.

For the discretization of the contact planes 𝑁 is set to an initial
value of 32 and is doubled with each mesh refinement. Convergence
results are reported in Fig. 7. Here we observe second order accuracy in
both the solution and mesh error. Also the mass is conserved, by design,
up to machine precision throughout each test.

7.6. Contact demonstrations

We finally present two demonstrations of the node insertion algo-

rithms for Problem 2.1 in challenging scenarios without known analyt-

ical solution.

To ensure the quality of the mesh is preserved we introduce an al-

ternative velocity field on the interior of the moving mesh based on the
ALE approach. First, the method outlined in Section 5 is applied to ap-

proximate the Lagrangian boundary velocity 𝐯. The mesh velocity 𝐯 for
the internal node movement is then replaced by 𝐯̃, the harmonic exten-

sion of the Lagrangian boundary velocity: as such it is the solution to
the problem

−Δ𝐯̃ = 𝟎 (79)

𝐯̃|𝜕Ω𝑡 = 𝐯. (80)

In a VEM framework this alternative mesh velocity is computed by solv-

ing a standard Poisson’s equation with Dirichlet boundary conditions
[13]. Other choices for the interior mesh velocities include a modified
monitor function 𝕄(𝜌) [38], pseudo-elastic, and biharmonic formula-

tions [45]. We remark that the quality of the mesh will still deteriorate
over time. The purpose of these examples is to demonstrate the appli-

cation of the node insertion algorithms. Optimising the choice of ALE
velocity is left for future investigation.

In the first demonstration, we consider an initial condition of the
PME that has a disconnected support such that self-intersection is ex-

pected to occur. The initial condition is given by

𝜌(𝐱,0) =
⎧⎪⎨⎪⎩
1 − 4𝑟21 𝑟1 = |𝐱 − (−0.8,0)|, 𝑟1 ≤ 1∕2,
1 − 4𝑟22 𝑟2 = |𝐱 − (0.8,0)|, 𝑟2 ≤ 1∕2,
0 otherwise.

(81)

An illustrative example of such initial condition is given in Fig. 8 (top-

left plot). The standard method is applied to simulate the PME for 𝑚 = 1
with the contact detection Algorithm 2 applied at every time level to
check for collision between elements. When contact occurs, Algorithm 4

is used to update the monitor distribution whilst the Dirichlet boundary
degrees of freedom are flagged as interior degrees of freedom as the
mesh connectivity evolves. Snapshots of the solution evolving over time
are reported in Fig. 8. The behaviour of the PME solution over time
is in agreement with fixed mesh finite element approximations of this
problem and similar benchmark tests performed for the PME in [43].

To demonstrate the obstacle contact algorithm we consider again the
initial condition given by Equation (75). A set of obstacles are added to

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125

Fig. 6. A solution snapshot at time 𝑇 = 0.1 for a CVT mesh with 800 elements (right).
Fig. 7. Node insertion convergence test on a 1D-type PME similarity solution
with 𝑚 = 1: the 𝑙1 solution and mesh errors (76) and (77), respectively, at time
𝑇 = 0.1.

the computational domain in the shape of circles with random radii
and centres. Each circle is approximated as a uniform polygon of com-

parable accuracy to the initial mesh. We tested the moving mesh VEM
starting with a CVT type mesh made of 800 elements discretising the
support of the initial solution. A few snapshots of the numerical solu-

tion are shown in Fig. 9. Pivot nodes are inserted and removed along
the contact. The benefits of the VEM are highlighted in this case as
the numerical simulation remains robust to elements with arbitrarily
small edges (which appear, grow and shrink as the domain boundary
extends over the surfaces of the obstacles) and elements that become
strongly anisotropic around the contact interface. Furthermore, the de-

grees of freedom added to the problem are only the vertices required
to define the contact interface between the moving mesh and obsta-

cles, minimising the additional degrees of freedom required. In the case
of a FEM, we would expect the method to be unstable with respect to
vanishing edges and anisotropic elements. These may be generated, for
example, as mesh nodes move along the obstacle boundary and pass
over the vertices which define the obstacle geometry. A thorough nu-

merical comparison of the stability of the FEM against the VEM is left
for future studies. Mesh degeneration occurs after 𝑇 = 0.2 and thus the
simulation had to be terminated. In this case, and similar to finite ele-

ment methods, a remeshing approach would rectify this issue.

7.7. A fourth-order problem

To demonstrate the extensibility of the moving mesh VEM we con-

sider the following fourth-order nonlinear diffusion problem used as a
benchmark for the original moving mesh method [7,6], for which the
whole of the boundary 𝜕Ω𝑡 is free to move, and the differential opera-

tor is given by 𝜌 = −∇ ⋅ (𝜌𝑚∇Δ𝜌). In this work we choose 𝑚 = 1, for
which there is a simple similarity solution, defined below. The result-
122
ing time-dependent equation 𝜕𝜌∕𝜕𝑡 = 𝜌 is complemented, at the free
boundary, with two conditions on 𝜌, namely 𝜌 = ∇𝜌 ⋅ 𝐧 = 0 plus the
kinematic condition 𝜌𝐯 ⋅ 𝐧 = 𝜌∇Δ𝜌 ⋅ 𝐧, which is used to determine the
boundary velocity 𝐯.

In view of its numerical solution, we re-write the fourth-order prob-

lem as a coupled system of second-order PDEs by introducing a pressure
term 𝑝 = −Δ𝜌. The problem then reads as: find 𝜌 = 𝜌(𝐱, 𝑡) such that
𝜌(𝐱, 0) = 𝜌0(𝐱) for 𝐱 ∈Ω0 and, for all 𝑡 ∈ (0, 𝑇],

𝜕𝜌

𝜕𝑡
=∇ ⋅ (𝜌∇𝑝) 𝐱 ∈Ω𝑡, (82)

𝑝 = −Δ𝜌 𝐱 ∈Ω𝑡, (83)

𝜌 =∇𝜌 ⋅ 𝐧 = 0 𝐱 ∈ 𝜕Ω𝑡, (84)

𝜌𝐯 ⋅ 𝐧 = −𝜌∇𝑝 ⋅ 𝐧 𝐱 ∈ 𝜕Ω𝑡. (85)

This problem is structurally very similar to the porous medium equation
problem and the moving mesh algorithm remains mostly unchanged.
The main addition is an intermediate step which provides the pressure
by discretising the weak form of (83), namely: given 𝜌 ∈𝐻1(Ω𝑡), find
𝑝 ∈𝐻1(Ω𝑡) such that

∫
Ω𝑡

𝑝𝑤 𝑑𝐱 = ∫
Ω𝑡

∇𝜌 ⋅∇𝑤 𝑑𝐱 ∀𝑤 ∈𝐻1(Ω𝑡). (86)

This is discretised using once again the VEM applied to the problem
within each time-step 𝑡𝑛: given 𝜌ℎ ∈ 𝑉 𝑛ℎ find 𝑝ℎ ∈ 𝑉 𝑛ℎ such that

𝑚ℎ(𝑝ℎ,𝑤ℎ) =
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
0∇𝜌ℎ ⋅Π

0
0∇𝑤ℎ 𝑑𝐱 ∀𝑤ℎ ∈ 𝑉 𝑛ℎ , (87)

where 𝑚ℎ(⋅, ⋅) is defined by Equations (60) and (61).

In Problems 2.3 and 2.5 the right-hand side terms are also modified
for this problem to give, respectively,

𝑑(𝑤) = −∫
Ω𝑡

𝜌∇𝑝 ⋅∇𝑤 𝑑𝐱, (88)

𝜇̇𝑡(𝑤) = ∫
Ω𝑡

−𝜌∇𝑤 ⋅ {∇𝑝+ 𝐯} 𝑑𝐱 ∀𝑤 ∈𝐻1(Ω𝑡). (89)

These equations are approximated using the VEM discretizations (50)

and (57), as described in Sections 3 and 4 for the approximation of
the corresponding integrals for the porous medium equation. These are
computed at time 𝑡𝑛 as follows:

𝑑ℎ(𝑤ℎ) = −
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

(Π0
1𝜌ℎ)0 Π

0
0∇𝑝ℎ ⋅Π

0
0∇𝑤ℎ 𝑑𝐱, (90)

𝜇̇ℎ(𝑤ℎ) = −
∑
𝐸∈ 𝑛

ℎ

∫
𝐸

Π0
1𝜌ℎ Π

0
0∇𝑤ℎ ⋅

{
Π0
0∇𝑝ℎ +Π0

1𝐯ℎ
}
𝑑𝐱, (91)

∀𝑤ℎ ∈ 𝑉 𝑛.
ℎ

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125

Fig. 8. Self-intersection demonstration: snapshots of the moving mesh VEM solution at 𝑡 = 0 (top left), 𝑡 = 0.20049 (top right), 𝑡 = 0.75096 (bottom left), and 𝑡 = 1
(bottom right). A CVT type mesh with 800 elements was used to initialise the mesh at 𝑡 = 0.

Fig. 9. Obstacle contact demonstration: snapshots of the moving mesh VEM solution at 𝑇 = 0 (top left), 𝑇 = 0.050205 (top right), 𝑇 = 0.10011 (bottom left) and
𝑇 = 0.2 (bottom right). A CVT type mesh with 800 elements was used to initialise the mesh at 𝑡 = 0.
123

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
Fig. 10. Convergence test for the fourth-order diffusion problem: the 𝑙1 solution
(𝜌) and mesh errors (76) and (77), respectively, at time 𝑇 = 0.01 using the CVT
mesh type.

In view of assessing numerically the resulting moving mesh VEM, we
recall that this fourth-order nonlinear diffusion problem has a radially
symmetric similarity solution given by

𝜌(𝑟, 𝑡) =

{
𝐴𝑡𝛽𝑈0(1 − 𝜂2)2 |𝑟| ≤𝐴 1

4 𝑡𝛿

0 otherwise
, (92)

where

𝜂 = 𝑟

𝐴
1
4 𝑡𝛿
, 𝛿 = 1

4 + 𝑑
, 𝛽 = 4𝛿 − 1, 𝐴 =𝑈−4𝛿

0 . (93)

Setting 𝑑 = 2, we fix 𝑈0 = 1∕192 so that 𝜌(0, 𝑡0) = 1 and 𝑡0 = 1∕192 is
specified so that the initial radius is equal to 1.

The VEM is tested on the same sequence of CVT-type meshes used
in Section 7.4, with the same coarse-mesh time-step size of 10−4 and a
reduction by a factor of 4 each time the mesh is refined. Fig. 10 shows
that second-order accuracy is again attained for both the solution (𝜌)
and mesh errors. Similar to the PME, the mass is conserved exactly at
each time step.

8. Conclusions

In this paper we have combined, for the first time, a velocity-based
moving mesh method with a virtual element method. This was achieved
by extending the FEM formulation of the moving mesh method to a lin-

ear virtual element scheme on polygonal meshes. Numerical tests for
the porous medium equation and a fourth-order diffusion problem show
that the proposed method obtains the same orders of accuracy as the
original finite element approach. In fact, given that the linear VEM re-

duces to the linear FEM on triangular elements, our approach provides
a natural extension of moving mesh FEM to polygonal mesh settings.
Demonstrations of node insertion algorithms suggest that the virtual el-

ement method offers practical extensions to more complex problems. In
particular, this work shows that it is straightforward to deal with situa-

tions where the moving boundary meets fixed obstacles or merges with
other moving boundaries.

The VEM approach provides a flexible discretisation framework for
adaptive moving mesh methods. For instance, VEM with curved el-

ements are being developed with a level of generality out of reach
for standard FEM, see e.g.. [11,37,3,29]. As such, the VEM is more
suitable for the generalisation of moving mesh approaches in the higher-

order setting, including for the solution of challenging problems such as
phase-field, fluid-structure interaction, and moving surface PDEs [7],
including in three-dimensions [21,37,26]. We remark that these are
largely open problems also for the more standard moving mesh finite el-

ement method. Extensions of the moving mesh VEM in these directions
will be the subject of future works.
124
Data availability

Data will be made available on request.

Acknowledgements

The corresponding author was supported by EPSRC doctoral training
grants EP/N50970X/1 and EP/R513283/1.

References

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for
virtual element methods, Comput. Math. Appl. 66 (3) (2013) 376–391.

[2] P. Antonietti, M. Verani, C. Vergara, S. Zonca, Numerical solution of fluid-structure
interaction problems by means of a high order discontinuous Galerkin method on
polygonal grids, Finite Elem. Anal. Des. 159 (2019) 1–14.

[3] E. Artioli, L. Beirão da Veiga, M. Verani, An adaptive curved virtual element method
for the statistical homogenization of random fibre-reinforced composites, Finite
Elem. Anal. Des. 177 (2020) 103418.

[4] F. Aurenhammer, Voronoi diagrams—a survey of a fundamental geometric data
structure, ACM Comput. Surv. 23 (3) (1991) 345–405.

[5] M. Baines, Moving Finite Elements, Oxford University Press, Inc., 1994.

[6] M. Baines, M. Hubbard, P. Jimack, A moving mesh finite element algorithm for
the adaptive solution of time-dependent partial differential equations with moving
boundaries, Appl. Numer. Math. 54 (3–4) (2005) 450–469.

[7] M. Baines, M. Hubbard, P. Jimack, Velocity-based moving mesh methods for nonlin-

ear partial differential equations, Commun. Comput. Phys. 10 (3) (2011) 509–576.

[8] M. Baines, M. Hubbard, P. Jimack, A. Jones, Scale-invariant moving finite elements
for nonlinear partial differential equations in two dimensions, Appl. Numer. Math.
56 (2) (2006) 230–252.

[9] M. Baines, M. Hubbard, P. Jimack, R. Mahmood, A moving-mesh finite element
method and its application to the numerical solution of phase-change problems,
Commun. Comput. Phys. 6 (3) (2009) 595–624.

[10] G. Beckett, J. Mackenzie, M. Robertson, A moving mesh finite element method for
the solution of two-dimensional Stefan problems, J. Comput. Phys. 168 (2) (2001)
500–518.

[11] L. Beirão da Veiga, F. Brezzi, L. Marini, A. Russo, Polynomial preserving vir-

tual elements with curved edges, Math. Models Methods Appl. Sci. 30 (8) (2020)
1555–1590.

[12] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, A. Russo, Basic
principles of virtual element methods, Math. Models Methods Appl. Sci. 23 (01)
(2013) 199–214.

[13] L. Beirão da Veiga, F. Brezzi, L. Marini, A. Russo, The Hitchhiker’s guide to the vir-

tual element method, Math. Models Methods Appl. Sci. 24 (08) (2014) 1541–1573.

[14] L. Beirão da Veiga, F. Brezzi, L. Marini, A. Russo, Virtual element method for general
second-order elliptic problems on polygonal meshes, Math. Models Methods Appl.
Sci. 26 (04) (2016) 729–750.

[15] L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element
method, Math. Models Methods Appl. Sci. 27 (13) (2017) 2557–2594.

[16] D. Boffi, A. Cangiani, M. Feder, L. Gastaldi, L. Heltai, A comparison of non-

matching techniques for the finite element approximation of interface problems,
arXiv preprint arXiv :2304 .11908, 2023.

[17] A. Bonito, I. Kyza, R. Nochetto, Time-discrete higher order ALE formulations: a
priori error analysis, Numer. Math. 125 (2) (2013) 225–257.

[18] A. Bonito, I. Kyza, R. Nochetto, Time-discrete higher-order ale formulations: stabil-

ity, SIAM J. Numer. Anal. 51 (1) (2013) 577–604.

[19] S. Brenner, L. Sung, Virtual element methods on meshes with small edges or faces,
Math. Models Methods Appl. Sci. 28 (07) (2018) 1291–1336.

[20] F. Brezzi, T. Hughes, L. Marini, A. Masud, Mixed discontinuous Galerkin methods
for Darcy flow, J. Sci. Comput. 22 (1) (2005) 119–145.

[21] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of mimetic finite difference
method for diffusion problems on polyhedral meshes with curved faces, Math. Mod-

els Methods Appl. Sci. 16 (2) (2006) 275–297.

[22] C. Budd, W. Huang, R. Russell, Moving mesh methods for problems with blow-up,
SIAM J. Sci. Comput. 17 (2) (1996) 305–327.

[23] A. Cangiani, E. Georgoulis, O. Sutton, Adaptive non-hierarchical Galerkin methods
for parabolic problems with application to moving mesh and virtual element meth-

ods, Math. Models Methods Appl. Sci. 31 (4) (2021) 711–751.

[24] A. Cangiani, G. Manzini, O. Sutton, Conforming and nonconforming virtual element
methods for elliptic problems, IMA J. Numer. Anal. 37 (3) (2017) 1317–1354.

[25] W. Cao, W. Huang, R. Russell, A moving mesh method based on the geometric
conservation law, SIAM J. Sci. Comput. 24 (1) (2002) 118–142.

[26] F. Dassi, A. Fumagalli, A. Scotti, G. Vacca, Bend 3d mixed virtual element method
for Darcy problems, Comput. Math. Appl. 119 (2022) 1–12.

[27] J. Donea, A. Huerta, J. Ponthot, A. Rodríguez-Ferran, Arbitrary Lagrangian-Eulerian
methods, in: Encyclopedia of Computational Mechanics, second edition, 2017,
pp. 1–23.

[28] Q. Du, M. Emelianenko, L. Ju, Convergence of the Lloyd algorithm for computing
centroidal Voronoi tessellations, SIAM J. Numer. Anal. 44 (1) (2006) 102–119.

http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2755A2C38C13EF562BEAFD9417EA363Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2755A2C38C13EF562BEAFD9417EA363Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0E9BE7D752DECD5433276D1B32E1C2DDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0E9BE7D752DECD5433276D1B32E1C2DDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0E9BE7D752DECD5433276D1B32E1C2DDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0D7F827F407C350F06F81BB3419174B8s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0D7F827F407C350F06F81BB3419174B8s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0D7F827F407C350F06F81BB3419174B8s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC2451BA4EAEB4B96CF993E6CDED8079Cs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC2451BA4EAEB4B96CF993E6CDED8079Cs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF05C956E0FC265258A7224920BA0E7E1s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib8A3EC9AF41BD28D1DC193D4B1E21CBD6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib8A3EC9AF41BD28D1DC193D4B1E21CBD6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib8A3EC9AF41BD28D1DC193D4B1E21CBD6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib24EEEC6A10CEBFB7A0C41DE8ABB2C152s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib24EEEC6A10CEBFB7A0C41DE8ABB2C152s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7E67223A265C30E9AC60FD78EAE3DF22s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7E67223A265C30E9AC60FD78EAE3DF22s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7E67223A265C30E9AC60FD78EAE3DF22s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib6FF730179FAC9814EFD1DF98F80D7F28s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib6FF730179FAC9814EFD1DF98F80D7F28s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib6FF730179FAC9814EFD1DF98F80D7F28s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0F9D324643E06A00299EEBF450F2C0C7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0F9D324643E06A00299EEBF450F2C0C7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib0F9D324643E06A00299EEBF450F2C0C7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibCA0A63D7E6A9BF905FAC2B097B05566As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibCA0A63D7E6A9BF905FAC2B097B05566As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibCA0A63D7E6A9BF905FAC2B097B05566As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib342428E5671CA7FE920D008286960D8Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib342428E5671CA7FE920D008286960D8Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib342428E5671CA7FE920D008286960D8Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib77295D2BC532C62645DEC4FAA15EF88As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib77295D2BC532C62645DEC4FAA15EF88As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib1101B36A54391CA2A6DE2DADC0BE0C23s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib1101B36A54391CA2A6DE2DADC0BE0C23s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib1101B36A54391CA2A6DE2DADC0BE0C23s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF87C5B2DA4711ECECADBFDEFC6F3DECCs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF87C5B2DA4711ECECADBFDEFC6F3DECCs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib56D8FB25DC7289D423F79032E2C843CAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib56D8FB25DC7289D423F79032E2C843CAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib56D8FB25DC7289D423F79032E2C843CAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB59C6513C14D47721F3C9CCAFAF3515Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB59C6513C14D47721F3C9CCAFAF3515Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib07CC80D611B097DC37F5EAC82C5DC98Ds1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib07CC80D611B097DC37F5EAC82C5DC98Ds1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2ABB4A14DC7A5DE08DFD27CC9788A080s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2ABB4A14DC7A5DE08DFD27CC9788A080s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibD31FB73A13D9AEF2182E6DEA322DA2C7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibD31FB73A13D9AEF2182E6DEA322DA2C7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibECD26714CDADAE3A902D958B51662A46s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibECD26714CDADAE3A902D958B51662A46s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibECD26714CDADAE3A902D958B51662A46s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2916FCDBFF50D20D3E7EADCD1DE3A866s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2916FCDBFF50D20D3E7EADCD1DE3A866s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2112C989FA504D1A31C8B91A5371F0E7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2112C989FA504D1A31C8B91A5371F0E7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2112C989FA504D1A31C8B91A5371F0E7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib910CB2C681FE6EA6F0A73BAF60C4CB11s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib910CB2C681FE6EA6F0A73BAF60C4CB11s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibCE88EE10FC3D00C86E0DBA887D84CCD9s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibCE88EE10FC3D00C86E0DBA887D84CCD9s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF55A6403B04D301D46FA129CDA55EC16s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF55A6403B04D301D46FA129CDA55EC16s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF58F74B7B2C596E1E7FA41A110C284AEs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF58F74B7B2C596E1E7FA41A110C284AEs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibF58F74B7B2C596E1E7FA41A110C284AEs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC42F5E3DE0B0CB548B87E3EA39D70623s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC42F5E3DE0B0CB548B87E3EA39D70623s1

H. Wells, M.E. Hubbard and A. Cangiani Computers and Mathematics with Applications 155 (2024) 110–125
[29] J. Ferguson, J. Kópházi, M. Eaton, Nurbs enhanced virtual element methods for the
spatial discretization of the multigroup neutron diffusion equation on curvilinear
polygonal meshes, J. Comput. Theor. Transp. 51 (4) (2022) 145–204.

[30] E. Gaburro, W. Boscheri, S. Chiocchetti, C. Klingenberg, V. Springel, M. Dumbser,
High order direct arbitrary-Lagrangian-Eulerian schemes on moving Voronoi meshes
with topology changes, J. Comput. Phys. 407 (2020) 109167.

[31] R. Gelinas, S. Doss, K. Miller, The moving finite element method: applications to
general partial differential equations with multiple large gradients, J. Comput. Phys.
40 (1) (1981) 202–249.

[32] J. Hallquist, G. Goudreau, D. Benson, Sliding interfaces with contact-impact in large-

scale Lagrangian computations, Comput. Methods Appl. Mech. Eng. 51 (1–3) (1985)
107–137.

[33] W. Huang, R. Russell, Adaptive Moving Mesh Methods, vol. 174, Springer Science
& Business Media, 2010.

[34] W. Huang, Y. Wang, Anisotropic mesh quality measures and adaptation for polygo-

nal meshes, J. Comput. Phys. (2020) 109368.

[35] M. Hubbard, M. Baines, P. Jimack, Consistent Dirichlet boundary conditions for
numerical solution of moving boundary problems, Appl. Numer. Math. 59 (6) (2009)
1337–1353.

[36] P. Jimack, A. Wathen, Temporal derivatives in the finite-element method on contin-

uously deforming grids, SIAM J. Numer. Anal. 28 (4) (1991) 990–1003.

[37] K. Lipnikov, N. Morgan, A high-order conservative remap for discontinuous Galerkin
schemes on curvilinear polygonal meshes, J. Comput. Phys. 399 (2019) 108931.

[38] R. Marlow, M. Hubbard, P. Jimack, Moving mesh methods for solving parabolic
partial differential equations, Comput. Fluids 46 (1) (2011) 353–361.

[39] A. Masud, T. Hughes, A stabilized mixed finite element method for Darcy flow,
Comput. Methods Appl. Mech. Eng. 191 (39–40) (2002) 4341–4370.

[40] A. Mazzia, M. Ferronato, P. Teatini, C. Zoccarato, Virtual element method for the nu-

merical simulation of long-term dynamics of transitional environments, J. Comput.
Phys. (2020) 109235.

[41] K. Miller, R. Miller, Moving finite elements. I, SIAM J. Numer. Anal. 18 (6) (1981)
1019–1032.

[42] J. Murray, Mathematical Biology: 1. An Introduction, 3rd edition, Springer-Verlag,
New York, 2002.

[43] C. Ngo, W. Huang, A study on moving mesh finite element solution of the porous
medium equation, J. Comput. Phys. 331 (2017) 357–380.

[44] A. Okabe, B. Boots, K. Sugihara, S. Chiu, Spatial Tessellations: Concepts and Appli-

cations of Voronoi Diagrams, vol. 501, John Wiley & Sons, 2009.

[45] T. Richter, Fluid-Structure Interactions, Lecture Notes in Computational Science and
Engineering, vol. 118, Springer International Publishing, Cham, 2017.

[46] O. Sutton, The virtual element method in 50 lines of Matlab, Numer. Algorithms
75 (4) (2017) 1141–1159.

[47] C. Talischi, G. Paulino, A. Pereira, I. Menezes, Polymesher: a general-purpose mesh
generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim.
45 (3) (2012) 309–328.

[48] G. Vacca, Virtual element methods for hyperbolic problems on polygonal meshes,
Comput. Math. Appl. 74 (5) (2017) 882–898.

[49] G. Vacca, An h-1-conforming virtual element for Darcy and Brinkman equations,
Math. Models Methods Appl. Sci. 28 (1) (Jan 2018) 159–194.

[50] G. Vacca, L. Beirão da Veiga, Virtual element methods for parabolic problems on
polygonal meshes, Numer. Methods Partial Differ. Equ. 31 (6) (2015) 2110–2134.

[51] J. Vázquez, The Porous Medium Equation: Mathematical Theory, Oxford University
Press, 2007.

[52] G. Wang, F. Wang, L. Chen, Y. He, A divergence free weak virtual element method
for the Stokes-Darcy problem on general meshes, Comput. Methods Appl. Mech.
Eng. 344 (2019) 998.

[53] P. Wesseling, Principles of Computational Fluid Dynamics, vol. 29, Springer Science
& Business Media, 2009.

[54] P. Wriggers, T. Laursen, Computational Contact Mechanics, vol. 2, Springer, 2006.

[55] P. Wriggers, W. Rust, B. Reddy, A virtual element method for contact, Comput.
Mech. 58 (6) (2016) 1039–1050.

[56] J. Zhao, B. Zhang, S. Mao, S. Chen, The nonconforming virtual element method for
the Darcy-Stokes problem, Comput. Methods Appl. Mech. Eng. 370 (2020).
125

http://refhub.elsevier.com/S0898-1221(23)00555-2/bib53E97A68097519276DB9B9473C541FCAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib53E97A68097519276DB9B9473C541FCAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib53E97A68097519276DB9B9473C541FCAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2A7FD2854506BA3497DAD0BA99BBC423s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2A7FD2854506BA3497DAD0BA99BBC423s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib2A7FD2854506BA3497DAD0BA99BBC423s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3216486F98A87A5F3840B8355B01DA68s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3216486F98A87A5F3840B8355B01DA68s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3216486F98A87A5F3840B8355B01DA68s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib237B0C23BFAAA3B7335823AA77ACCEFBs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib237B0C23BFAAA3B7335823AA77ACCEFBs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib237B0C23BFAAA3B7335823AA77ACCEFBs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib9881A450F8900D68034C8DBF9381E82Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib9881A450F8900D68034C8DBF9381E82Fs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib141A2F20E51E6A17DA770A63D24270B8s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib141A2F20E51E6A17DA770A63D24270B8s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7BE70AB2DBA28525CFF5DBB9790F69F0s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7BE70AB2DBA28525CFF5DBB9790F69F0s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7BE70AB2DBA28525CFF5DBB9790F69F0s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDD548A92C809E62A30EA64A4D6A8D0EDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDD548A92C809E62A30EA64A4D6A8D0EDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib5F58134451F9B01CAA1D68B53103908As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib5F58134451F9B01CAA1D68B53103908As1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib5340FDBFD7736F6ADB58E4392DE689BEs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib5340FDBFD7736F6ADB58E4392DE689BEs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDB167461FF60A988CA0E642A4777B24Cs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDB167461FF60A988CA0E642A4777B24Cs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3870CF3FBA3B0C59AA507817DA25A4B2s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3870CF3FBA3B0C59AA507817DA25A4B2s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib3870CF3FBA3B0C59AA507817DA25A4B2s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDA67114F7EC6F2F141D1D180AAC11163s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDA67114F7EC6F2F141D1D180AAC11163s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibFC91B7BF15C9C5FD694577B3E607C930s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibFC91B7BF15C9C5FD694577B3E607C930s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC400A87DAB85675309141157C84C4FC6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibC400A87DAB85675309141157C84C4FC6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB5CE98C55F5F071111C0E078FF8A6B73s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB5CE98C55F5F071111C0E078FF8A6B73s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib35412716E20491F76F5EC25E5EDCD698s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib35412716E20491F76F5EC25E5EDCD698s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib07E749AD0646D51299F91CF6CA0A1FC5s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib07E749AD0646D51299F91CF6CA0A1FC5s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib20432A36B139AA1820F5D68630C23CFDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib20432A36B139AA1820F5D68630C23CFDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib20432A36B139AA1820F5D68630C23CFDs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib8B1F44A65FE9601BDCF461F383F19BEAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib8B1F44A65FE9601BDCF461F383F19BEAs1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib98DE8AA68F3748BA8F4671C4A4953376s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib98DE8AA68F3748BA8F4671C4A4953376s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB1118B31196AFF8D3454A4E7073F3897s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB1118B31196AFF8D3454A4E7073F3897s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7F1204652EF04C5909AA58C2CE28A0E0s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib7F1204652EF04C5909AA58C2CE28A0E0s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib39B0888669CF6D30AB651A45B98FDA47s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib39B0888669CF6D30AB651A45B98FDA47s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bib39B0888669CF6D30AB651A45B98FDA47s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibA882BF84667433B9A1508DFB98118F38s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibA882BF84667433B9A1508DFB98118F38s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibB5AAC13C16B8DCC00A7863C714CC7CC6s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDFDD59C9CE63DD4C7FB8D8CC9F054473s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibDFDD59C9CE63DD4C7FB8D8CC9F054473s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibBCF1E65A5C1779E97D4FAB90BBA2BDB7s1
http://refhub.elsevier.com/S0898-1221(23)00555-2/bibBCF1E65A5C1779E97D4FAB90BBA2BDB7s1

	A velocity-based moving mesh virtual element method
	1 Introduction
	2 The moving mesh framework
	2.1 The velocity field
	2.2 Solution update
	2.3 Porous medium equation

	3 Virtual element method for the velocity
	3.1 A moving polygonal mesh
	3.2 The Π∇ and Π0 projections
	3.3 Virtual element spaces
	3.4 Discretisation of the velocity problems
	3.5 Moving the mesh

	4 Virtual element method for the solution
	4.1 Discretisation of the solution problems
	4.2 Partition of unity and conservation

	5 Implementation details
	6 A contact algorithm
	6.1 Contact scenarios
	6.2 Collision detection
	6.3 Node insertion algorithm
	6.4 Self-intersection algorithm
	6.5 Obstacle contact and pivot node algorithm

	7 Numerical results
	7.1 Sample meshes
	7.2 The PME similarity solution
	7.3 Error computation
	7.4 Convergence test
	7.5 Node insertion convergence test
	7.6 Contact demonstrations
	7.7 A fourth-order problem

	8 Conclusions
	Data availability
	Acknowledgements
	References

