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We study the dynamics of a classical circuit corresponding to a discrete-time version of the kinetically
constrained East model. We show that this classical “Floquet-East” model displays pre-transition behavior
which is a dynamical equivalent of the hydrophobic effect in water. For the deterministic version of the model,
we prove exactly (i) a change in scaling with size in the probability of inactive space-time regions (akin to
the “energy-entropy” crossover of the solvation free energy in water), (ii) a first-order phase transition in the
dynamical large deviations, (iii) the existence of the optimal geometry for local phase separation to accommodate
space-time solutes, and (iv) a dynamical analog of “hydrophobic collapse.”
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Introduction. In thermodynamics, proximity to a phase
transition gives rise to pretransition effects in the presence of
surfaces or solutes. For systems near criticality this leads to
the Casimir effect [1–4]. The equivalent for first-order transi-
tions is the hydrophobic effect as occurs in water [5–8]: near
liquid-vapor coexistence, the free-energy to accommodate a
solute [7,8] displays an entropic-energetic crossover, from
scaling with volume for small solutes to scaling with area
for larger ones, since it becomes favorable to create a vapor
domain around the solute paying only an interface cost (see
also [5,6]). Hydrophobicity generalizes to other systems with
first-order transitions, known as the “orderphobic effect” [9].

Hydrophobiclike physics appears, at least numerically
[10], to also manifest in the dynamical fluctuations of kineti-
cally constrained models (KCMs) [11–13]. These are models
with explicit constraints in the dynamics that help explain
[14–16] many features relating to the glass transition [17,18].
Specifically, in terms of KCMs [19] dynamic heterogene-
ity can be understood as mesoscopic space-time fluctuations
related to a nearby active/inactive first-order transition in
the space of trajectories [20–22] found via dynamical large
deviation methods [23–25] (cf. full-counting statistics [26]).
Beyond the glass problem, constrained dynamics is of interest
in several other areas. These include cellular automata (CA)
[27–29], whose dynamics can also be understood in terms of
local constraints; quantum many-body systems such as driven
Rydberg atoms which can behave like KCMs [30–33]; slow
quantum thermalization [34–39]; quantum scars [40,41]; and
fractonic systems [42,43].
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In this paper we prove dynamical hydrophobicity (i.e.,
pretransition effects) analytically beyond just numerics [10]
for deterministic KCMs. We do so by studying a classical
system with discrete-space/discrete-time “circuit” dynam-
ics with the same local constraint as the (continuous-time)
stochastic East model [12,13]. For the deterministic version
of this “Floquet-East” model—where the circuit gates are
unitary (i.e., permutations)—we demonstrate by means of
exact calculations all the relevant features of hydrophobicity
in the dynamics: a crossover in the scaling of the probability
of inactive space-time regions, a first-order phase transition
in the dynamical large deviations, an optimal geometry to
accommodate space-time solutes, and the dynamical analog
of “hydrophobic collapse.” Furthermore, the relevance of the
deterministic results is that they bound properties of the dy-
namics in the presence of stochastic gates with the same
constraint, which allows to prove dynamical hydrophobic-
ity exactly also in the stochastic Floquet East model [44].
Below, we present our main results while the Supplemental
Material (SM) [45] contains additional proofs and details of
calculations.

Floquet-East model. We consider a chain of 2L sites with
a binary variable (or classical spin) per site ni ∈ {0, 1}, with
the site labels i taking half-integer values, i ∈ { 1

2 , 1, 3
2 , . . . , L}.

Relevant statistical states are probability vectors |P〉 :=∑
n |n〉 P(n), where {|n〉 := |n 1

2
〉 ⊗ |n1〉 ⊗ · · · ⊗ |nL〉} is the

configurational basis, P(n) � 0 ∀n, and 〈−〉 P = ∑
n P(n) =

1 (with 〈−| := ∑
n 〈n| the “flat state”). The dynamics is dis-

crete, staggered in terms of two half time-steps given by the
deterministic maps U e and U o,

|Pt+1〉 = U e |Pt+ 1
2
〉 = U eU o |Pt 〉 , t ∈ N. (1)

The maps U e and U o consist of two-site gates u applied either
to even or odd pairs of neighboring sites,

U e = u⊗L, U o = �Lu⊗L�
†
L, (2)
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FIG. 1. Floquet-East model. (a) Allowed local gates: the left spin
can flip only if its right neighbor is one; spin-flip gates are shaded red,
no-flip gates shaded blue. (b) Tensor-network representation of an
initial state |P0〉 evolved under the Floquet dynamics, |Pt 〉 = U t |P0〉.
(c) Sample trajectory from a random initial configuration. The blue
box represents the condition of having only 0 s inside that space time
region.

where �L is a one-site shift operator for a chain of 2L sites
with periodic boundaries. The local gate u implements the
deterministic East model rule: a spin flips if its neighbor to
the right—i.e., the one to the east—is in the state 1, or stays
the same otherwise,

where our convention is |0〉 = [1 0]T , |1〉 = [0 1]T , and
|n m〉 = |n〉 ⊗ |m〉. The graphical representation of u allows
to interpret the dynamics as a tensor network [46], see Fig. 1:
panel (a) shows the allowed gates, while panel (b) gives the
evolved state.

The Floquet-East model can also be thought of as a cellular
automaton (CA), specifically rule 60 in the classification of
Refs. [27,28]. In contrast to other recently studied CAs such
as rule 54 [47–55], rule 201 [56,57], and rule 150 [58–60],
rule 60 appears to be nonintegrable. Figure 1(c) shows a
trajectory starting from a random initial configuration: the
mixing nature of the dynamics is apparent, with fluctuations
highly reminiscent of the dynamic heterogeneity and “space-
time bubbles” of the stochastic (and continuous-time) East
model [19]. This in turn suggests that much of the interesting
behavior of stochastic KCMs might manifest in deterministic
KCMs with the same constraints (see also [61,62]).

Propagation in space and invariant states. The definitions
above describe the time evolution (down to up in Fig. 1) of
configurations. Alternatively, one can consider also how a
row pseudoprobability vector [63] 〈P̃x| over spins at a fixed
point in space x and all times is propagated in space, 〈P̃x+1| =
〈P̃x| Ũ (from left to right in Fig. 1) under the dual operator
Ũ = Ũ oŨ e, through the composition of the local gate

(3)

and similarly defined evolution of a column vector |P̃x〉 as
|P̃x−1〉 = Ũ oŨ e |P̃x〉.

The time-dynamics is deterministic and reversible (i.e., a
special case of bistochastic dynamics), which implies that the
flat state is invariant under both the time evolution and its
inverse. This is a local property of the gate u and can be stated
graphically (see [45] for the details) as

(4)

where, e.g., the last relation is [1 1 1 1]u = [1 1 1 1]. Similarly,
the invariant states of the space dynamics [64] follow from a
set of local algebraic relations satisfied by the local gates,

(5)

From here we get that invariant states in space are, in the
forward direction (left to right), the “dimerized state” obtained
from the tensor product of (with appropriate boundaries,
see below), and in the backward direction (right to left), the
flat state. This is consistent with the space dynamics under Ũ
being (right) stochastic, and is reminiscent of dual unitarity
[65–67] (see also Refs. [68–81]) in the quantum setting.

Probability of inactive space-time regions. Relations
Eqs. (4) and (5) allow to compute exactly several dynamical
properties. Even though the dynamics is deterministic, if we
consider a space-time region of size l × t inside a large box
of L × T , the dynamics in the region is probabilistic as the
rest acts as an environment, and for L, T → ∞ the circuit can
be contracted to the boundary of the region in terms of the
invariant states introduced above [82], see Fig. 2(a). As a first
question, we consider the probability Pinact (l, t ) of having no
spin flips in that space-time region. The probability Pinact (l, t )
is then obtained by contracting the region of inactive gates
shown in Fig. 2(a), while the prefactor 2−(2l+	t
) is determined
as the factor needed to normalize to 1, the same region in the
absence of conditioning. The inactive gates obey

(6)

with and denoting the projector onto the 0 state,

=
[

1 0
0 0

]
. This means that the flat state on the right can be

repeatedly propagated leftwards [see Fig. 2(a)], until we are
left with

(7)

The calculation is different for the special case of t = 1/2
(single row of inactive gates), as it reduces to the product of
the expectation value of each gate [45]. Overall,

Pinact (l, t ) =
{

2−(2l+	t
−1), t � 1,

2−l , t = 1
2 ,

(8)

see Fig. 2(b). This is similar to the crossover observed nu-
merically in the stochastic East model [10], and analogous to
that in the free energy (i.e., minus log probability) of solvation
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FIG. 2. Hydrophobic crossover and LD transition. (a) Graphical representation of Pinact (l, t ). The space-time region l × t is conditioned
to only inactive gates (blue). This tensor network can be contracted to obtain Eq. (8). The prefactor 2−2l−	t
 ensures that in the absence of
conditioning, the contraction is equal to one as required by probability conservation. (b) Corresponding dynamical free-energy − ln Pinact (l, t )
as a function of time at l = 3, displaying a crossover from area (dotted gray line) to perimeter (dashed black line) scaling. The coefficient
α(l ) is 5/4 for integer l . (c) The scaled CGF for the activity, ln Zl,t (s)/lt , has an active branch perturbatively connected to s = 0 (red), and an
inactive branch coming from s → ∞ (blue). Their crossing at sc ≈ t−1 + l−1 indicates a first-order transition in trajectory space in the large
l, t limit.

in the hydrophobic effect—from a regime dominated by en-
tropy for small solutes, to one dominated by energy for large
ones [7–9].

Phase transition in dynamical large deviations. The re-
sult above suggests that in the limit of l, t → ∞ (with
l/L, t/T → 0) the Floquet-East model will have a phase tran-
sition in the space of trajectories [21,24,83]. This can be
shown by considering the statistics of the dynamical activity
(total number of spin flips) [21,23,84] in a space-time volume
l × t . Given the set of trajectories {ω} in the region, the mo-
ment generating function (MGF) of the activity is

Zl,t (s) =
∑

ω

π (ω)e−sK (ω), (9)

where π (ω) is the probability of the trajectory and K (ω) its
activity. The MGF is obtained from a calculation similar to
that of Fig. 2(a), but where the active (spin-flip) gates carry an
extra factor of e−s.

Two limits are easy to calculate. In the limit of s → ∞ all
active gates are suppressed, and Zl,t (s) is given by Eq. (8).
Conversely, for s ≈ 0 we can express Zl,t (s) as a series in s
with the moments of the activity as coefficients,

Zl,t (s) = 1 − s〈K〉 + 1
2 s2〈K2〉 + · · · . (10)

The first two moments are obtained straightforwardly,

〈K〉 = lt, 〈K2〉 = (lt )2/2, (11)

the latter result given by the fact that all two-point correlators
are disconnected in the dynamics [45]. The difference in scal-
ing for small and large s implies a crossover in the cumulant
generating function (CGF), ln Zl,t (s), which, in the limit of
l, t → ∞, becomes singular, see Fig. 2(c). Since the CGF is
convex and nonincreasing [24], the perturbative branch (red
curve) has to cross to the inactive branch (blue curve), with the
change becoming progressively sharp and occurring around
sc ≈ 1/l + 1/t . For l, t → ∞ this corresponds to a discon-
tinuity in the derivative of the CGF at s = 0, and therefore
the model has to undergo an active-inactive first-order phase
transition. This transition (cf. liquid-vapor in water) gives rise
to the dynamic hydrophobicity in the model.

Solvation in space time. To draw an analogy with the case
of a solute in water, we consider the probability of a region
of space time with all sites in the zero state. See Fig. 3(a) for
the tensor network representation; given a region l × t with
all spins conditioned to be in the 0 state, we can compute the
probability of this event, P�(l, t ), as before, by contracting the
outside to the edges of the region using the invariant states.
Noting that

(12)

and using the relations (6) for the inactive gates, we get that
for integer t the probability is 1

2 of the corresponding region
being inactive, [85]

P�(l, t ) = 2−(2l+	t− 1
2 
). (13)

The key observation is that the free-energy cost for a fluctua-
tion as that of Fig. 3(a) scales with the perimeter, 2l + t , of the
region, rather than with the total number of sites in the region,
4lt . This calculation can be repeated for other shapes of the
conditioned region. It is easy to show that the optimal one is
that of an isosceles right-pointing triangle, see Fig. 3(b): the
probability in this case goes as [45]

P�(t ) = 2−t . (14)

For comparison, a rectangle with the same number of condi-
tioned 0 sites would have a smaller probability of occurring,
P�(t + 1, t/2) ∝ 2−3t/2 [86].

The optimality of the right-pointing triangle is shown by
computing the average spin density, ρ(�x,�t ), at a distance
(�x,�t ) from a region conditioned to have all 0 spins: see

Figs. 3(c) and 3(d), where =
[

0 0
0 1

]
projects to the state

1. When the location of the projector is near the solute, as
in panel (c), all sites within the enclosing triangle (shaded
region) are also 0 at no extra free-energy cost; for the probed
site to be 1 would require a nonexistent gate (circled), cf.
Fig. 1(a), and as a consequence, ρ(�x,�t ) = 0 for any site
within the shaded triangle [45]. In contrast, for sites outside
the triangle, the contraction decouples the site, Fig. 3(d),
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FIG. 3. Solvation and optimal void geometry. (a) Network representation of the probability P�(l, t ) of a square region conditioned to all
zero spins, embedded in a much larger trajectory. (b) Same for P�(t ) for the optimal triangular geometry. (c) Spin density outside from the
condition: when the site falls inside the triangle (shaded area) enclosing the condition (dashed square) the density is zero (due to the impossible
gate, circled in red). (d) Same but now the probed site falls outside the enclosing triangle; in this case the density is the average one.

which gives the stationary-state value, ρ(�x,�t ) = 1/2. The
above reasoning shows that to accommodate any space-time
“solute,” the most efficient fluctuation is to create a triangular
“bubble,” which encloses the solute by locally phase separat-
ing the dynamics. The optimal shape also explains the nature
of the dynamical fluctuations observed in trajectories such
as that of Fig. 1(c) where the bubbles are all right-pointing
triangles.

Hydrophobic collapse. The free energy of a single solute
scaling with the interface of the enclosing bubble leads to an
interaction when two or more solutes are present. In water
this is known as hydrophobic collapse [87]. In the dynamics
of the Floquet-East model we have the same in space time:
Fig. 4(a) shows two space-time regions (light blue rectangles)
conditioned to having all their spins in the zero state, with the
two regions separated in space by a distance �x. For large �x

FIG. 4. Hydrophobic collapse. (a) Two space-time “solutes”
(light blue) of size l × t separated in space by �x. Conditions on
empty boxes extend to triangular shaped regions (dark blue and
yellow). (b) Dynamical free energy as a function of �x. This is
given by the perimeter of the optimal triangular bubble enclosing the
two boxes (orange contour): for large �x it is given by the perime-
ters of two triangles enclosing each condition individually, as the
probabilities factorize for �x � t/2; for �x < t/2, the free energy
is given by the perimeter of a single larger bubble enclosing both
conditions, and decreases with decreasing distance giving rise to an
effective attraction. The coefficients are a(l, t ) = ln 2(4l + t − 1/2),
c = ln 2/2. (c), (d) Same for a time separation of �t . The coefficients
in (d) are b(l, t ) = ln 2(2l + 2t − 3/4), c = ln 2/2.

each of these conditions gives rise to a triangular bubble that
encloses it, and the (dynamical) free-energy cost is given by
the sum of the perimeters of the two triangles. However, as �x
decreases, we eventually reach a point beyond which it is more
favorable to enclose both solutes within a single triangular
bubble, and as �x is reduced further the free energy also goes
down, see Fig. 4(b). This gives rise to the “attraction” between
the solutes, a dynamical version of hydrophobic collapse.
Figures 4(c) and 4(d) show the same for separation in the time
direction.

Pretransition effects in the stochastic model. The stochastic
version of the Floquet East model is defined by the following
six possible gates [44]:

Here the constraint is the same as before, but if a flip is
possible it only occurs with probability p (with no change
with probability p̄ = 1 − p). The deterministic model is re-
covered for p = 1. The stochastic circuit and the standard
(continuous-time) stochastic East model [15] are directly
connected through the Trotter-Suzuki decomposition of the
integrated time-evolution operator [88,89].

As proved in Ref. [44], the results for the deterministic
model (p = 1) imply similar dynamic hydrophobicity for the
stochastic (p < 1) case. Specifically, one can show that the
probability of an inactive space-time region is bounded from
below by the deterministic result [44]

P(p)
inact (l, t ) � P(p=1)

inact (l, t ) = 2−(2l+	t
−1) (t � 1).

Similar lower bounds are found for the probabilities of regions
of all 0 spins, cf. Eqs. (13) and (14) [44]. This demonstrates
[44] that the stochastic Floquet-East has an active/inactive
first-order transition, and the space-time perimeter scaling of
the dynamical-free energy of inactive regions is analogous to
the area (rather than volume) dependence of the free energy
for cavities in water [7,8].

Conclusions. Here we studied the Floquet-East model, a
circuit version of the kinetically constrained East model. We
proved analytically that its trajectories display pretransition
effects, a dynamical analog of the hydrophobic effect in
water. We computed the exact probabilities for inactive space-
time fluctuations for the deterministic limit of the model.
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Moreover, as we prove in Ref. [44], the results for the
deterministic circuit lower-bound probability of inactive fluc-
tuations in the stochastic version of the model. The work
here is classical, but since the deterministic Floquet-East is
also unitary, our results connect to the ongoing interest in
the dynamics of quantum circuits, e.g., [65,69,73,90–100].
For example, one could consider (with small alterations,
cf. [101–103]) quantum dynamics, where we expect similar

hydrophobic fluctuations to play an important role in entan-
glement growth and thermalization [36,104].
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