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A B S T R A C T

A LES-informed data-driven approach for improved predictions of the turbulent heat flux vector has been
sought for film and effusion cooling flow applications. Random forest and shallow neural networks have been
used to train a spatially varying coefficient for the Higher-Order Generalised Gradient Diffusion Hypothesis
(HOGGDH) turbulent heat flux closure model. a priori results of the turbulent heat flux magnitude showed
significant improvements over the standard HOGGDH model. The random forest model was implemented into
OpenFOAM with a previously published data-driven turbulent anisotropy model. The random forest model
provided modest improvements to both low and high-blowing ratio film cooling cases along centreline and
spanwise distributions. Large cooling effectiveness improvements (up to 82%) were found when compared to
the Gradient Diffusion Hypothesis (GDH) model and marginal improvements were shown when compared to
the HOGGDH model with its standard coefficient of 0.6.
1. Introduction

Data-driven modelling using machine learning tools has begun to
provide functional models that improve upon the current state-of-
the-art in Computational Fluid Dynamics (CFD). It has been used
as a constructive tool to tune coefficients [1,2], identify model-form
uncertainty [3] and develop closure models [4,5]. Closure models
appear in the Reynolds-Averaged Navier–Stokes (RANS) simulations
due to the Reynolds averaging procedure on the non-linear terms of the
Navier–Stokes equations. RANS simulations form a suitable framework
providing affordable solutions for engineering-based flows. The steady
RANS equations for continuity, momentum and energy are:
𝜕
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respectively, where the terms that require closing are the Reynolds
stress tensor, 𝑢′𝑖𝑢

′
𝑗 , and the turbulent heat flux vector 𝑢′𝑗𝑇 ′. The Reynolds

stress tensor is commonly closed with a linear eddy viscosity model and
the Boussinesq hypothesis,

𝑢′𝑖𝑢
′
𝑗 =

2
3
𝛿𝑖𝑗𝑘 − 2𝜈𝑡𝑆∗

𝑖𝑗 , (4)

∗ Corresponding author.

and the turbulent heat flux vector is often closed with the Gradient
Diffusion Hypothesis (GDH),

𝑢′𝑖𝑇 ′ = −𝛼𝑡
𝜕𝑇
𝜕𝑥𝑖

= −
𝜈𝑡
𝑃𝑟𝑡

𝜕𝑇
𝜕𝑥𝑖

. (5)

The Boussinesq hypothesis assumes that the anisotropic stress is
proportional to the deviatoric strain rate, 𝑆∗

𝑖𝑗 . However, the stresses
in real turbulent flows, are rarely proportional to the deviatoric strain
rate. Likewise, the GDH assumes that the turbulent heat flux vector is
aligned to the mean temperature gradient of the flow, however, Ellis
and Xia [6] highlight deviations between the LES-resolved turbulent
heat flux and the GDH model.

One group of flows that RANS simulations struggle to predict are
film and effusion cooling flows. These flows are found across turbine
and combustor components in modern gas turbine systems. The aero-
dynamic cooling provided by these flows protects the components from
the hot combustion gases. Film and effusion cooling features a system
of holes perforated through the component providing a film of cool air
across the external surface. In the combustor, effusion cooling holes
cool the combustor liner using an array of densely packed cooling holes,
allowing air from the high-pressure compressor to protect the liner from
the hot gases found in the combustor (Fig. 1). In turbine systems, film
cooling holes are found in a sparse arrangement on the blades and
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Nomenclature

Acronyms/Abbreviations

ACE Adiabatic Cooling Effectiveness
BR Blowing Ratio
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
DR Density Ratio
GDH Gradient Diffusion Hypothesis
LES Large-Eddy Simulation
LiTT LES-informed Turbulent Transport
ML Machine Learning
NN Neural Network
OOB Out-of-bag
PISO Pressure Implicit Split Operator
RANS Reynolds-Averaged Navier–Stokes
RF Random Forest
RMSE Root-Mean Square Error
RSTM Reynolds-Stress Transport Model
SST Shear Stress Transport
TBNN Tensor-Basis Neural Network
WALE Wall-Adaptive Local Eddy-viscosity

Greek Letters

𝛼 Turbulence diffusivity (m2∕𝑠)
𝜈 Kinematic viscosity (m2∕𝑠)
𝜌 Fluid density (kg∕m3)
𝜏 Time scale (𝑠)
𝛽∗ Turbulence model constant
𝜔 Specific dissipation rate (1∕𝑠)
𝛿𝑖𝑗 Dirac delta
𝜀 Dissipation rate (m2∕s3)
𝜂𝑎𝑤 Adiabatic cooling effectiveness

Roman Letters

𝑎𝑖𝑗 Turbulence anisotropy
𝑐𝜃 Model tuning constant
𝑐𝑝 Specific heat capacity (J∕kg∕K)
𝐷 Hole diameter (m)
𝐷𝑖𝑗 Diffusivity Tensor (m2∕s)
ℎ Fluid enthalpy (J∕kg)
𝑘 Turbulent kinetic energy (m2∕s2)
𝑙 Hole length (m)
𝑃 Pressure (Pa)
𝑝 Hole pitch (m)
𝑃𝑟 Prandtl number
𝑅𝑖𝑗 RANS Reynolds stress tensor (m2∕s2)
𝑆𝑖𝑗 Strain-rate (1∕s)
𝑠𝑖𝑗 Non-dimensional strain-rate
𝑇 Fluid temperature (K)
𝑇∗ Normalised temperature gradient
𝑈 Streamwise velocity (m/s)
𝑢 Velocity (m/s)
𝑢𝑖 Velocity vector (m/s)
𝑊𝑖𝑗 Vorticity tensor (1∕𝑠)
2 
𝑤𝑖𝑗 Non-dimensional vorticity tensor
𝑋 Streamwise component(m)
𝑥𝑖 Spatial component (m)
𝑋 Wall-normal component (m)
𝑦 Wall distance (m)
𝑋 Spanwise component (m)

Sub/Superscript

□′ Fluctuating property
□∗ Traceless property
□0 Stagnation property
□𝑎𝑤 Adiabatic wall property
□ Mean property
□𝑐 Coolant property
□∞ Freestream property
𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 Indexing components
□𝑡 Turbulent property

endwall regions of the turbine. The ability to accurately model film
and effusion cooling flows in CFD is important in understanding the
performance and lifetime of the turbine and combustor components as
well as the overall gas turbine efficiency. For component lifetimes, Han
et al. [7] illustrate the importance of predicting component tempera-
tures by showing that component lifetime can halve with just a 2%
error in predicted metal temperature.

Previous research has consistently demonstrated the challenges as-
sociated with accurately predicting the cooling performance of film and
effusion cooling flows using Reynolds-Averaged Navier–Stokes (RANS)
simulations. Hoda and Acharya [8] evaluated various 𝑘-𝜀 turbulence
model formulations, including a DNS-informed model, against exper-
imental data. While the DNS-informed model exhibited reasonable
agreement for recirculation zones, all models struggled to capture the
downstream velocity field. Acharya et al. [9] further emphasised these
limitations by reporting overpredictions of coolant jet penetration and
underpredictions of lateral spreading rate across different turbulence
models, including a Lam-Bremhost Reynolds-Stress Transport Model
(RSTM).

Walters and Leylek [10,11] observed that 𝑘-𝜀 models overpredicted
centreline cooling effectiveness at low blowing ratios but captured
overall trends. 1 However, at higher blowing ratios, these models failed
to reproduce the experimentally observed jet lift-off phenomenon. This
deficiency was attributed to the absence of non-linear anisotropy,
which significantly influences coolant lateral spread. Subsequent stud-
ies by Harrison and Bogard [12] confirmed these challenges, with the
𝑘-𝜔 model providing accurate lateral-averaged cooling effectiveness but
overpredicting centreline values. The realisable 𝑘-𝜀 model exhibited
the opposite trend. Azzi and Jubran [13] attempted to improve predic-
tions at lower blowing ratios by incorporating an anisotropic near-wall
model [14], but the approach proved ineffective at higher blowing
ratios where jet lift-off and reattachment behaviour dominated.

Although RANS simulations have struggled to provide accurate
cooling distributions, Large-Eddy Simulations (LES) have successfully
replicated cooling effectiveness results in a range of numerical stud-
ies [15–19]. However, LES requires a fine mesh and time step to resolve
the fine-scale turbulent structures. This results in high computational
costs that have limited the use of LES to a small number of cases while
RANS is relatively low-cost and affordable for wider use.

Data-driven models have emerged as an alternative approach for
modelling film cooling flows. Milani et al. [20] employed a machine-
learned turbulent diffusivity within the GDH turbulent heat flux clo-
sure, trained on high-fidelity data. This approach yielded qualitative
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Fig. 1. Diagram of effusion cooling holes used in gas turbine combustors.
improvements in adiabatic cooling effectiveness (ACE) contours com-
pared to traditional constant turbulent Prandtl number models. Subse-
quent work by the same authors [21] explored the use of Tensor-Basis
Neural Networks (TBNN) [22] to model a tensor-based turbulent dif-
fusivity, allowing for deviations from the GDH alignment assumption.
While significant enhancements were observed in the centreline plane,
improvements in the spanwise plane were less pronounced.

Ling et al. [23] proposed a random forest model to predict barycen-
tric coordinates associated with turbulent anisotropy eigenvalues, de-
monstrating successful generalisation to different flow geometries.
However, this approach was not integrated into a RANS framework for
Reynolds stress closure. More recently, Ellis and Xia [24] developed a
TBNN model for turbulence anisotropy using LES data, which exhibited
improved a posteriori RANS results. When coupled with a HOGGDH
turbulent heat flux model, this approach enhanced predictions of
lateral coolant distributions, although the GDH model provided better
agreement with experimental data in the initial jet development region.

In this article, a data-driven model for the HOGGDH coefficient
extends the previous literature [20,25,26] and is then combined with a
novel data-driven anisotropy model [24] in OpenFOAM [27], an open-
source CFD framework. In the first section, the HOGGDH coefficient
model is introduced and then the analysis extends previously published
results with a test dataset isolated from the training procedure as-
sessing its improved performance over existing models. In the second
section, the implementation of the combined models in a RANS solver
is discussed and then the results of the models are investigated on
cooling cases to assess a posteriori performance of the models running
in a steady RANS solver, compared to the time-averaged results of
the LES solutions. The present article provides a novel contribution to
data-driven modelling by investigating the combination of both models
which will be discussed in detail.

2. Data-driven HOGGDH coefficient

2.1. Methodology

Previous studies [6] have shown that the HOGGDH closure im-
proves the prediction of the turbulent heat flux vector in regions where
it deviates from the direction of the temperature gradient. In the work
of Ling et al. [28], the HOGGDH closure was used where its impact
on the scalar field showed qualitative improvements in the early shear
layer development. The HOGGDH closure,

𝑢′𝑖𝑇 ′ = −𝑐𝜃 𝜏𝑡
𝑢′𝑖𝑢

′
𝑘 𝑢

′
𝑘𝑢

′
𝑗

𝑘
𝜕𝑇
𝜕𝑥𝑗

, (6)

features a coefficient (𝑐𝜃) that is similar to the turbulent Prandtl num-
ber. In the literature, heat transfer predictions have benefited from a
spatially varying turbulent Prandtl number in the GDH closure [28,29].
A spatially varying diffusivity coefficient, 𝑐𝜃 , in the HOGGDH model is
investigated in this article to identify its ability to improve heat transfer
predictions in film cooling flows.
3 
Table 1
High-fidelity simulation case parameters and dataset use.

Case Training & Validation Testing 𝐵𝑅 𝐷𝑅

a priori a posteriori

br05-dr20 ✓ ✓ 0.5 2.0
br10-dr20 ✓ ✓ 1.0 2.0

br06-dr12 ✓ ✓ 0.6 1.2

A data-driven model for 𝑐𝜃 is generated using two machine learning
algorithms: random forests and shallow neural networks. The algo-
rithms are trained on the time-averaged results of two LES datasets
and then tested on a third, as shown in Table 1. The three LES cases
featured in this article are single-row cooling configurations, described
in Fig. 2, based on the experimental work of Sinha et al. [30]. The
cases feature a single row of 35◦ inclined cylindrical cooling holes with
a length-to-diameter ratio, 𝑙∕𝐷, of 1.75. The blowing and density ratios,

𝐵𝑅 =
𝜌𝑐𝑈𝑐
𝜌∞𝑈∞

(7)

and

𝐷𝑅 =
𝜌𝑐
𝜌∞

(8)

respectively, are varied between the cases. The lower blowing ratio jets
will stay attached to the coolant plate and higher blowing ratio jets will
separate and reattach to the coolant plate downstream, which results in
significantly different coolant behaviour across the plate. The values of
DR and BR chosen for the cases replicated those investigated by Sinha
et al. [30] but are also within a suitable range of values feasible in a
gas turbine combustor and turbine [31].

The critical dimensions of the numerical domain are provided in
Fig. 2. To capture the row of cooling holes, a spanwise periodic bound-
ary is applied to mimic the pitch, 𝑝, of the cooling holes. The main-
stream inlet supplies the approaching turbulent boundary layer at a
temperature and freestream velocity of 300𝐾 and 20 m∕s respectively.
The fluctuations of the turbulent boundary layer are provided to the
inlet condition with a digital filtering technique [32] that was shown
to replicate the approaching boundary layer in the work of Ellis and
Xia [19]. Coolant is supplied to the base of the coolant plenum at
a velocity and temperature that reproduces the case’s blowing and
density ratio.

OpenFOAM v1712 [27] has been used for the LES simulations using
a pressure-based solver suitable for transient flows, rhoPimpleFoam. The
Wall-Adaptive Local Eddy-viscosity (WALE) model [33] is used for
the sub-grid scale stresses which provide the correct near-wall scaling
without the requirement of a dynamic formulation. For the sub-grid
scale heat fluxes, a sub-grid scale Prandtl number of 0.4 is recom-
mended in the literature [34–36]. A structured, hexahedral meshing
approach has been used to minimise non-orthogonality and skewness
to ensure that numerical diffusivity is minimal across the jet mixing
region. The resultant mesh for the investigated cases has a cell count of
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Fig. 2. Case geometric configuration with computational domain, boundary conditions and critical geometric parameters.
Source: Adapted from Ellis and Xia [24].
.

0.6 million cells resolving more than 90% of the total turbulent kinetic
nergy. Additional mesh details, computational setup and validation
re provided in the article of Ellis and Xia [19].

.1.1. Machine learning features
Input and target features for the machine learnt 𝑐𝜃 models are

extracted from the time-averaged LES results for each investigated case.
The target 𝑐𝜃 for the HOGGDH model is obtained with,

𝑐𝜃 = − 𝑘
𝜏𝑡

𝑢′𝑖𝑇 ′
(

𝑢′𝑖𝑢
′
𝑘 𝑢

′
𝑘𝑢

′
𝑗
𝜕𝑇
𝜕𝑥𝑗

)

(

𝑢′𝑙𝑢
′
𝑚 𝑢′𝑚𝑢′𝑛

𝜕𝑇
𝜕𝑥𝑛

)(

𝑢′𝑙𝑢
′
𝑚 𝑢′𝑚𝑢′𝑛

𝜕𝑇
𝜕𝑥𝑛

)
, (9)

here each component of the turbulent heat flux is weighted by its
efining component of the HOGGDH modelled turbulent heat flux
ector. The turbulent time scale, 𝜏𝑡 = 𝑘∕𝜀, requires a RANS-suited
issipation rate, 𝜀. Although the dissipation rate can be extracted from
he LES data with a sufficiently fine mesh, the dissipation rate available
n RANS simulations deviates from an LES-derived quantity. There-
ore, to obtain a RANS-representative dissipation rate, an LES-informed
urbulent Transport (LiTT) process is defined. The LES time-averaged
ields are frozen and a pseudo-simulation is solved using the transport
quation for the 𝑘-𝜔 SST specific turbulent dissipation rate. For the 𝑘-𝜔

SST model, the turbulent dissipation rate is defined as 𝜀 = 𝛽∗𝜔𝑘 where
𝛽∗ = 0.09.

The Reynolds stress tensor is present in the HOGGDH closure
(Eq. (6)). The Boussinesq hypothesis is employed to calculate the
Reynolds stresses for two-equation turbulence model approaches. Eval-
uation of 𝑐𝜃 from the LES also employs the same approach to ensure the
model replicates the wider RANS model environment in which it can
be used. The LiTT’s calculation of 𝜔 enables the Boussinesq hypothesis
to be evaluated with the mean strain rates from the frozen LES field.

The input features for the model are derived from an initial 19
features investigated in the preceding work [26]. The features are
adopted from similar features investigated by Milani et al. [20] in their
GDH model. These 19 features exhibit non-dimensional and Galilean in-
variance ensuring the machine-learnt models of 𝑐𝜃 will not be biased by
orientation or scale. Two features reflect the flow’s physical properties:
a wall-distanced Reynolds number and a viscosity ratio. The remaining
features are the mathematically relevant independent invariants that
can be found from the infinite polynomial of normalised strain-rate,
vorticity and temperature gradient using the Cayley–Hamilton theorem.
Normalisation of the strain-rate (𝑆𝑖𝑗) and vorticity (𝑊𝑖𝑗) tensors are
achieved with the turbulent time scale, 𝜏𝑡 = 𝑘∕𝜀, so 𝑠𝑖𝑗 = 𝜏𝑡𝑆𝑖𝑗 and
𝑤𝑖𝑗 = 𝜏𝑡𝑊𝑖𝑗 . The normalised temperature gradients,

𝑇∗ = 𝑘3∕2 ∇𝑇 , (10)

𝜀 𝑇∞ − 𝑇𝑐

4 
Table 2
Feature prediction importance of the top five features with the random forest algorithm

Feature Feature Importance

OOB Cumulative

𝑇 𝑇
∗ 𝑠𝑇∗ 10.2% 10.2%

𝜈𝑡∕𝜈 9.0% 19.2%
𝑇 𝑇
∗ 𝑇∗ 8.2% 27.5%

𝑇 𝑇
∗ 𝑠2𝑇∗ 7.5% 35.0%

𝑦
√

𝑘∕𝜈 7.1% 42.0%

are normalised by the mainstream to coolant temperature difference
and a turbulence length scale, 𝑘3∕2∕𝜀.

In the present work, each model is trained on a reduced feature
set dictated by the feature importance study conducted on the random
forest model in Ellis et al. [26]. This simplifies the model for use in
RANS frameworks. The feature importance is performed using an out-
of-bag (OOB) predictor importance by permutation which highlights
which parameters provide the largest change to the model when they
are permuted within the input feature space. The reduced feature set
used to train both the random forest and shallow neural network
models is presented in Table 2. The top five features cumulatively make
up 42% of the total relative feature importance from the original 19
features.

2.1.2. Machine learning algorithms
The machine learning algorithms: random forests and shallow neu-

ral networks were studied with the models that they provide. The
random forests model [37–39] features an ensemble of decision tree
learners where the collection of results from each tree is averaged in
the present work to obtain the model output. The number of trees, max-
imum number of decision tree splits, minimum node size and number
of randomly selected features at each node are hyperparameters that
can be tuned to improve the model performance. The random forest
machine learning method in turbulence modelling has shown success
in previous works by Milani et al. [20] and Ling and Templeton [3].
The shallow neural networks algorithm features a feed-forward net-
work with a single hidden layer between the input and output layers.
Additional details on model hyperparameter selection are discussed by
Ellis et al. [26].

In this work, the random forest model is studied with different num-
bers of trees and maximum numbers of splits to investigate increasing
model complexity in the present case. For the minimum node size and
number of randomly selected features at a node, Hastie et al. [40]
recommends values of five and one-third of the total number of features
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Table 3
Normalised error of machine learning predictions compared to the HOGGDH with
𝑐𝜃 = 0.6.

𝑅𝑀𝑆𝐸∕𝑈∞(𝑇∞ − 𝑇𝑐 ) (×10−4)

Training & Validation Testing
br05-dr20 br10-dr20 br06-dr12

HOGGDH (𝑐𝜃 = 0.6) 94.73 79.66 61.20
Random Forest 22.13 20.96 17.89
Shallow Neural Network 20.42 17.88 17.71

Table 4
Normalised error of the random forest models of differing complexities.

Trees Splits 𝑅𝑀𝑆𝐸∕𝑈∞(𝑇∞ − 𝑇𝑐 ) (×10−4)

Training & Validation Testing
br05-dr20 br10-dr20 br06-dr12

RF Model 1 25 100 22.13 20.96 17.89
RF Model 2 25 20,000 7.73 7.18 19.70
RF Model 3 1000 100 21.83 20.61 17.71
RF Model 4 1000 20,000 7.53 6.95 19.51

respectively. For the present work, the number of randomly selected
features at a node was rounded up to the nearest integer to give a value
of two. For the shallow neural network, 20 hidden nodes were used.
Additional layers were investigated for the present work but did not im-
prove upon the model performance. A tan-sigmoid activation function
is used for each node in the shallow neural network architecture.

2.2. Model a priori results

The two 𝑐𝜃 machine learning models, using the random forests and
shallow neural network algorithms, are tested using the LES testing
dataset (br06-dr12). Testing is performed on this unseen case, of a
different density and blowing ratio, to confirm that the model can
perform on a different cooling flow condition. Predictions of 𝑐𝜃 are
made from the time-averaged, frozen LES field and compared with
those extracted from the LES. The HOGGDH closure, with the machine
learnt coefficient, is then used to evaluate the turbulent heat flux
for direct comparison to those resolved by the LES. To assess the
improvement of the machine learning model, the HOGGDH closure,
with its standard coefficient of 0.6 [41], is used for comparison.

2.2.1. Error analysis
The constructed models are assessed by comparing the Root-Mean-

Square Error (RMSE) between the machine learning models and the
LES-resolved turbulent heat flux magnitude. The RMSE is defined in
Eq. (11). The error is evaluated across domain data points located on
the slices shown in Fig. 3. The slices show regions crossing the path of
the cooling jet from the cooling hole and the jet’s initial development
to the downstream region.

𝑅𝑀𝑆𝐸 =

√

√

√

√

√

1
𝑁

𝑁
∑

𝑛=1

3
∑

𝑖=1

(

𝑢′𝑖𝑇 ′
𝑚𝑜𝑑𝑒𝑙 − 𝑢′𝑖𝑇 ′

𝐿𝐸𝑆

)2
(11)

Table 3 presents the RMSE results comparing the random forest and
hallow neural network machine learning models with the advanced
OGGDH closure across the training and validation cases (br05-dr20
nd br10-dr20) and the testing case (br06-dr12). Both machine learning
pproaches show reductions in RMSE of more than 70% compared to
he HOGGDH closure for both the training and validation cases as well
s the testing case, showing the model can generalise to other blowing
nd density ratios not present in the model training. The shallow neural
etwork outperforms the random forest model in all cases, but this
eduction in error is much smaller in the testing case.

Table 4 shows the RMSE across both the training and validation
atasets (br05-dr20 and br10-dr20) and the testing dataset (br06-dr12)
 m

5 
Fig. 3. Data slices for machine learning datasets.

o elaborate on the impact of model complexity. In the training and
alidation datasets, a 65% reduction in RMSE is achieved by increasing
he maximum number of splits from 100 to the optimum value of
0,000. Increasing the number of trees in the ensemble, from 25 to
000, provides minor improvements in the RMSE of about 1.5%. This
erformance is in line with the trends of Ellis et al. [26]. However,
nalysis of the model’s response on the testing dataset (case br06-dr12),
hows a different trend. For the testing dataset, increasing the maxi-
um number of splits to 20,000 increases the RMSE by approximately
0%. This is evidence of model overfitting and shows the importance
f performing testing on datasets that are completely isolated from the
raining data. Increasing the number of trees in the ensemble maintains
he reduction of RMSE on the testing dataset. However, increases in the
umber of trees provide a linear increase in computational cost. The
esults of Table 4 justify the random forest hyperparameters chosen for
urther use (25 trees and 100 splits).

.2.2. Test case coefficient prediction
Results of the machine learning models are presented across six

rofiles for the testing case (br06-dr12), covering the evolution of the
oolant jet along the centreline (𝑍 = 0) and a lateral location (𝑍 =
.5𝐷) at locations 1𝐷, 4𝐷 and 8𝐷 downstream of the coolant hole
railing edge. Comparisons are made to the LES-resolved turbulent heat
lux to validate the machine learning results. In addition, comparisons
re made to the advanced HOGGDH closure to show the benefits of the
achine learning model against a benchmark approach.

Fig. 4 presents profiles comparing the modelled 𝑐𝜃 and turbulent
eat flux magnitude |

|

|

𝑢′𝑖𝑇 ′|
|

|

. Both the random forest and the shallow
neural network model show good agreement with the target 𝑐𝜃 pro-
iles. However, Figs. 4(a), 4(b) and 4(c) show disagreements in the 𝑐𝜃
rediction to the LES in the near-wall region. Within this region, the
urbulent heat flux magnitude is small compared to the shear layer. In
ig. 4(c), the LES indicates a large negative 𝑐𝜃 necessary to drive the
urbulent heat flux magnitude indicating a region of strong counter-
radient transport. Despite these highlighted flaws, the magnitude of
he turbulent heat flux is in close agreement with the LES. Within
he shear layer on the jet centreline, both the neural network and
andom forest models improve the magnitude of the turbulent heat
lux compared to the HOGGDH model in the three profiles progressing
ownstream. On the off-centreline profiles (𝑍 = 0.5𝐷), the turbulent
eat flux magnitude and coefficients are well captured by the machine
earning approaches as the jet develops downstream. At 𝑋 = 1𝐷,
he off-centreline profile (Fig. 4(d)) shows the near-wall peak of the

achine learning models matches the peak seen in the LES, while the
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Fig. 4. Profiles of random forest [ ] and neural network [ ] modelled 𝑐𝜃 and turbulent heat flux magnitude compared to HOGGDH with 𝑐𝜃 = 0.6 [ ] and extracted
and resolved LES [ ]. Test case br06-dr12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
HOGGDH closure overpredicts this peak by a factor of two. Away from
the wall, the shear layer is underpredicted and lacks the defined peak of
the LES. This sharp peak is exhibited by the HOGGDH model, although
it overpredicts the magnitude compared to the LES results.

Fig. 5 presents profiles of the streamwise, spanwise and normal
components of the modelled turbulent heat flux. The 𝑐𝜃 models enable
improvements to the turbulent heat flux magnitude but they do not
dictate the distribution of each component. Recalling Eq. (6) shows that
the component values are dictated by the inner product of the Reynolds
stress tensor with itself and the temperature gradient vector. Fig. 5(a)
demonstrates that this approach provides accurate turbulent heat flux
components just downstream of the coolant hole trailing edge on the
jet centreline. Further downstream, Fig. 5(c), shows the turbulent heat
flux components deviate from the LES resolved turbulent heat flux,
although the magnitude is in good agreement. The spanwise component
is zero on the centreline profile where the coolant jet exhibits spanwise
symmetry and has therefore been omitted.

In the off-centreline profiles, shown in Figs. 5(d) and 5(e), the turbu-
lent heat flux exhibits deviations from the LES data but the magnitude
was well-predicted (shown in Fig. 4). In the downstream profiles, this
difference to the LES results is more prominent. The turbulent heat
flux modelled by the machine learning approaches shows deviations in
the turbulent heat flux components that present flaws in the functional
form of the HOGGDH closure which dictates the angle of the modelled
turbulent heat flux. With this approach, the LES resolved turbulent heat
flux magnitude can be reproduced by a machine learning approach.
However, the angle of the modelled turbulent heat flux cannot be
recovered, unless the flow aligns with the direction of the HOGGDH
closure.
6 
3. Augmented RANS model

With the success of the model’s a priori results, the behaviour of
such models in a RANS environment is explored in this section. The
a priori performance of both the shallow neural network and random
forest models were similar and therefore the random forest model
was taken forward due to ease of implementation. The random forest
model of the HOGGDH coefficient was implemented and compiled into
OpenFOAM. Within the present work, the model is used in conjunction
with the turbulent anisotropy model investigated by Ellis and Xia [24],
which showed significant improvement to the time-averaged coolant
and velocity fields. The implementation is first discussed and then
the results of the data-driven model combination on film and effusion
cooling flows are presented.

3.1. Methodology

The two data-driven models are added into OpenFOAM’s rhoSimple-
Foam solver. The modified solver is described in Fig. 6. The two mod-
els are added to the code to provide improved data-driven Reynolds
stresses and turbulent heat flux for the momentum and energy equa-
tions respectively which aim to improve the primitive variables in the
simulation.

3.1.1. Turbulent anisotropy implementation
The implementation of the turbulence anisotropy model is dis-

cussed in detail by Ellis and Xia [24] and summarised here. The TBNN
anisotropy model was also trained on case br05-dr20 as well as two
other cases covering cooling holes with different inclination angles
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Fig. 5. Profiles of random forest [ ] and neural network [ ] modelled turbulent heat flux vector components compared to HOGGDH with 𝑐𝜃 = 0.6 [ ] and resolved
LES [ ]. Test case br06-dr12. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
and length-to-diameter ratios. The model employs a 𝑘-𝜔 SST [42]
turbulence model augmented with the turbulent anisotropy TBNN Py-
Torch model to improve the Boussinesq hypothesis Reynolds stresses
available with a standard 𝑘-𝜔 SST model [42]. After the turbulence
equations are solved, the neural network model is evaluated to establish
the turbulent anisotropy and then the Reynolds stresses for the next
iteration, highlighted in Fig. 6. The neural network Reynolds stresses,
𝑅𝑁𝑁
𝑖𝑗 , are obtained from the anisotropy output by the neural network

model,

𝑅𝑁𝑁
𝑖𝑗 = 2𝑘

(

𝑎𝑁𝑁
𝑖𝑗 + 1

3
𝛿𝑖𝑗

)

, (12)

where the anisotropy directly output by the neural network is 𝑎𝑁𝑁
𝑖𝑗 .

The coupling of velocity, pressure and accurate Reynolds stresses
within the momentum equation for high Reynolds number flows, rele-
vant for engineering applications [43], can significantly impact numer-
ical stability and model robustness [44]. To address model instability
the modelled neural network Reynolds stress, 𝑅𝑁𝑁

𝑖𝑗 , is split into a linear
and non-linear component where the linear component of the Reynolds
stresses is equal to the Boussinesq hypothesis Reynolds stresses with
an implicit and explicit part provided to the segregated momentum
equations. The difference between the neural network model and the
Boussinesq hypothesis is the non-linear component which is treated
explicitly as an additional term within the momentum equation. This
approach was used by Wu et al. [43] on simple turbulent channel flow,
periodic hills and square duct flow.

Relaxation of the non-linear Reynolds stress term is applied across
the domain with a value of 0.7. In the near-wall regions, where the
anisotropy of the flow is high, additional relaxation is applied using
a parabolic damping function that provides a smooth transition from
7 
the wall to the mainstream flow. Finally, a box filter is used on the
neural network anisotropy to provide a smooth field without spurious
oscillations and discontinuities. The box filter is used with 10 passes
to approximate a Gaussian filter with a standard deviation of 2.6 cells.
Additional details and results are presented by Ellis and Xia [24] to
justify the methodology.

3.1.2. Random forest implementation
The random forest model for the turbulent heat flux coefficient is

compiled into OpenFOAM using Matlab’s c++ code generator. This
provided a method to translate the random forest model from Matlab to
c++ to interface with OpenFOAM. The code was wrapped in a function
that could be called from the desired OpenFOAM solver.

Local inputs are passed to the random forest model and the local
coefficient, 𝑐𝜃 , is returned. Positivity is ensured in the coefficient within
the solver to promote solver stability by constraining the resultant tur-
bulent diffusivity tensor, 𝐷𝑖𝑗 , to be positive semi-definite. The closure,

𝑢′𝑖𝑇 ′ = −𝑐𝜃𝜏𝑡
𝑅𝑖𝑘𝑅𝑘𝑗

𝑘
𝜕𝑇
𝜕𝑥𝑗

, (13)

provides the diffusive flux with a Laplacian scheme within the
energy transport equation,

𝜕
𝜕𝑥𝑖

(

𝑢′𝑖𝑇 ′
)

= 𝜕
𝜕𝑥𝑖

(

−𝐷𝑖𝑗
𝜕𝑇
𝜕𝑥𝑗

)

where, 𝐷𝑖𝑗 = 𝑐𝜃𝜏𝑡
𝑅𝑖𝑘𝑅𝑘𝑗

𝑘
(14)

.
Unlike the Reynolds stress augmentation, the 𝑐𝜃 coefficient from the

RF model did not require additional treatment to ensure the solver’s
stability.
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Fig. 6. OpenFOAM’s rhoSimpleFoam algorithm with augmented machine learning
models.

Table 5
Model names and descriptions for identification.

Case name Turbulence model Turbulent heat flux

Model Coefficient

SST-GDH Standard 𝑘-𝜔 SST GDH 𝑃𝑟𝑡 = 0.85
SST-HOGGDH HOGGDH 𝑐𝜃 = 0.6

ML-GDH
SST + 𝑎𝑁𝑁

𝑖𝑗

GDH 𝑃𝑟𝑡 = 0.85
ML-HOGGDH HOGGDH 𝑐𝜃 = 0.6
ML-RF Random Forest Variable 𝑐𝜃

3.2. Model a posteriori results

The predictive capability of the augmented turbulent heat flux
coefficient using the random forest model is assessed to identify its
improvements and behaviour in three single-hole cases defined in
Table 1. The augmented SST model with the neural network anisotropy
is used with some additional comparisons made to the standard 𝑘-
𝜔 SST turbulence model. Model names and descriptions are provided
in Table 5 to aid identification. Standalone comparisons between the
standard 𝑘-𝜔 SST model and the model with the data-driven anisotropy
are given in Ellis and Xia [24]. Results for ACE distributions are
calculated with the adiabatic wall temperature as defined by,

𝜂𝑎𝑤 =
𝑇𝑎𝑤 − 𝑇∞
𝑇𝑐 − 𝑇∞

. (15)

.2.1. Case br05-dr20
First, the low blowing ratio case br05-dr20 is shown in Fig. 7

omparing ACE distributions for the ML-GDH, ML-HOGGDH and ML-RF
odels. For this case and its conditions, the cooling jet demonstrates
8 
ully-attached behaviour. Introducing the random forest model, where
he 𝑐𝜃 parameter is controlled by the trained machine learning model,
hows small improvements over the standard HOGGDH closure with a
ixed 𝑐𝜃 of 0.6 (ML-HOGGDH). The centreline distribution is in good

agreement with the LES dataset over a greater portion of the coolant
plate. The lateral spreading of the coolant is underpredicted by the
ML-HOGGDH and the ML-RF model but the ML-RF model is closer
to the LES results. Both approaches predict the same trends observed
in the LES and vastly improve the ACE predictions compared to the
ML-GDH model. Introducing the HOGGDH approach provides coolant
lateral spreading to a degree not observed by the GDH closure and
controlling the 𝑐𝜃 coefficient with the random forest model translates
to small improvements in surface coolant predictions.

Fig. 8 quantifies the improvement by introducing the random forest
model. In the presented profiles, the random forest has the lowest
RMSE. The ML-RF model shows a reduction in the RMSE from the ML-
HOGGDH model by 33.4% across the centreline but less improvement
is shown in the other profiles. Comparing the ML-RF model to the ML-
GDH model shows that the GDH approach is only comparable in the
spanwise average metric.

3.2.2. Case br10-dr20
Further analysis of the augmented random forest model is pursued

with the higher blowing ratio case br10-dr20, where jet separation
and reattachment play an important role in the cooling distribution.
Comparisons of the modelled turbulent heat flux vector are made in
Figs. 9 and 10 comparing the ML-GDH and ML-HOGGDH case with
the ML-RF case. Centreline profiles of the turbulent heat flux vector
show the random forest model improves both streamwise and normal
turbulent heat flux components in the initial coolant jet development
region (𝑋 ≤ 1.25𝐷), where the HOGGDH closure overpredicts the
turbulent heat flux. The initial profile (𝑋 = −1.25𝐷), immediately aft of
the coolant hole leading edge, shows over predictions and the random
forest model predictions of 𝑐𝜃 exceed the value needed to reproduce the
LES resolved turbulent heat flux vector magnitude. Further attention to
the initial development of the shear layer flow in the model training
process could benefit these augmented models further.

In the mixed downstream regions, the normal component of the
turbulent heat flux is in good agreement with the resolved LES but
the streamwise component is underestimated. The deficit in this pre-
diction, which was not present in the a priori analysis shown in Fig. 4,
ould be a result of the relaxed Reynolds stresses from the augmented
eynolds stress model that deviates from the full anisotropy output of

he machine learning model. A potential improvement could be found
y training a random forest model with the full or relaxed Reynolds
tresses instead of the Boussinesq hypothesis stresses.

Off-centreline profiles of the turbulent heat flux vector are shown
n Fig. 10. Small improvements are present in the predictions but

large underprediction in the augmented model is observed in the
ownstream streamwise turbulent heat flux peak associated with the
hear layer. The spanwise component of turbulent heat flux with the
ugmented model improves the predicted profiles which is an indicator
f the improved lateral mixing behaviour of the random forest model.
ormal components are closer to those predicted by the LES but the
odel still overpredicts the values by approximately twice the resolved

ES value in the near-wall region.
The propagation of the augmented turbulent heat flux to the tem-

erature field is first shown by the non-dimensional temperature across
entreline and off-centreline profiles in Fig. 11. In the centreline, the
andom forest augmented model shows an improved prediction of the
arly shear layer where the temperature gradient is particularly sharp.
he improved prediction in this region reflects the reduced turbulent
eat flux components shown in the centreline profiles of Fig. 9. Al-
hough the streamwise turbulent heat flux component is underpredicted
n the downstream profiles the non-dimensional temperature profiles
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Fig. 7. ACE comparison between ML-GDH [ ], ML-HOGGDH [ ] and the ML-RF model [ ] with LES results [ ]. Case br05-dr20. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. RMSE of the ACE across the centreline, spanwise average and lateral profiles
presented in Fig. 7. Case br05-dr20.

remain in good agreement with the LES for the ML-RF case. Off-
centreline profiles (Fig. 11(b)) show the random forest model provides
a distinct improvement over the standard HOGGDH closure in RANS
simulations. Non-dimensional temperature profiles show good agree-
ment to the LES results across the initial development of the cooling
jet. This indicates the importance of a spatially varying diffusivity
coefficient in film cooling predictions where lateral spreading rates are
important in determining the flow’s cooling ability.

Plots of ACE distributions are shown with comparisons to the LES
results in Fig. 12. The ML-RF model, compared to the ML-GDH and
ML-HOGGDH (all with the neural network anisotropy augmented SST
model), presents wall ACE distributions that take the best of both the
GDH and HOGGDH. In the centreline profile, the augmented random
forest model predicts the cooling distribution in line with the GDH
closure, where both provide a close representation of the LES results.
Meanwhile, the lateral distributions at 𝑋 = 10𝐷 and 15𝐷 match the
respective trends of the HOGGDH closure providing good agreement
with the LES. The combination provides improved spanwise-averaged
predictions.

Fig. 13 shows that the ML-RF model provides the lowest RMSE for
the centreline and spanwise average profiles. The lateral distributions
are contested by the ML-GDH model for the 𝑋 = 1𝐷 position and
the ML-HOGGDH model for the 𝑋 = 10𝐷 but the ML-RF errors are
low. These results indicate a distinct improvement for this high-blowing
ratio case where jet separation and reattachment are present. The ML-
RF model improves centreline and spanwise average distributions of
the ACE over the ML-GDH and ML-HOGGDH models where the GDH
9 
shows reasonable predictions in the centreline distribution and the
ML-HOGGDH model improves the downstream predictions of coolant
lateral spread.

Contour plots of ACE, shown in Fig. 14, further the analysis and
discussion of augmented model improvements. Alongside the results
with the neural network anisotropy augmented SST model, the standard
𝑘-𝜔 SST model with GDH (SST-GDH) and HOGGDH (SST-HOGGDH)
closures are shown. The addition of neural network anisotropy in the
augmented SST model removes clear spanwise peaks that are present
in both the SST-GDH and SST-HOGGDH models. The augmented SST
model begins to improve the wall ACE with improved coolant spread
and cooling distribution in the region just aft of the coolant hole.

The discussion surrounding the results of Fig. 12 is shown qual-
itatively in Fig. 14. Contours of the ML-RF model show improved
predictions in the region just aft of the coolant hole, compared to the
HOGGDH closure that over-predicts the cooling impact. Downstream,
after some length of mixing with the mainstream gas, the results of
the ML-RF model are in close alignment with the ML-HOGGDH with
improved predictions of lateral coolant distributions that reflect the
LES results. Although the ML-RF model makes improvements, these
contours show that the data-driven turbulent anisotropy model makes
the most significant improvement.

3.2.3. Case br06-dr12
A further case at a density ratio of 1.2 is investigated at an increased

blowing ratio of 0.6. This case was used to test the random forest turbu-
lent heat flux coefficient model but did not influence the construction
of the model as a training or validation dataset would do. The results
of the random forest model in Fig. 4 showed the turbulent heat flux
magnitude closely matched the LES compared to the standard HOGGDH
model. Components of the turbulent heat flux vector were shown to
deviate in the downstream region because of the functional form of the
base HOGGDH model. The results below compared ACE results between
the three models to the LES predictions of coolant distribution.

Fig. 15 shows significant improvements using the HOGGDH and
random forest model in the initial coolant jet development region
(𝑋 < 7𝐷). Within this region, the secondary peak associated with
the coolant jet reattachment is observed in agreement with the LES
at 𝑋 = 5𝐷, whereas the GDH model does not predict this peak until
10𝐷 downstream of the coolant trailing edge. Differences between the
HOGGDH and random forest model are small but minor improvements
are exhibited by the random forest model. Lateral spreading, predicted
by the random forest model, is in better agreement with the LES in the
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Fig. 9. Turbulent heat flux components of ML-HOGGDH [ ] and ML-RF [ ] augmented models across centreline profiles compared to LES resolved components [ ]. Case
br10-dr20. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Modelled turbulent heat flux vector components of ML-HOGGDH [ ] and ML-RF [ ] augmented models across off-centreline profiles (𝑍 = 1𝐷) compared to LES
resolved components [ ]. Case br10-dr20. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Non-dimensional temperature profiles comparing ML-HOGGDH [ ] and ML-RF [ ] augmented models with the LES predictions [ ]. Case br10-dr20. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. ACE comparison of ML-GDH [ ], ML-HOGGDH [ ] and the ML-RF model [ ] with LES data [ ]. Case br10-dr20. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. RMSE of the ACE across the centreline, spanwise average and lateral profiles
presented in Fig. 12. Case br10-dr20.

initial jet development region which is shown in the lateral distribution
at 𝑋 = 1𝐷 and the spanwise-averaged ACE results. Fig. 16 summarises
the small improvements of the combined model with the spanwise-
averaged and lateral results demonstrating improvements over the
standard HOGGDH model. However, the downstream regions show
underestimated centreline ACE which in turn reduces the observed
spanwise-averaged ACE than predicted by the LES flow, which is also
illustrated by the root-mean-square error (Fig. 16). As shown in case
br05-dr20, the difference between the ML-RF and ML-HOGGDH results
is minimal but offers reassurance that the model does not adversely
affect the flow field when used in novel cases.

4. Conclusions

A model has been developed for a spatially varying diffusivity
coefficient, 𝑐𝜃 , for the HOGGDH closure of the turbulent heat flux using
data-driven machine learning techniques: random forests and shallow
neural networks. The model of 𝑐𝜃 was trained on two film cooling cases
and tested upon a third case.

The random forest algorithm and the shallow neural network ap-
proach showed predictions with good agreement to the LES resolved
data in the testing case, demonstrating its ability to generalise to
this different coolant flow condition. Non-linearities in the profiles
were well captured by the model demonstrating its ability to capture
complexities in the flow. Predictions of 𝑐𝜃 provided improved profiles
of the turbulent heat flux magnitude compared to the commonly used
11 
Fig. 14. Contours of ACE across the downstream plate comparing standard to aug-
mented SST models with the GDH, HOGGDH published by Ellis and Xia [24] (reprinted
under terms of the CC BY 4.0 license), and the combined augmented SST and RF model
(ML-RF) for Case br10-dr20.

constant of 𝑐𝜃 = 0.6 and indicated the advantage of a spatially varying
coefficient.

Implementation of the random forest model was achieved in Open-
FOAM and used alongside the data-driven turbulent anisotropy model
developed by Ellis and Xia [24]. Results showed cooling effective-
ness improvements when coupled together. The random forest model
reduced the cooling effectiveness RMSE significantly in all but one
cooling profile. Marginal improvements were made compared to the
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Fig. 15. ACE comparison of ML-GDH [ ], ML-HOGGDH [ ] and the ML-RF model [ ] with LES data [ ]. Case br06-dr12. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 16. RMSE of the ACE across the centreline, spanwise average and lateral profiles
presented in Fig. 15. Case br06-dr12.

HOGGDH model which had the same closure structure without the
machine learnt coefficient. Centreline and off-centreline profiles of non-
dimensional temperature and turbulent heat flux showed the that ran-
dom forest model combined with the data-driven turbulent anisotropy
model was close to replicating the LES datasets. Although improve-
ments were exhibited with the random forest model, the contours of
cooling effectiveness showed the biggest improvement was made using
the data-driven turbulent anisotropy model.

Following these studies, a variety of further work has been identi-
fied that would be beneficial for industrial usage of such approaches.
First, future work should look to address a wider range of industrially
relevant conditions improved by ML models. Second, new models
on industrially relevant cases should investigate the incorporation of
sparse experimental datasets. Finally, the model interpretability should
be investigated to highlight their performance and future simplification
that would aid industrial adoption.
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