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Abstract. This paper proposes an improved version of volume domi-
nance to assign fitness to solutions in Pareto-based multi-objective op-
timisation. The impact of this revised volume dominance on the per-
formance of multi-objective evolutionary algorithms is investigated by
incorporating it into three approaches, namely SEAMO2, SPEA2 and
NSGA2 to solve instances of the 2-, 3- and 4- objective knapsack prob-
lem. The improved volume dominance is compared to its previous version
and also to the conventional Pareto dominance. It is shown that the pro-
posed improved volume dominance helps the three algorithms to obtain
better non-dominated fronts than those obtained when the two other
forms of dominance are used.

1 Introduction

The application of heuristic and evolutionary techniques to solve difficult real-
world multi-objective optimisation problems is a very active research area. In
Pareto-based multi-objective optimisation, a set of non-dominated solutions, also
known as Pareto front, is sought so that the decision-maker can select the most
appropriate one. Evolutionary algorithms and other population-based heuristics
seem well suited to deal with Pareto based multi-objective optimisation problems
because they can evolve a population of solutions towards the Pareto-optimal
front in a single run. A good multi-objective evolutionary algorithm (MOEA)
should be able to obtain Pareto fronts that are both well-distributed and well-
converged. When designing a MOEA an important issue is how to establish
superiority between solutions within the population. That is, how to compare
solution fitness in a multi-objective sense. Most modern MOEAs adopt the con-
ventional Pareto dominance relationship. There are few papers that propose dif-
ferent types of dominance relationship such as α-dominance, ε-dominance, fuzzy
dominance and volume dominance (these approaches are reviewed in Section 2).
These alternative forms of dominance aim to help finding solutions in difficult
areas (like the extremes of the tradeoff front) or attempt to combine conver-
gence and diversity in order to achieve better Pareto fronts in difficult problems.
It has been shown that these alternative forms of dominance can help to obtain
better quality Pareto fronts (e.g. [1–3]). In this paper, we present an improved



version of the volume dominance proposed by Le and Landa-Silva [4]. This vol-
ume dominance compares two solutions with respect to the objective space vol-
ume that each of them dominates. The revised version takes into consideration
the current non-dominated front as the search progresses and incorporates a
crowding technique. We compare the performance of some well-known MOEAs
when using the revised volume dominance, the previous volume dominance and
the conventional Pareto dominance. Our experiments are conducted using the
multi-objective knapsack problem because benchmark results are available for
this problem. We also show that the proposed improved volume dominance could
be used within other MOEAs.

Section 2 presents a short literature review of Pareto dominance and al-
ternative forms of dominance. Section 3 describes the new volume dominance
which is a modification of the one proposed earlier in [4]. Section 4 describes
our experiments to assess the impact on the performance of three MOEAs when
incorporating the new volume dominance proposed here. We discuss our results
in Section 5 while Section 6 gives conclusions and proposes future work.

2 Dominance Relationship

In general, the multi-objective optimisation problem with m-objectives to be
maximised can be written as

maximise {f1(x), f2(x), . . . , fm(x)} (1)

subject to the decision vector x = (x1, x2, . . . , xn)T belonging to the feasible
region S. Then, the objective vector of x is

f(x) = (f1(x), f2(x), . . . , fm(x)) (2)

2.1 Pareto Dominance

Vilfredo Pareto proposed the concept of Pareto dominance (Pareto optimum)
in 1896 [5]. Since then, this concept has been extensively used to establish the
superiority between solutions in multi-objective optimisation. In Pareto domi-
nance, a solution x is considered to be better than a solution x∗ if and only if
the objective vector of x dominates the objective vector of x∗. More formally:

Pareto Dominance. A solution x ∈ S dominates a solution x∗ ∈ S (x � x∗) if
and only if x is not worse than x∗ in all objectives (fi(x) ≥ fi(x∗) ∀i = 1, . . . ,m)
and x is strictly better than x∗ in at least one objective (fi(x) > fi(x∗) for at
least one i = 1, . . . ,m).

We can also distinguish between weak dominance and strong dominance [3]
or loose dominance and strict dominance [6] respectively.

Weak dominance. This is often simply referred to as Pareto dominance. A
solution x weakly dominates a solution x∗ (x � x∗) if x is better than x∗ in at
least one objective and is as good as x∗ in all other objectives.



Strong dominance. A solution x strongly dominates a solution x∗ (x � x∗)
if x is strictly better than x∗ in all objectives.

Non-dominance. If neither x dominates x∗ nor x∗ dominates x (weakly or
strongly), then both solutions are said to be incomparable or mutually non-
dominated. In this case, no solution is clearly preferred over the other.

Pareto-optimal front is the set F consisting of all non-dominated solutions
x in the whole search space. Hence, a solution x ∈ F if there is no solution
x∗ ∈ S that dominates x, i.e. if x is non-dominated with respect to S. A set of
non-dominated solutions that approximates the Pareto optimal front is usually
called current Pareto front or known Pareto front.

2.2 Alternative Forms of Dominance

Pareto dominance is widely adopted in multi-objective optimisation algorithms.
Several alternative forms of dominance have been proposed recently. It has been
shown that relaxing the conventional Pareto dominance can improve the perfor-
mance of multi-objective optimisation algorithms. Some of these relaxed forms
of Pareto dominance are more effective in finding solutions in the extremes of the
feasible region S and in tackling optimisation problems with irregular Pareto-
optimal fronts or problems for which it is difficult to generate feasible solutions.

In general, relaxed forms of Pareto dominance allow a solution x to dom-
inate another solution x∗ for which x does not Pareto-dominate x∗. Relaxed
forms of Pareto dominance include: structure domination [7], α-dominance [8],
ε-dominance [1], extended Pareto dominance [9], the fuzzification of Pareto
dominance [2, 10] and contracting/expanding Pareto dominance [11]. Le and
Landa-Silva proposed a relaxed form of Pareto dominance, named volume domi-
nance [4]. This form of dominance is based on the volume of the objective space
that a solution dominates. This property makes volume dominance distinguis-
able from conventional Pareto dominance and other relaxed forms of dominance
which directly compare the objective vector of solutions in one way or another.

The volume dominance relationship between x and x∗ is based on comparing
their corresponding dominated volumes, V (x) and V (x∗) respectively, to a ref-
erence volume called shared dominated volume [4]. The dominated volume of x,
V (x), and the shared dominated volume of x and x∗, SV (x,x∗), are calculated
with respect to the reference point r = (r1, r2, . . . , rm) as follows:

V (x) =
m∏
i=1

(fi(x)− ri) (3)

SV (x,x∗) =
m∏
i=1

(min(fi(x), fi(x∗))− ri) (4)

It is said that for a ratio rSV , x volume-dominates x∗ (x �V x∗) if either:

– V (x∗) = SV (x,x∗) and V (x) > SV (x,x∗) or
– V (x) > V (x∗) > SV (x,x∗) and V (x)−V (x∗)

SV (x,x∗) > rSV



Le and Landa-Silva clearly identified the difference between the fundamen-
tal principles of volume dominance and the S metric proposed by Zitzler and
Thiele [12] which look very similar at first sight. They also proved that volume
dominance covers Pareto dominance. This could not be the case with some other
relaxed forms of Pareto dominance such as ε-dominance and extended Pareto
dominance. Another interesting property of volume dominance is that it is nor-
malised (see proof by Le and Landa-Silva [4]). That is, volume dominance is able
to prevent bias towards some directions in cases with non-commensurable objec-
tive functions. Another crucial difference between volume dominance and other
alternative forms of dominance in the literature is that volume dominance com-
bines all objectives into a single unit vector to establish the superiority between
solutions instead of directly comparing each objective in turn. This allows volume
dominance to evaluate the whole objective vector to compensate improvement
and detriment between objectives [4].

3 Volume Dominance

Volume dominance shows promising results when compared to the conventional
Pareto dominance. Volume dominance is able to obtain results driven by different
criteria such as better coverage, better size of space covered or better distribution
of the objective values. This can be done by adjusting the rSV ratio [4]. However,
the volume dominance presented earlier also has some drawbacks. It requires a
preset and fixed reference point r in order to calculate the dominated volume of a
solution. As the search progresses, the population moves away from the reference
point which could lead to a significant increase in the dominated volume of a
solution. Hence, volume dominance could be highly effective at the start of the
search but less and less influent as the search progresses. Therefore, we propose
to update the reference point to reflect the evolution of the population. In other
words, the reference point is defined based on some characteristics of the current
population.

Another issue of volume dominance is that it does not take into account the
current Pareto front. This issue is illustrated in Figure 1. For both cases 1(a)
and 1(b) in Figure 1, x �V x∗ for some ratio rSV by using the volume domi-
nance in [4]. However, one can easily point out that x �V x∗ should not be true
in 1(b) because both x and x∗ seem equally good (close to the Pareto front)
and should be regarded as non-volume-dominated solutions. In order to over-
come this issue, we modify volume dominance to consider the current Pareto
front when establishing superiority between two solutions. We propose a clus-
tering technique as an additional feature incorporated into volume dominance.

3.1 Dynamic Reference Point

Volume dominance requires a reference point r to calculate the dominated vol-
ume of a solution. Le and Landa-Silva [4] proposed a simple strategy to define
the reference point r as a fixed point, the origin of coordinates in the objective
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Fig. 1. Previous Version of Volume Dominance [4]

space. As mentioned above, this simple strategy has the drawback of degrad-
ing the effectiveness of volume dominance as the search progresses because the
dominated volume of solutions becomes larger and larger. We propose a more
elaborate, yet more effective, strategy to estimate the reference point r. The
strategy designates a reference point for each solution in the current population
P and it also defines two common reference points rinf and rsup for all individ-
uals in P . This strategy also considers the current state of P when determining
the reference point. The reference point rx = (rx1 , r

x
2 , . . . , r

x
m) for solution x ∈ P

is as follows:

rxi = fi(x)− (rsup
i − rinf

i ) (5)

where ∀i = 1, 2, . . . ,m

rinf
i = inf{fi(x∗) | x∗ ∈ P} (6)

rsup
i = sup{fi(x∗) | x∗ ∈ P} (7)

The estimation of rx = (rx1 , r
x
2 , . . . , r

x
m) is illustrated in Figure 2.

3.2 Considering the Current Pareto Front

Without considering the current Pareto front during the search, Figure 1 illus-
trates the drawback of the previous version of volume dominance. While es-
tablishing superiority between solutions x and x∗, the strength of solution x is
defined as the ratio of the dominated volume of x (V (x)) to the shared dominated
volume of x and x∗ (SV (x,x∗)) with respect to the reference point r. Then,
the dominance of x over x∗ (or vice versa) is determined based on comparing
the difference between their strengths to a ratio rSV .

We propose a different approach in defining the strength of solution x. The
strength of x is the ratio between the dominated volume of x (V (x)) and the
volume that fairly represents the status of the current Pareto set. With respect
to x, this fair representation of the current Pareto set is the subset consisting
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of non-dominated solutions that Pareto-dominate x. However, determining the
dominated volume of a solution set could be computationally expensive. There-
fore, the dominated volume of this solution set is estimated as the dominated
volume of the solution that least Pareto-dominates that solution set. Let name
this estimated dominated volume (w.r.t x) as the reference volume of x, V ref (x).

V ref (x) =
m∏
i=1

(xrefi − r
x
i ) (8)

xrefi = inf{{fi(x)}
⋃
{fi(x∗) | x∗ � x ∧ x∗ ∈ ParetoFront}} (9)

The strength of x is then defined as follows:

Str(x) =
V (x)
V ref (x)

(10)

Therefore, x volume-dominates x∗ (x �V x∗) if and only if the following con-
dition holds for a positive ratio rStr:

Str(x)− Str(x∗) ≥ rStr (11)

Additionally, to ensure the improvement of the Pareto set, condition (11) is
relaxed whenever Str(x) = 1 and Str(x∗) < 1. In other words, if none of non-
dominated solutions dominates x, xrefi = fi(x) implying V ref (x) = V (x), and
it is not the case for x∗ then x �V x∗.

It is noted that the current Pareto front is required in order to apply volume
dominance. Therefore, one must use conventional Pareto dominance to obtain
the Pareto front as well as xref to estimate the reference volume of x, V ref (x).

3.3 Clustering Strategy

We also propose a clustering strategy as part of volume dominance to improve the
distribution of non-dominated solutions w.r.t the objective space. This strategy



is only considered when two solutions x and x∗ are regarded as non-volume-
dominated. It means that both condition (11) and its relaxation do not hold for
solutions x and x∗. Solution x is said to dominate solution x∗ if x is in a less
crowded area when comparing to x∗. The degree of crowding of x is measured as
the number of neighbours of x which is the number of non-dominated solutions
in the current Pareto set that ε-dominate x. The ε-dominance deployed here
is slightly different from the one proposed by Laumanns et al. [1] and other
variants of ε-dominance in the literature. To the best of our knowledge, variants
of ε-dominance either use a dynamic adaptation of the ε value or use a different
εi value for each objective i. The variant of ε-dominance employed in this paper
takes the advantage of both approaches, a different dynamic adaptive εi value
for each objective. The εi value is estimated based on the current Pareto front
as follows:

εi = (rsup
i − rinf

i )× µ (12)

where rinf
i , rsup

i were given in (6), (7) respectively and µ is a positive constant.
Within the context of volume dominance, it is said that x ε-dominates x∗ (x �εv
x∗) if and only if fi(x) ≥ fi(x∗)− εi ∀i = 1, . . . ,m and fi(x) > fi(x∗)− εi for
at least one i. Then, the number of neighbours of x is defined as follows:

N(x) = |{x∗ | x∗ �εv x ∧ x∗ ∈ CurrentParetoFront}| (13)

It is then said that if condition (11) and its relaxation do not hold for either
(x,x∗) or (x∗,x), then x volume-dominates x∗ (x �V x∗) for a positive con-
stant τ if and only if

N(x∗)−N(x) ≥ τ (14)

4 Experimental Design

Most alternative forms of dominance proposed in the literature attempt to search
and maintain extreme points in the objective space and/or points that are diffi-
cult to obtain and maintain with Pareto dominance. Few other forms of relaxed
dominance attempt to combine convergence and diversity into a single crite-
rion when distinguishing between solutions. These relaxed forms of dominance
have been proposed as an integral part of specific multi-objective optimisation
algorithms (see [1–3, 7, 8, 10]) with the exception of the contracting/expanding
Pareto dominance of Sato et al. [11] which was tested on one existing approach,
namely NSGA2. To the best of our knowledge, none of these forms of relaxed
dominance has been tested on different multi-objective algorithms.

4.1 Brief Description of the MOEAs Considered

This paper presents experimental results showing that the proposed improved
volume dominance performs well on different multi-objective evolutionary algo-
rithms such as SEAMO2 [13], SPEA2 [14] and NSGA2 [15] when solving the
multi-objective knapsack problem instances proposed by Zitzler and Thiele [12].



SEAMO2 uses a steady-state population and a simple elitist replacement strat-
egy. Each solution of the population, in turn, acts as the first parent once and
a second parent is chosen at random. Offspring is produced by applying cycle
crossover on the two parents followed by a single mutation. If the offspring’s ob-
jective vector improves on any best-so-far objective function, it replaces one of
the parents and the objective’s best-so-far is updated. Otherwise, if the offspring
dominates one of the parents, it replaces that parent (unless it is a duplicate,
then the offspring is deleted). If neither the offspring dominates the parents nor
the parents dominate the offspring, the offspring replaces a random solution in
the population that the offspring dominates. SPEA2 employs a fixed size archive
to store non-dominated solutions in addition to a population. SPEA2 deploys a
fine-grained fitness assignment strategy which for each individual p takes into
account the number of other individuals that dominate p and that are dominated
by p. A nearest neighbour density estimation for environmental selection is used
to deal with two situations: when either the archive is too small or too large.
The best dominated individuals in the previous archive and the population are
copied to the new archive in the first case. In the latter situation, non-dominated
individuals in the archive are iteratively removed until the archive’s size is not
exceeded. The removal of non-dominated individuals from the archive is carefully
managed by using an archive truncation method that guarantees the preserva-
tion of boundary solutions. NSGA2 uses a fast non-dominated sorting algorithm
to classify a population into different non-domination levels. NSGA2 also uses
a crowding technique based on the density of solutions surrounding a particular
solution to preserve the diversity of the population.

4.2 Enhancing MOEAs with Volume Dominance

All of these 3 algorithms, SEAMO2 [13], SPEA2 [14] and NSGA2 [15], were im-
plemented according to their original description. Parameter settings for tack-
ling the multi-objective knapsack problem with SPEA2 and NSGA2 were kindly
provided by Marco Laumanns by means of email-based discussions. Then, in
our experiments we replace the conventional Pareto dominance with the revised
volume dominance and analyse the impact on the performance of these three
algorithms. We aim to investigate the performance of the improved volume dom-
inance within the three evolutionary approaches with minimum alteration to the
original algorithms. The replacement of the conventional Pareto dominance with
the volume dominance in each algorithm is described below.

In SEAMO2, we replace Pareto dominance with improved volume dominance
to decide on the replacement of offspring by one of its parents or a random so-
lution. This is the only stage where solutions are compared for dominance re-
lationship in SEAMO2. However, this is not the case for SPEA2 and NSGA2.
In both SPEA2 and NSGA2, there are three possible stages in which the im-
proved volume dominance could be applied. These are: the fitness assignment
to individuals, the environmental selection and the mating selection stages. In
fact, Pareto dominance is only applied during the fitness assignment stage. The
environmental selection and the mating selection stages use computed individual



fitnesses to compare solutions for superiority or dominance relationship. How-
ever, the individual fitness computed during the fitness assignment stage heavily
relies on Pareto dominance. Therefore, to some extent, the environmental selec-
tion and the mating selection stage in SPEA2 and NSGA2 also involve Pareto
dominance. We think that the fitness assignment strategy is an integral part
in these two algorithms, SPEA2 and NSGA2. It makes more sense that we do
not alter their fitness assignment strategy to preserve their main characteristics.
We also suggest that the mating selection stage is less significant than the envi-
ronmental selection stage. This is because the environmental selection strategy,
which uses an archive truncation operator in SPEA2 and front extraction in
NSGA2, decides the survival of individuals into the next generation whereas the
mating selection strategy choose random parents based on a binary tournament
selection operator to produce offspring. Therefore, for the preliminary investi-
gation in this paper, we apply the improved volume dominance to the mating
selection stage in SPEA2 and NSGA2. In other words, we replace the comparison
of individual fitnesses with the improved volume dominance in order to decide
on the superiority between individuals during the mating selection stage.

4.3 Benchmark Problems, Parameters Setting and Metrics

We use the instances with 750 items and 2, 3, and 4 objectives of the knapsack
problem proposed in [12]. We executed short and long runs using different values
of rSV to investigate the improved volume dominance. The population size used
for the 2-, 3-, and 4-objective instances are 250, 300 and 350 individuals respec-
tively. We use the same number of generations for a short run (500 generations)
and a long run (1920 generations) as used by Zitzler et al. [14], Deb et al. [15] and
Mumford [13]. For the improved volume dominance, we use 5 different values of
rSV = {0.025, 0.05, 0.075, 0.10, 0.15}, µ = 0.01 in equation (12) and τ = 5 in
inequality (14). We also replicated the results obtained by applying the previous
volume dominance proposed by Le and Landa-Silva [4] with 4 different values
of rSV = {0.10, 0.15, 0.20, 0.25}. We summarise and discuss the results from 30
independent runs. The results in Section 5 are based on rSV = 0.075 for the
new improved volume dominance proposed in this paper and rSV = 0.15 for the
previous approach proposed in [4].

We use four metrics to evaluate the non-dominated fronts produced. The
first metric is the S hypervolume proposed by Zitzler and Thiele [12] which
measures the overall size of the objective space covered by all the non-dominated
solutions. Here, S is scaled as the percentage of the volume created by the origin
and the reference point (39822, 41166), (41968, 41298, 41402), (41841, 40790,
39651, 41630) which is the sum profits of all items in each objective for 2-,
3- and 4-objective instance respectively. The boxplots in Figure 3 represent the
distribution of the complement of the S hypervolume metric (1−S). The vertical
axes of the boxplots measure the percentage of the non-dominated objective
space. The horizontal axes present Pareto Dominance (pd), the previous volume
dominance (vd1) and the improved volume dominance proposed here (vd2) when
applied to three different evolutionary algorithms SEAMO2 (se), SPEA2 (sp)



and NSGA2 (ns). The second metric used is the cluster CLµ proposed by Wu and
Azarm [16]. The CLµ cluster metric measures the average number of indistinct
solutions in each small grid which size is specified by 1/µ. The ideal case is
when CLµ = 1 which means that every obtained Pareto solution is distinct. In
all other cases, CLµ is greater than 1. The higher the value of CLµ, the more
clustered the solution set is, and therefore, the less preferred the solution set.
We use µ = 0.01 or in other words, 1/µ = 100 units in the objective space. The
third metric used is the average distance from the obtained non-dominated front
to the approximation of the true Pareto front. The lower the value of this metric,
the closer the obtained non-dominated front is to the true Pareto front. Finally,
the size of the obtained non-dominated fronts is also computed. The higher the
value, the better as more non-dominated solutions have been found.
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Fig. 3. Distribution of the complement of the hypervolume S on knapsack problems.



Table 1. Average values (standard deviation) of the size of the non-dominated set.

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2

2 500 59.37 (8.1) 59.53 (8.44) 82.9 (9)

2 1920 101.67 (11.37) 104.5 (8.87) 198.9 (16.51)

3 500 199 (19.04) 202.73 (16.29) 299.87 (0.57)

3 1920 244.7 (10.54) 244.87 (11.11) 300 (0)

4 500 284.5 (15.87) 286.77 (15.79) 350 (0)

4 1920 321.27 (8.45) 316.2 (10.24) 350 (0)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2

2 500 76.6 (8.81) 77.27 (8.28) 70.9 (8.94)

2 1920 134.63 (10.42) 131.9 (14.22) 126.1 (14.35)

3 500 300 (0) 300 (0) 300 (0)

3 1920 300 (0) 300 (0) 300 (0)

4 500 350 (0) 350 (0) 350 (0)

4 1920 350 (0) 350 (0) 350 (0)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2

2 500 66 (8.29) 66.1 (8.19) 62.27 (7.73)

2 1920 85.83 (12.5) 73.2 (21.44) 73.63 (16.96)

3 500 257.37 (9.92) 255.7 (12.55) 256.47 (8.17)

3 1920 272.07 (7.52) 269 (5.38) 266.87 (6.43)

4 500 335.7 (5.64) 335.8 (6.72) 334.37 (5.88)

4 1920 338.7 (3.19) 338.9 (2.45) 338.07 (4.81)

5 Results and Discussion

For the hypervolume S (Figure 3), the improved volume dominance incorporated
into SEAMO2 (se vd2) outperforms not only the Pareto dominance (se pd) but
also the previous volume dominance (se vd1) for all knapsack instances both in
the short and long runs. The improved volume dominance when incorporated
into NSGA2 (ns vd2) is slightly worst than ns pd and ns vd1 in 2-knapsack
instance but ns vd2 is able to compete against ns pd and ns vd1 in higher di-
mension knapsack instances (3 and 4 objectives). We observe a similar result in
SPEA2 as in NSAG2 when comparing se vd2 to se pd and se vd1.

We also traced the progress of S during the evolutionary search. Regarding
SPEA2 and NSGA2, vd2, vd1 and pd perform quite similar. However, vd2 in-
corporated into SEAMO2 is better than vd1 and pd for all 3 knapsack instances
from the early stage of the evolutionary search. We omit the graphs related to
this results due to space limitations in this paper. The complete results can be
obtained on request.



Table 2. Average values (standard deviation) of the cluster metrics CLµ.

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2

2 500 5.78 (0.79) 5.69 (0.7) 6.1 (0.8)

2 1920 6.16 (1.05) 6.49 (0.94) 8.74 (0.74)

3 500 7.23 (1.08) 7.25 (0.82) 3.95 (0.38)

3 1920 6.6 (0.71) 6.29 (0.6) 3.31 (0.23)

4 500 5.8 (0.66) 6.1 (0.63) 3.06 (0.31)

4 1920 5.2 (0.35) 5.29 (0.43) 2.77 (0.16)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2

2 500 4.15 (0.45) 4.34 (0.52) 4.32 (0.54)

2 1920 6.17 (0.56) 6.16 (0.61) 6.34 (0.72)

3 500 2.09 (0.16) 2.14 (0.25) 2.16 (0.21)

3 1920 1.66 (0.09) 1.69 (0.08) 1.72 (0.09)

4 500 1.45 (0.06) 1.43 (0.06) 1.46 (0.06)

4 1920 1.36 (0.05) 1.38 (0.06) 1.35 (0.05)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2

2 500 4.52 (0.57) 4.52 (0.55) 4.48 (0.46)

2 1920 5.04 (0.69) 4.26 (1.02) 4.42 (0.89)

3 500 2.99 (0.25) 3 (0.3) 3.22 (0.36)

3 1920 1.6 (0.07) 1.58 (0.07) 1.6 (0.07)

4 500 1.97 (0.16) 1.9 (0.13) 1.99 (0.17)

4 1920 1.78 (0.14) 1.77 (0.13) 1.82 (0.12)

The performance of vd2 when incorporated in SPEA2 and NSGA2 is quite
similar to vd1 and pd with respect to the size of the non-dominated set (Ta-
ble 1(b), 1(c)) and with respect to the cluster CLµ of the non-dominated set
(Table 2(b), 2(c)). However, for SEAMO2, vd2 is noticably better than vd1 and
pd regarding both the size of the non-dominated set (Table 1(a)) and the cluster
CLµ of the non-dominated set (Table 2(a)) in almost all knapsack instances for
both short and long runs, except for the 2-knapsack instance when vd2 is worse
than vd1 and pd in term of the cluster CLµ of the non-dominated set.

We should point out here that se vd2, comparing to se vd1 and se pd, is able
not only to find more non-dominated solutions but also to reduce the clustering
in the non-dominated set. In other words, se vd2 is able to obtain more diverse
solution sets and better extreme solutions. We believe that this promising result
is due to the clustering strategy deployed in the improved volume dominance
but further experimentation is required.

The average distance of the non-dominated set found by vd2 when incorpo-
rated into SEAMO2 is higher than when using vd1 and pd. We argue that this
is because se vd2 is able to find more extreme solutions than se vd1 and se pd.



Finding more extreme solutions could be intepreted as obtaining more solutions
that are slightly away from the available approximated Pareto fronts. This is the
reason for se vd2 not being competitive with se vd1 and se pd with respect to the
average distance from the non-dominated set to the approximated Pareto front
(Table 3(a)). However, Table 3(b), 3(c) show that vd2 clearly outperforms vd1
and pd, when incorporated into SPEA2 and NSGA2 in all knapsack instances
for both short and long runs.

Table 3. Average values (standard deviation) of the distance from the non-dominated
set to the approximation of the true Pareto Front.

(a) SEAMO2

knapsack no. of generations se pd se vd1 se vd2

2 500 498.88 (51.62) 491.97 (40.5) 602.42 (70.93)

2 1920 389.18 (35.34) 387.93 (34.69) 432.57 (43.93)

3 500 1381.9 (58.15) 1392.34 (68.96) 1506.43 (72.99)

3 1920 1250.8 (41.71) 1269.06 (35.85) 1318.78 (50.35)

4 500 744.97 (51.94) 733.9 (50) 808.94 (48.64)

4 1920 677.02 (55.06) 668.83 (65.52) 695.78 (33.22)

(b) SPEA2

knapsack no. of generations sp pd sp vd1 sp vd2

2 500 701.4 (53.14) 676.4 (54.15) 638.26 (50.76)

2 1920 466.5 (43.39) 468.89 (53.54) 450.24 (43.8)

3 500 1985.72 (86.65) 1984.3 (68.79) 1960.08 (80.6)

3 1920 1682.92 (47.05) 1687.89 (34.42) 1692.77 (42.44)

4 500 1825.8 (100.38) 1761.69 (98.71) 1769.54 (115)

4 1920 1605.61 (55.04) 1567.62 (67.82) 1571.16 (70.83)

(c) NSGA2

knapsack no. of generations ns pd ns vd1 ns vd2

2 500 613.85 (39.39) 623.58 (43.67) 592.18 (54.07)

2 1920 429 (42.49) 454.39 (39.32) 429.03 (50.83)

3 500 2029.53 (80.73) 2026.49 (90.53) 1933.72 (99.73)

3 1920 1739.44 (74.74) 1729.7 (77.4) 1687.68 (69.35)

4 500 1681.5 (135.55) 1711.23 (143.16) 1640.75 (110.29)

4 1920 1316.23 (95.44) 1290.11 (89.45) 1285.49 (91.13)

Figure 4 shows the offline results for the 2-knapsack instance. They are the
combined non-dominated solutions from 30 runs. For better visualisation, we
show the non-dominated fronts in a lower density. See that vd2, vd1 and pd are
quite similar when incorporated into SPEA2 and NSGA2 (Figure 4(b), 4(c)) but
Figure 4(a) shows a better performance of vd2 over vd1 and pd.
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Fig. 4. Offline Result

6 Final Remarks

This paper proposed an improved volume dominance to the one originally pro-
posed by Le and Landa-Silva [4]. We presented extensive experiments to compare
the preformances of this improved volume dominance approach, the previous one
and the conventional Pareto dominance using three MOEAs: SEAMO2, SPEA2
and NSGA2. The results show that in most of the cases, using 3 different knap-
sack instances using short and long runs, the new volume dominance approach
performs better than the Pareto dominance and the previous proposed volume
dominance. The improved volume dominance is more effective when incorpo-
rated into SEAMO2 than when incorporated into SPEA2 and NSGA2. This
could be due to the fact that SEAMO2 is a very simple strategy whereas SPEA2
and NSGA2 already deploy more elaborate mechanisms. We believe that this
revised volume dominance could be used as a new strategy to assign fitness to
solutions in multi-objective evolutionary algorithms.
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