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A B S T R A C T

This study explores the application of Physics-Informed Neural Networks (PINNs) in modeling fluid flow and heat 
transfer dynamics within intricate geometric configurations, focusing on manifold microchannel (MMC) heat 
sinks designed for efficient high-power IGBT cooling. A deep neural network architecture comprising two sub- 
PINNs, one for flow dynamics and another for thermal behavior, is developed, each initialized with a sine 
activation function to capture high-order derivatives and address the vanishing gradient problem. Comparisons 
between PINN and CFD simulations reveal close agreement, with both methods showing an increase in pressure 
drop and a decrease in temperatures as inlet velocity increases. Discrepancies arise in scenarios with rapid flow 
pattern or gradient changes, highlighting PINNs’ sensitivity to geometric complexity and numerical stability. 
Overall, this study underscores PINNs’ potential as a promising tool for advancing thermal management stra-
tegies across various engineering applications.

1. Introduction

Insulated Gate Bipolar Transistors (IGBTs) are crucial semiconductor 
components in power electronics, used across sectors including wind 
energy, solar power, rail transportation, and power conversion systems. 
Functioning as switches in converters and inverters, IGBTs amalgamate 
the advantageous traits of MOSFETs with the robust current-handling 
capabilities inherent in bipolar transistors to withstand high levels of 
current and voltage. The necessity for meticulous cooling arrangements 
for IGBTs stems from their inherent tendency toward significant thermal 
dissipation during operation, primarily due to switching and conduction 
losses. Switching losses occur during dynamic transitions between the 
IGBT’s on and off states, leading to rapid fluctuations in voltage and 
current, while conduction losses manifest when the IGBT operates in its 
on-state, resulting in power dissipation as heat. Absence of effective 
cooling mechanisms leads to a notable increase in the temperature 
profile of the IGBT, adversely affecting efficiency, reliability, and device 
longevity. Permissible temperatures for conventional IGBTs typically 
range below 150–175 ◦C [1], as exceeding these thresholds reduces 
system efficiency and increases thermal stress, potentially resulting in 
system deformation and reduced lifespan.

Commonly used cooling technologies [2] for power electronics 

include natural air cooling, forced air cooling, forced liquid cooling, and 
phase change thermal management [3]. While natural air cooling offers 
a cost-effective solution, its efficacy may be limited, especially in high- 
temperature environments. Forced air cooling provides enhanced cool-
ing performance but entails increased complexity and potential noise 
issues. Forced liquid cooling offers superior efficiency and uniform 
temperature distribution, albeit requiring additional equipment and 
maintenance. Phase change thermal management provides passive 
cooling benefits, yet its applicability may be constrained by consider-
ations such as temperature range and material compatibility. Therefore, 
air cooling systems are favored due to their reliability, simplicity, and 
cost-effectiveness in managing IGBT thermal conditions [4]. Micro-
channel heat sinks for forced air cooling, as depicted in Fig. 1a, have 
emerged as effective solutions due to their compact design and minimal 
coolant usage, making them particularly suitable for scenarios with 
spatial constraints and demanding thermal dissipation requirements. In 
contrast to traditional microchannel heat sinks, manifold microchannel 
heat sinks [5,6], illustrated in Fig. 1b, feature numerous inlet and outlet 
channels arranged at periodic intervals along the length of the micro-
channel. These manifold structures serve as flow dividers, markedly 
reducing the flow length to a fraction of the total length. Moreover, the 
enhanced cooling capabilities of microchannel heat sinks facilitate 
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efficient management of discrete components characterized by high heat 
flux.

Computational fluid dynamics (CFD) simulations are extensively 
employed in both scientific research and engineering endeavors for 
thermal management [7–9]. Despite significant advancements in simu-
lating multi-physics problems through numerical discretization of par-

tial differential equations (PDEs), challenges [10] persist in seamlessly 
integrating noisy data into existing algorithms, navigating complex 
mesh generation, and addressing high-dimensional problems governed 
by parameterized PDEs. Furthermore, solving inverse problems [11] 
involving hidden physics remains prohibitively expensive and necessi-
tates distinct formulations. By combining thermal simulation analysis 
with machine learning algorithms, Vafai et al. developed a support 
vector regression (SVR) model which can accurately predict the pa-
rameters in the complex internal structure of multi-layer 3D chips [12]. 
While deep learning shows promise in addressing these issues [13], 
supervised learning techniques mainly rely on traditional data-driven 
neural networks, which can be costly and time-consuming to generate 
data [14]. Moreover, these models may not consistently adhere to 
fundamental physical laws, leading to extrapolation errors and unreli-
able outcomes. Recent research has emphasized the promising role of 
Physics-Informed Neural Networks (PINNs) in various engineering do-
mains [15], which have demonstrated effectiveness in addressing real- 
world challenges marked by noisy data and incomplete physics. PINNs 
leverage automatic differentiation [16] to accurately evaluate differ-
ential operators without discretization errors, while also employing a 
multi-task learning approach to fit observed data and ensure compliance 
with the underlying principles of physics.

Consider the general form of a PDE given by: 
{

N i[u](x) = fi(x), ∀i ∈ {1,⋯,NN },x ∈ D

C j[u](x) = gj(x),∀j ∈ {1,⋯,NC }, x ∈ ∂D
, (1) 

where N i is the general differential operator, x denotes the set of in-
dependent variables defined over a bounded continuous domain D ⊆

ℝD, D ∈ {1,2, 3,⋯}, and u(x) represents the solution to the PDE; C j 

denotes the constraint operator, encompassing differential, linear, and 
nonlinear terms, typically covering boundary and initial conditions; ∂D 

represents a subset of the domain boundary necessary for defining the 
constraints. The solution u(x) is approximated by a neural network 
uNN(x; θ). In its simplest form, this neural network comprises fully con-
nected layers and is represented as follows: 

{
uNN(x; θ) = Wn{ϕn− 1∘ϕn− 2∘⋯∘ϕ1∘ϕE}(x) + bn

ϕi(xi) = σ(Wixi + bi)
, (2) 

where x ∈ ℝd0 is the input to the network, θ denotes the set of the net-
work’s trainable parameters, which are optimized iteratively during the 
training using variants of the stochastic gradient descent method. Here, 
n represents the number of layers, ϕi ∈ ℝdi is the ith layer of the network, 
Wi ∈ ℝdi×di− 1 and bi ∈ ℝdi are the weight and bias of the ith layer, and σ is 
the activation function. To train the neural network, a loss function is 
constructed to penalize the derivation of the approximate solution 
uNN(θ), with the constraints encoded as penalty terms, defining the 
following residuals as: 
⎧
⎨

⎩

r(i)N (x; uNN(θ) ) = N i[uNN(θ) ](x) − fi(x)
r(j)C (x; uNN(θ) ) = C j[uNN(θ) ](x) − gj(x)

, (3) 

where r(i)N and r(j)
C 

represent the PDE and constraint residuals, respec-
tively. The loss function is then formulated as:  

where 
⃦
⃦
⃦r(i)N (x; uNN(θ) )

⃦
⃦
⃦

p 
and 

⃦
⃦
⃦r(j)

C
(x; uNN(θ) )

⃦
⃦
⃦

p 
denote the p-norm of 

residuals, λ(i)N and λ(j)
C 

serve as weight functions controlling the loss 
interplay within and across different terms. During each iteration, the 
integral terms within the loss function L res(θ) are generally approxi-
mated using either a regular or Quasi-Monte Carlo method [17], with 
samples drawn from the independent variables x as a batch. Fig. 2 il-
lustrates the learning process of a typical PINN. The inputs to the neural 
network include the spatial coordinates x = [x, y, z, t] of a point cloud 
and realizations from the parametric space (p1,⋯,pn), which are mapped 
to the quantities of interest u(x) = [u1, u1,⋯, un]

T through a multi-layer 
perceptron (MLP) with nonlinear activation functions. The derivatives 
are computed and utilized to formulate the residuals of the governing 
equations in the loss function. This loss function generally comprises 
multiple terms weighted by different coefficients, including residuals 
associated with the output, boundary and initial condition information.

The primary objective of this research is to develop a physics- 
informed neural network (PINN) model capable of simulating conju-
gate heat transfer by integrating fundamental physical principles about 
flow dynamics and heat transfer into the neural network framework. The 
study aims to investigate the robustness of PINNs in accurately pre-
dicting fluid flow behaviors and temperature distributions within com-
plex geometric structures with complicated boundary conditions, 
thereby contributing to advancements in thermal management strate-
gies for various engineering applications.

2. Methodology

In this study, the numerical simulation is conducted by utilizing the 
conjugate heat transfer PINN-model to evaluate the cooling performance 
of MMC for high-power IGBTs. In training PINNs for problems with 
symmetrical geometry and physical quantities, reducing the computa-
tional domain and utilizing symmetry boundaries can accelerate 
training, reduce memory usage, and enhance accuracy in certain sce-
narios. This complexity reduction is achieved by simplifying the calcu-
lation domain through geometric symmetry considerations, as depicted 

Fig. 1. Schematic views of (a) a traditional microchannel (TMC) heat sink, and 
(b) a manifold microchannel (MMC) heat sink.

L res(θ) =
∑NN

i=1

∫

D

λ(i)N (x)
⃦
⃦
⃦r(i)N (x; uNN(θ) )

⃦
⃦
⃦

p
dx+

∑NC

j=1

∫

∂D

λ(j)C (x)
⃦
⃦
⃦r(j)C (x; uNN(θ) )

⃦
⃦
⃦

p
dx, (4) 
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in Fig. 3. The geometric model consists of two primary regions: the 
cooling air and the heat sink, which includes both the base and fin el-
ements. Introducing the cooling air at an initial temperature of 20 ◦C 
through the inlet situated at the top left of the geometry, it travels 
through the system, absorbing heat dissipated by the IGBT module as it 
traverses the fin structure. Detailed physical properties of both the 
cooling air and the metal materials constituting the heat sink are out-
lined in Table 1.

2.1. Governing equations and boundary conditions

Given that the characteristic Reynolds number of the fluid flow is less 
than 10, the governing equations portray the fundamental principles 
represent the conservation of mass and momentum for an incompress-
ible, Newtonian fluid in three dimensions as: 

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (5) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −
1
ρf

∂p
∂x

+ ν
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= −
1
ρf

∂p
∂y

+ ν
(

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)

u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −
1
ρf

∂p
∂z

+ ν
(

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)

, (6) 

where u, v, and w denote the velocity field components along the 
respective axes; ρf and ν are the density and the kinematic viscosity of 
the fluid; p stands for pressure.

The equations governing energy conservation within the fluid and 
solid domains are presented as follows: 

u
∂Tf

∂x
+ v

∂Tf

∂y
+w

∂Tf

∂z
− αf

(
∂2Tf

∂x2 +
∂2Tf

∂y2 +
∂2Tf

∂z2

)

= 0, (7) 

ks

(
∂2Ts

∂x2 +
∂2Ts

∂y2 +
∂2Ts

∂z2

)

= 0, (8) 

where Tf and Ts denote the temperatures of the fluid and solid, 
respectively; αf and kf represent the thermal diffusivity and the thermal 
conductivity of the fluid; while ks signifies the thermal conductivity of 
the solid.

The inlet velocity is determined by a velocity profile: 

wi =
6w

(y2 − y1)
2 (y − y1)(y+ y1 − 2y2), (9) 

where w is the average velocity, the variable y represents the coordinate 
along the y -axis, y1 and y2 respectively denote the lower and upper 
limits of the inlet coordinate. The outlet boundary condition is governed 
by a prescribed pressure po = 0. For symmetry boundaries, the condi-
tions are u • n = 0, and ∂p

∂n = 0, where n is the unit normal vector of the 
plane. The remaining walls are designated as non-slip walls with u = 0. 
For the thermal boundary conditions, the temperature at the inlet is 
specified as Ti = 293.15 K. On the bottom wall, a boundary heat source 
is defined as Qb = ks

∂T
∂n , where ∂T

∂n = 80 K/m denotes the normal tem-
perature gradient. For the interface between fluid and solid, both 
Dirichlet and Neumann boundary conditions are enforced as follows: 
⎧
⎪⎨

⎪⎩

Tf = Ts

kf
∂Tf

∂n
= ks

∂Ts

∂n
. (10) 

In addition, the normal temperature gradients at the outlet and all 
the channel walls are prescribed as ∂T

∂n = 0.

2.2. PINNs framework

The multi-layer perceptron (MLP) represents a foundational neural 
network architecture characterized by its hierarchical arrangement of 
layers. Information propagation within an MLP occurs in a forward 
manner, commencing from the input layer, traversing through one or 
more hidden layers, and ultimately terminating at the output layer. In 
this investigation, a MLP neural network comprising 6 layers is 
deployed, with each layer comprising 512 neurons interconnected by 
weighted connections. Throughout the training procedure, these 
connection weights undergo adjustments to minimize the disparity be-
tween predicted outputs and actual target values. The utilization of 
MLPs within PINNs offers a distinct advantage owing to their capacity to 
effectively capture intricate nonlinear relationships existing between 
input and output variables, all while incorporating imposed physical 
constraints or principles [18].

In this numerical investigation, by assuming the fluid properties 
remain constant with temperature variations, the case is treated as a 
one-way coupling between heat transfer and fluid flow equations. To 

Fig. 2. Schematic of the structure of a physics-informed neural network (PINN) solver. The inputs to the neural network include the spatial coordinates x = [x, y, z, t]
of a point cloud and realizations from the parametric space (p1,⋯, pn), which are mapped to the quantities of interest u(x) = [u1, u1,⋯, un]

T through a multi-layer 
perceptron (MLP) with nonlinear activation functions. Automatic differentiation (AD) is employed to compute the derivatives, which are then utilized to formu-
late the residuals in the loss function.
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alleviate complexity, the PINN is partitioned into two sub-PINNs, each 
dedicated to solving the flow field and the temperature fields of the fluid 
and solid. This partitioning facilitates the segmentation of the loss 
function, expediting training while preserving efficiency. Fig. 4 illus-
trates the schematic of the sub-PINNs and the communication channels 
for computing losses. The pressure (p) and the velocity field components 
(u, v, and w) are approximated with the flow model trained to conver-
gence. Their derivatives are then calculated employing automatic dif-
ferentiation (AD), which offers a hybrid method [13] for derivative 
calculation, maintaining track of derivative values of expressions and 
enabling combination through the chain rule to derive the original 

expression’s derivative. The neural network is trained by minimizing the 
mean square error (MSE) of the residual terms about the governing 
equations and boundary conditions as Ltotal,flow = LPDE,flow + LBC,flow,

where the residual terms of PDEs are considered as unsupervised 
learning, while the boundary conditions are considered as supervised 
learning.

The loss function of the flow sub-PINN concerning the PDEs is 
derived from the residuals corresponding to Eqs. (5) and (6) as: 

LPDE,flow =
1

NNS

∑NNS

k=1

∑4

j=1

⃒
⃒
⃒fNS,j

(
ui, ∂ui, ∂2ui

) ⃒⃒
⃒
2

= Lmass + Lx− momentum + Ly− momentum + Lz− momentum, (11) 

where NNS represents the number of residual points corresponding to the 
Navier-Stokes equations, including the mass conservation equation and 
the momentum conservation equations; fNS,j denote the functions cor-
responding to the residual terms of the governing equations; ui =

[u, v,w, p]T indicates the velocity components on x-axis, y-axis, z-axis, 
and the pressure; Lx− momentum, Ly− momentum, Lz− momentum, and Lmass denote 
the values of loss associated with the governing equations.

The loss associated with the boundary conditions of the flow sub- 
PINN is given by: 

Fig. 3. Figures of (a) the geometric model of calculation regions and the applied boundary conditions and (b) the distribution of sampling points from the main view. 
Blue points denote the points within the fluid domain D f , while red points represent the points of the solid domain D s. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)

Table 1 
Thermal physical properties of materials in fluid and solid regions.

Property Air Aluminum

Density / 
(

kg
m3

)
1.1173

Kinematic viscosity / (
m2

s
) 1.725 × 10− 5

Thermal diffusivity / (
m2

s
) 2.4534 × 10− 5 8.3 × 10− 5

Thermal conductivity / (
W

m⋅K
) 0.0276 201
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LBC,flow =
1

NBC,flow

∑NBC,flow

k=1

∑4

i=1

(⃒
⃒uNN,i − ui

⃒
⃒2 +

⃒
⃒∂uNN,i − ∂ui

⃒
⃒2
)

= LBC,u + LBC,v + LBC,w + LBC,p + LBC,n, (12) 

where NBC,flow is the number of sampling points chosen randomly on the 
boundary; uNN indicates the output values of the neural network; LBC,u,

LBC,v, LBC,w, and LBC,p denote the boundary loss related to u, v,w, and p; 
while LBC,n indicates the loss term related to the normal gradient of 
values on the boundary.

Subsequently, the training of the thermal neural network is initiated 
using the pre-trained flow model, enabling simultaneous resolution of 
temperature distributions in fluid (D f ) and solid (D s) domains. The loss 
function of thermal-PINN is defined as: 

Ltotal,thermal = LPDE,thermal + LBC,thermal, (13) 

where the loss function concerning the PDEs is established as: 

LPDE,thermal =
1

Nhf

∑Nhf

k=1

⃒
⃒
⃒fhf

(
ui,Tf

) ⃒⃒
⃒
2
+

1
Nhs

∑Nhs

k=1
|fhs(Ts) |

2
= Lhf + Lhs, (14) 

where Nhf and Nhs represent the node numbers of heat transfer equations 
of the fluid and solid domain, fhf and fhs denote the loss functions cor-
responding to the residual terms in the governing equations, Lhf and Lhs 

denote the loss functions concerning the convective heat transfer 
equation of the fluid domain and the heat conduction equation within 
the solid domain, respectively. The boundary loss function concerning 
the thermal field is 

LBC,thermal =
1

NBC,tf

∑NBC,tf

k=1

(⃒
⃒Tf ,NN − Tf

⃒
⃒2 +

⃒
⃒∂Tf ,NN − ∂Tf

⃒
⃒2
)

+
1

NBC,ts

∑NBC,ts

k=1

(⃒
⃒Ts,NN − Ts

⃒
⃒2 +

⃒
⃒∂Ts,NN − ∂Ts

⃒
⃒2
)

= LBC,Tf + LBC,n,Tf + LBC,n,Ts + Linterface,Dirichlet + Linterface,Neumann,

(15) 

where NBC,hf and NBC,hs represent the node numbers on the boundary, 
LBC,Tf is the boundary loss terms concerning Tf , LBC,n,Tf and LBC,n,Ts are the 
boundary loss about the normal gradient of Tf and Ts, and Linterface,Dirichlet 

and Linterface,Neumann denote the loss on the fluid-solid interface con-

Fig. 5. Graphs of activation functions: (a) ReLU, tanh, and sigmoid; and (b) y = sin
(

π
2 x

)
, and its three reciprocal bijections y = 2

πarcsin( − x − 2), y = 2
π arcsinx, and 

y = 2
πarcsin(2 − x).

Fig. 4. Schematic of sub-PINNs and communication channels for computing 
losses. p denotes pressure; u, v, and w represent velocity field components along 
the respective axes; Tf and Ts depict temperature distributions in fluid and solid 
domains; LPDE,flow and LPDE,thermal denote the loss functions of the flow-PINN and 
thermal-PINN concerning the governing equations; LBC,flow and LBC,thermal are the 
loss functions of the flow-PINN and thermal-PINN concerning the bound-
ary conditions.

X. Zhang et al.                                                                                                                                                                                                                                   International Communications in Heat and Mass Transfer 159 (2024) 108036 

5 



strained by the Dirichlet and Neumann boundary conditions.

2.3. Activation function

Training an MLP involves forwarding the inputs through the 
network, computing each neuron’s output by applying an activation 
function to the weighted sum of its inputs as depicted in Eq. (2). As 
shown in Fig. 5a, common activation functions include sigmoid, tanh, 
and Rectified Linear Unit (ReLU). While each activation function has its 
own characteristics and suitability for different tasks, ReLU is often 
preferred in PINNs due to its computational efficiency and ability to 
mitigate the vanishing gradient problem, especially in deep networks. 
However, ReLU-based MLPs, being piecewise linear, have zero second 
derivatives everywhere, thereby limiting their capability to model in-
formation in higher-order derivatives. Although alternative activations 
like tanh can represent higher-order derivatives, their derivatives often 
exhibit poor behavior and struggle to capture fine details. Sitzmann et al. 
[19] proposed a neural network architecture for implicit neural repre-
sentations that uses the sine as the periodic activation function of the 

first layer as: 

ϕi(xi) = sin(Wixi + bi). (16) 

Initialization scheme plays a pivotal role in maintaining inter-layer 
distributions. Utilizing a sine nonlinearity as input generates a recip-
rocal sine distribution (shown in Fig. 5b), which preserves the distri-
bution of activations allowing deep architectures to be constructed and 
trained effectively. This distribution ensures that inputs activated by 
sine functions adhere to a normal distribution, promoting effective 
network convergence. Additionally, scaling the first layer of the network 
by a factor of ω0 = 30 enables it to span multiple periods of the sine 
function, further promoting rapid and robust convergence. Previous 
studies [20–23] indicate that the activation function performs effec-
tively in solving boundary value problems. This process is further aided 
by the Adam optimizer [24], which updates the weights and biases to 
ensure a decrease in the total loss of the PINN. The weight matrices of 

the network are drawn from a uniform distribution as Wi ∼ U
(
−

̅̅̅̅̅̅̅̅
6/n

√
,

̅̅̅̅̅̅̅̅
6/n

√ )
, ensuring that the input to each sine activation is 

0.3L

L

Inlet Outlet
c=1

c=0

Wall

Fig. 6. The geometric structure of the 2D computational domain employed for model validation and numerical simulation. The domain consists of a rectangular flow 
channel where fluid enters from the inlet on the left side with a prescribed constant velocity and an initial dimensionless temperature of c = 0. As the fluid progresses 
through the channel, it navigates around two embedded objects, each maintained at a dimensionless temperature of c = 1. The flow continues toward the outlet 
located on the right side of the channel.

Fig. 7. Velocity components (u and v), pressure (p) and normalized temperature (c) obtained by CFD.
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normally distributed with a standard deviation of 1.

3. Model validation

In this chapter, the efficacy of the heat transfer model is evaluated by 
applying it to a 2D steady-state forced convection problem within an 

enclosure. The setup, as depicted in Fig. 6, involves a channel where the 
fluid is introduced with a constant axial velocity of u = 1m/s and an 
initial scaled temperature of ci = 0. The scaled temperature c is defined 
as c = T

Ti
− 1, where Ti = 293.15K is the temperature of the fluid at the 

inlet. Thus, the scalar transport equation of the dimensionless 

Fig. 8. Distributions of results and errors obtained from PINNs for different point cloud densities: (a) n = 1200, (b) n = 2400, (c) n = 3600, (d) n = 4800, and (e) 
n = 6000.
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Fig. 8. (continued).
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Fig. 8. (continued).
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Fig. 8. (continued).
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temperature is 

u
∂c
∂x

+ v
∂c
∂y

= αf

(
∂2c
∂x2 +

∂2c
∂y2

)

. (17) 

Two objects within the channel are maintained at a fixed tempera-
ture (with Dirichlet boundary c = 1). The walls of the channel are 
treated as adiabatic with no heat flux through them as ∂c

∂n = 0.
Physics-Informed Neural Networks (PINNs) are an innovative 

approach that leverages neural networks to solve partial differential 
equations (PDEs) by embedding physical laws directly into the loss 

Fig. 8. (continued).

Table 2 
The RRMSE and R2 with point clouds density from n = 1200 to n = 6000.

n RRMSE R2

1200 1.0601 0.3472
2400 1.0414 0.3700
3600 0.9996 0.4195
4800 0.9638 0.4602
6000 0.9211 0.5071
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function. This study seeks to validate the model’s robustness and pre-
cision in predicting heat transfer phenomena within a controlled sce-
nario, thereby establishing a benchmark for future assessments of the 
model’s performance in more complex cases.

3.1. Point clouds distribution

The accuracy and robustness of PINNs are contingent upon several 
factors, notably the density and distribution of point clouds used during 
training. Point cloud density emerges as a critical characteristic, 
reflecting the spatial distribution and intensity of the laser point cloud, 
and directly mirroring the spatial features of the target terrain. A higher 
point cloud density typically correlates with enhanced resolution and 
richer information, facilitating more precise extraction and processing 
of terrain data. However, an excessively high point cloud density can 
result in significant data redundancy, thereby complicating data pro-
cessing and analysis. In the context of evaluating the impact of point 
cloud density on the robustness and accuracy of the PINN model, this 
study systematically generates nodes within the flow channel’s interior 
domain with varying point cloud densities—specifically, 1200, 2400, 
3600, 4000, and 6000 points. This variation allows for a comprehensive 
analysis of how point cloud density influences the model’s performance, 

balancing the benefits of increased data resolution against the potential 
challenges posed by data redundancy.

The velocity components (u and v), pressure (p), and normalized 
temperature (c) obtained from traditional Computational Fluid Dy-
namics (CFD) simulations are depicted in Fig. 7. Fig. 8 illustrates the 
distributions of results and errors obtained from Physics-Informed 
Neural Networks (PINNs) for varying point cloud densities, each sub-
plot shows the model’s prediction results alongside the corresponding 
error distributions. As point cloud density rises from 1200 to 6000 
points, the model’s predictions become more precise, with error distri-
butions narrowing and aligning more closely with actual data. This 

Fig. 9. Schematic of the PINN for the inverse problem to predict critical physical parameters, specifically fluid viscosity ν and thermal diffusivity αf , based on 
training data generated from OpenFOAM simulations. The input to the network consists of data points (ui,vi,pi,ci) which represent the velocity components, pressure, 
and dimensionless temperature fields obtained from the simulation. The training process incorporates the governing equations, including continuity, Navier-Stokes, 
and advection-diffusion, as embedded constraints in the loss function.

Fig. 10. Variation of predicted kinematic viscosity ν and thermal diffusivity αf with steps when u = 1.0m/s.

Table 3 
Coefficients obtained in inverse problem for different inlet velocities.

u/(m/s) ν/
(
10− 4m2/s

)
αf
(
10− 3m2/s

)

0.5 2.85 0.791
1.0 4.22 2.304
1.5 3.81 3.473
2.0 4.71 2.157
2.5 4.36 1.662
3.0 6.83 1.316
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trend indicates that higher point cloud densities provide the model with 
more detailed and representative data, which improves its ability to 
capture complex patterns and reduces prediction errors.

Table 2 presents the Relative Root Mean Squared Error (RRMSE) and 
R2 values across varying point cloud densities. RRMSE quantifies the 
relative discrepancy between predicted and observed values, with a 
reduction in RRMSE indicating that the model’s predictions are 
increasingly aligning with the actual values. Concurrently, an increase 
in R2 reflects the model’s enhanced ability to explain the variance in the 
target variable. A higher R2 value suggests that the model more effec-
tively accounts for the variability within the data, resulting in less un-
explained error. As the point cloud density increases, the model benefits 
from a richer and more detailed dataset, leading to a significant reduc-
tion in relative prediction error and a stronger correlation with the 
observed data. This trend highlights the critical importance of data 
quantity and quality in determining model performance, particularly in 
applications where precision and accuracy are essential.

The results observed in Fig. 8 and Table 2 can be attributed to the fact 
that a higher point cloud density offers a more comprehensive repre-
sentation of the underlying data structure. A denser point cloud supplies 
the model with a larger and more detailed dataset, which enhances its 
ability to capture complex patterns and subtle nuances within the data. 
Consequently, the model’s performance improves significantly as point 
cloud density increases, underscoring the importance of dense data in 
achieving accurate and robust predictions. This highlights the critical 
role that data quality and quantity in the effectiveness of PINNs.

3.2. Inverse problem

In Physics-Informed Neural Networks, the resolution of inverse 
problems is facilitated through the integration of neural networks with 
the governing partial differential equations of the system. With the 
utilization of PINNs, this study not only approximates the solution of 
these PDEs but also concurrently infers the unknown parameters within 
the system. The inverse network relies on the minimization of a 

composite loss function, which encapsulates the residuals of the PDEs. 
By fusing the robustness of physics-based modeling with the adaptability 
of machine learning, PINNs are able to deliver solutions that are both 
accurate and consistent with the underlying physical laws [25].

Inverse problems, at their core, seek to deduce unknown parameters 
or inputs of a system by leveraging observed outputs. In the context of 
heat transfer, recent advancements have highlighted the application of 
inverse problem-solving techniques to infer critical physical parameters, 
such as thermal diffusivity, boundary conditions, and source terms, from 
available data [26–28]. These studies underscore the efficacy of using 
known governing equations to extract valuable information about the 
system’s hidden characteristics, thereby advancing the ability to model 
and predict complex physical phenomena with greater precision.

Fig. 9 illustrates the architecture of a PINN designed to solve an in-
verse problem, specifically for predicting the values of kinematic vis-
cosity ν and thermal diffusivity αf . The training data for this problem is 
(ui, vi, pi, ci) from OpenFOAM simulation and the model is trained to 
predict (ν,αf ) with the constraints of satisfying the governing equations 
of continuity, Navier-Stokes and advection-diffusion. This data is then 
fed into Physics-Informed Neural Networks (PINNs) to predict critical 
parameters like fluid viscosity and thermal diffusivity. By leveraging the 
strengths of both data-driven and physics-based approaches, PINNs can 
accurately model complex physical phenomena and infer essential 
physical parameters even from limited observational data. By incorpo-
rating simulation data alongside physical constraints, this methodology 
significantly improves the accuracy and reliability of parameter esti-
mation, thereby enhancing its applicability in engineering and scientific 
research. In this particular example, the parameters used in the simu-
lations are ν = 4 × 10− 4m2/s for kinematic viscosity and αf = 2 ×

10− 3m2/s for thermal diffusivity. The variation of predicted kinematic 
viscosity and thermal diffusivity when u = 1.0m/s is shown in Fig. 10. 
The estimated values for viscosity and thermal diffusivity are shown in 
Table 3.

The results in Table 3 reveal that the estimated kinematic viscosity ν 

Fig. 11. Figures of the learning rate and loss values during the training of the flow-PINN.

Fig. 12. Figures of the learning rate and loss values during the training of the thermal-PINN.
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and thermal diffusivity αf vary significantly across different inlet ve-
locities, ranging from 0.5 m/s to 3.0 m/s. The kinematic viscosity ν 
fluctuates between 2.85 × 10− 4m2/s and 6.83× 10− 4m2/s, while the 
thermal diffusivity αf varies from 0.791 × 10− 3m2/s to 3.473×

10− 3m2/s. These results demonstrate the ability of the PINN to adapt 
and infer critical physical parameters under varying flow conditions. 
The variation in ν and αf indicates that the model is sensitive to changes 
in inlet velocity, which is advantageous for capturing complex flow 
dynamics and ensuring accurate parameter estimation. This sensitivity 
suggests that the PINN can effectively model different scenarios and 
adjust predictions based on the specific conditions of the system. How-
ever, the wide range of estimated values also raises concerns about the 
consistency and reliability of the model, especially at higher inlet ve-
locities. The significant fluctuations in the inferred parameters may 
indicate that the model is highly dependent on the input data quality or 
that certain aspects of the flow dynamics are not being fully captured. 
This variability could potentially lead to less accurate predictions in 

scenarios with less stable or more complex flow conditions. Further 
refinement of the model, such as incorporating additional constraints or 
improving the resolution of the input data, may be necessary to enhance 
its robustness and consistency across different flow regimes.

4. Results and discussion

The implementation of the PINN model for conjugate heat transfer in 
a manifold microchannel heat sink is conducted using PyTorch 2.2.1. 
The training process is performed on an NVIDIA GTX 4090 GPU with 
24GB of memory. The training schedule employs an exponential decay 
learning rate, initialized at 0.00002, with a decay rate of 0.95 and decay 
steps set to 5000. This strategy aims to optimize model performance by 
systematically adjusting parameters, monitoring progress, and dynam-
ically adapting as necessary. The learning rates and total loss of the flow- 
PINN and thermal-PINN are illustrated in Figs. 11a and 12a, respec-
tively. The maximum number of training steps for the flow-PINN is set to 
500,000, while for the thermal-PINN, it is set to 200,000.

Fig. 13. Comparison of velocity components v,w, pressure p, and fluid temperature Tf obtained from PINN and CFD simulations when w = 0.8m/s, viewed from the 
main perspective.
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4.1. Training loss

Fig. 11b and c display the loss values in the flow-PINN concerning 
the governing equations and boundary conditions, where Lmass repre-
sents the loss associated with mass conservation; Lx− momentum, Ly− momentum,

and Lz− momentum denote the loss associated with momentum conserva-
tions; LBC,u, LBC,v, LBC,w, and LBC,p denote the boundary loss related to u,
v,w, and p; while LBC,n indicates the loss related to the normal gradient 
terms on the boundary. Throughout the training process, these loss 
terms exhibit a decreasing trend, and the contributions of Lz− momentum and 
LBC,w to the total loss function are particularly noteworthy. This could be 
attributed to the prevailing flow direction along the z-axis, which also 
significantly influences the residuals about momentum conservation.

Fig. 12b and c depict the loss values in the thermal-PINN concerning 
the governing equations and boundary conditions. The loss functions, 
including Lhf and Lhs for the convective heat transfer equation of the 
fluid domain and the heat conduction equation within the solid domain, 
as well as various boundary loss terms denoted by LBC,Tf , LBC,n,Tf , LBC,n,Ts ,

Linterface,Dirichlet , and Linterface,Neumann are presented. Interestingly, despite 
sharing identical architectures and learning rates with the flow-PINN, 
the thermal-PINN exhibits a tendency to converge faster. This phe-
nomenon could be attributed to the thermal-PINN having fewer 

parameters and a simpler structure.

4.2. Comparison with traditional CFD simulations

Fig. 12 illustrates a comparison between the velocity components v,
w, pressure p, and fluid temperature Tf obtained from both PINN and 
CFD simulations, viewed from the main perspective, at an average inlet 
velocity w = 0.8m/s, along with the associated errors. For the y-direc-
tion velocity component v, the values obtained via PINN are slightly 
higher than those from CFD. The maximum discrepancy occurs near the 
narrowing section, the outlet channel, where the error reaches approx-
imately 0.025 m/s. Overall, the average values of w within the fluid 
domain obtained from PINN and CFD simulations are nearly identical. 
Notably, the error reaches a maximum of approximately 0.04 m/s near 
the widening section of the inlet channel and − 0.04 m/s near the nar-
rowing section near the outlet channel. According to Fig. 13c, the 
pressure obtained via PINN is lower near the inlet and higher near the 
narrowing section compared to CFD results. As shown in Fig. 13d and 
14, the most significant variations in fluid temperature occur near the 
sudden widening of the inlet channel, and the temperature obtained via 
PINN is slightly higher than that from CFD simulations, with errors 
ranging from 0 to 1.6 K. Fig. 13 compares the temperature distributions 

Fig. 13. (continued).
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along the left surface under varying average inlet velocities. The results 
from PINN and CFD exhibit a close resemblance, indicating good 
agreement between the two methods. It’s noticeable that both fluid and 
solid temperatures decrease with increasing inlet velocity, reflecting the 
cooling effect induced by higher fluid flow rates. The fluctuation in 
temperature gradients is primarily concentrated within the fluid 
domain, particularly near the upper section of the phase interface, which 
arises due to the lower conductivity of the fluid compared to the solid.

Fig. 15 compares the pressure drop and IGBT temperature obtained 
from both PINN and CFD simulations across different average inlet ve-
locities. Both methods demonstrate that the pressure drop increases with 

higher inlet velocities, while the average IGBT temperature decreases. 
Notably, the values of pressure drop predicted by PINN are consistently 
lower than those from CFD simulations, whereas the average IGBT 
temperatures obtained from PINN are generally higher than those from 
CFD. The analysis reveals that the minimum error in pressure drop is 
0.04 Pa at an average inlet velocity of 0.8 m/s, with subsequent errors 
increasing, reaching a maximum of 1.14 Pa at an average inlet velocity 
of 1.4 m/s. The minimum error in the average temperature of IGBT is 
6.65 K at an average inlet velocity of 0.4 m/s, with subsequent errors 
decreasing, reaching a minimum of 0.95 Pa with an inlet velocity of 1 m/ 
s.

Fig. 14. Comparison of temperature distributions obtained from PINN and CFD simulations, viewed from the left perspective.

X. Zhang et al.                                                                                                                                                                                                                                   International Communications in Heat and Mass Transfer 159 (2024) 108036 

16 



According to the results above, sudden changes in geometry, such as 
the sudden widening or narrowing of the channel, can introduce nu-
merical instabilities in PINN simulations. These instabilities may arise 
due to abrupt changes in flow patterns or gradients, leading to inac-
curacies in the computed flow and temperature fields. In addition, the 
distribution of point clouds can be a reason since insufficient resolution 
in channel geometry may lead to inaccuracies in predicting flow and 
temperature fields, resulting in discrepancies between the two ap-
proaches., especially near geometric discontinuities. Overall, the dis-
crepancies near sudden changes in channel geometry highlight the 
sensitivity of PINNs to geometric complexity and numerical stability 

considerations. Ensuring adequate grid resolution, capturing geometric 
details can help mitigate these discrepancies and improve the accuracy 
of PINN simulations.

Based on the results discussed above, differences between PINN and 
CFD simulations, particularly near abrupt changes in channel geometry, 
highlight the sensitivity of PINNs to geometric complexity and numer-
ical stability. These differences may arise due to rapid changes in flow 
patterns or gradients, leading to inaccuracies in predicted flow and 
temperature fields. Additionally, the distribution of point clouds is 
critical, as inadequate resolution near geometric discontinuities can 
contribute to inaccuracies in predicting fluid flow and temperature 

Fig. 14. (continued).
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distribution parameters. To enhance the precision of PINN simulations, 
it’s crucial to ensure sufficient resolution in point cloud distribution and 
accurately capture geometric details, which ensures more dependable 
predictions of flow and heat transfer phenomena with complex con-
straints within complicated geometric structures.

5. Conclusion

This study has developed a multi-physics coupled Physics-Informed 
Neural Network model designed to predict fluid flow and heat transfer 
within complex geometries, specifically targeting the thermal manage-
ment of high-power IGBTs using manifold microchannel heat sinks. By 
integrating fundamental physical laws directly into the PINN frame-
work, the model represents a significant advancement in simulating 
complex phenomena under diverse boundary conditions. A key feature 
of the proposed PINN approach is its dual sub-model structure, each 
utilizing a 6-layer Multi-Layer Perceptron (MLP) with a sine activation 
function in the initial layer. This configuration effectively captures high- 
order derivatives and mitigates the issue of vanishing gradients, which is 
crucial for achieving accurate simulations. The PINN model was rigor-
ously compared against traditional CFD simulations, with results from 
both methods showing strong agreement, thereby underscoring the 
reliability of the PINN approach. Notably, our findings reveal that 
increasing the inlet velocity results in a decrease in both fluid and solid 
temperatures, attributable to enhanced cooling effects from higher fluid 
flow rates. While the PINN model exhibited remarkable consistency with 
CFD simulations, discrepancies were observed in scenarios involving 
rapid changes in flow patterns or gradients. These differences under-
score the PINN model’s sensitivity to geometric complexities and nu-
merical stability—areas that warrant further refinement. Furthermore, 
this study explored the application of PINNs to inverse problems, an area 
where traditional CFD methods have not yet been extensively applied. 
This investigation highlights the potential of PINNs not only in forward 
simulations but also in expanding the capabilities of CFD to address 
inverse problems, offering new avenues for research and development in 
thermal management and beyond.

In the domain of electronic device thermal management, the selec-
tion between traditional machine learning prediction algorithms and 
PINNs is contingent upon the specific problem context and re-
quirements. Machine learning algorithms are particularly effective 
when large volumes of high-quality data are available, enabling the 
model to learn intricate patterns and deliver accurate predictions. 
However, these algorithms may encounter limitations in scenarios 
characterized by limited data availability, where their purely data- 
driven nature can lead to predictions that overlook critical physical 
laws, thus compromising reliability in physics-constrained environ-
ments. Conversely, PINNs present a robust alternative by embedding 

governing physical laws, such as partial differential equations, directly 
into the neural network framework. This integration enables PINNs to 
perform effectively even with limited observational data, as the 
embedded physical constraints guide the model toward solutions that 
are consistent with established physical principles. Although PINNs 
entail higher computational costs due to the need to solve these 
embedded equations during training, they offer enhanced interpret-
ability and reliability in the prediction of physical parameters vital for 
electronic thermal management. The decision between these method-
ologies should be informed by considerations of data availability, the 
necessity of adherence to physical laws, and the computational re-
sources at disposal. For tasks that are predominantly data-driven and 
supported by abundant data, traditional machine learning may be more 
suitable. However, in contexts where physical consistency and the ac-
curate modeling of complex thermal phenomena are para-
mount—particularly in data-constrained environments—PINNs are 
likely to represent the more advantageous approach. By integrating 
empirical data with physical principles, PINN is a promising tool for 
improving thermal management strategies in various engineering 
applications.
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