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Abstract—In this paper, a novel approach to variable frequency
optimal controller design for the application of aircraft embedded
grids is presented. Aircraft power grids by industrial standards
need to be able to operate across a range of frequencies. Often,
these systems are controlled by active power-based controls,
which are well known for being rather slow in response time.
A novel method of variable frequency optimal control using H2

optimization is presented. It is shown that designing the control
as such not only guarantees the optimal performance across the
full range of frequencies being designed for, but fast responses
to frequency and step load changes can be achieved.

Index Terms—Optimal Control, Embedded Grids, Variable
Frequency, Self Tuning, Three-Phase

I. INTRODUCTION

In areas such as More Electric Aircraft (MEA), three-phase
embedded electrical systems are becoming more prevalent
[1]. These systems comprise of multiple power converter
systems interfaced with one another through a series of pas-
sive filter circuits. Electrical systems on aircraft must adhere
to regulations set out in MIL-STD-704, which for variable
frequency systems states the electrical system must adhere to
a frequency range of 360-800Hz. Many studies that investigate
the optimal control of such systems primarily investigate
with respect to a nominal frequency of operation, in general,
400Hz [2], [3]. However, these approaches cannot guarantee
optimal performance and stability when operating at other
frequencies in the required range. Another feature that is trying
to be addressed across MEA is to develop smaller, lighter
and more efficient electrical systems for aircraft. With mul-
tiple converters interconnected onto the same bus, converter
cross-interactions become prevalent. The common method for
mitigating these cross-interactions is to increase the passive
filters between subsystems. This is counter-intuitive however,
as this results in the increased sizing and weight to the system.
Work into H2 optimization to synthesize decentralized global
optimal controls have shown to be able to mitigate the problem
of subsystem interactions under reduced passive filters [4].
This paper proposes a method for which H2 optimization
as shown in [2], [4] can be adapted such that optimal and
stable performance can be guaranteed globally across the
required frequency range. Other methods of optimal, non-
linear controllers exist which to some degree could handle the
proposed problem. Examples being Model Predictive Control

Fig. 1: The Notional Test System

(MPC) and Sliding mode controls (SMC). [5], [6] MPC,
however, is very computationally heavy, resulting in increased
costs for hardware implementation. SMC on the other hand,
sacrifices performance, for a sub-optimal solution to incor-
porate decentralization of the controllers. [5] Decentralization
being vital to reduce required cross-communication between
sub-systems and to increase system reliability. Therefore, H2

control has been selected for use in this study. The proposed
H2 controller not only guarantees stability and good perfor-
mance against parametric uncertainty intrinsically, but will
also be shown to be non-computationally heavy, but can also
deliver fast dynamic performance to large step disturbances.
Additionally, optimal performance can be guaranteed even
when decentralizing the controller, which in turn results in the
additional benefit of mitigation of cross-converter interactions.

II. NOTIONAL SYSTEM MODEL

The notional system which is to be used in this study can
be observed in Figure 1. The notional system includes a three-
phase Voltage Source Inverter (VSI) fed by a DC source and
an LCR filter on its output. The Active Front End (AFE) is
fed by the VSI generated grid through an RL filter. The AFE
output has a DC-Link capacitor and a Constant Power Load
(CPL). A CPL is used to exaggerate the non-linearities of the
system, as well as to emulate industrial loads.

A. State-Space Models of Notional System

A common approach to designing controls for AC systems
is to convert the system it the DQ frame, whereby an AC
system can be modeled as two coupled DC systems, where
simpler DC controls can then be implemented for the AC
system. By following the method shown in [7] can the state-
space equations of the system be constructed such that:



ẋ = Ax+Bu =

[
Avsi ηv
ηa Aafe

]
x+

[
Bvsi 0

0 Bafe

]
u (1)

Where, A and B define the state matrix and the input matrix
for each subscripted converter respectively, and η signifies
cross-coupling terms between converters. The other terms are:

x =
[
xvsi xafe

]T
=
[
iid Vcd iiq Vcq iad iaq Vdca

]T
(2)

u =
[
uvsi uafe

]T
=
[
md mq pd pq

]T
(3)

The subscripted dq terms referring to either d or q axis. iid/q
refers to the VSI currents across the output filter inductor, and
Vcd/q refers to the VSI voltages across the output capacitor.
iad/q are the currents across the input filter inductor of the
AFE, and Vdca is the DC-Link voltage. The input terms md/q

and pd/q refer to the dq axis modulation index of the VSI and
AFE respectively. The following terms which are to be used in
this paper are as follows. Ri, Li, and Ci refer to the VSI filter
resistance, inductance and capacitance respectively. The terms
Ra, La and Ca refer to the AFE input filter resistance and
inductance, and the DC-Link capacitor respectively. Pl shall
be used for the desired output load power on the AFE side.

B. PLL Modelling and Controller Implementation

When modeling and controlling systems in the DQ-Frame,
the Synchronous Reference Frame Phase-Locked Loop (SRF-
PLL) is a commonly employed system which is fundamental
to ensure good power delivery and synchronization across the
multi-converter system. From Fig. 1 it can be seen augmented
into the AFE control architecture. This form of PLL is very
well studied, and thus will not be discussed in this paper, and
the reader is referred to [2] for further information. The PLL
has been designed to a bandwidth of 500Hz (ωPLL), and to
a damping ratio (ζ) of 0.7, according to the pole placement
equations below [2]:

Kp =
2ζωpll
Vcd

Ki =
ω2
pll

Vcd
(4)

III. CONTROLLER DESIGN AND CONCEPT

Controller design techniques for which H2 based methods
have been used to synthesize optimal controls are not new,
and with the advancement in research into optimal controls,
they are being more widely than ever since its conception
[8]. Within the field of optimal control of three-phase con-
verters, most applications where H2 optimization, or related
techniques, have been performed primarily focusing on single
converter applications [9], [10], and also a few studies have
been conducted looking into larger micro-grid applications [2]
[7]. However, a key aspect of this optimization technique that
has not yet been explored is to use this to develop an optimal
variable frequency control which ensures optimal and stable
performance across a to-be-designed for frequency range. This
section highlights the design strategy used to develop this
controller.

A. Standard Decentralized H2 Controller

The H2 controller synthesis permits the development of
decentralized controls for the system (1). Decentralization of
the control is important to reduce the required communication
between the converters, along with building in redundancy to
the system by ensuring subsystem controls depend only on
states for the given converter subsystem. It is also desired for
the system to run with zero steady-state error, and therefore
extension to the system states x with integral states is required,
for each controlled state. This extension results in the follow-
ing system described in (5), where ω states are newly included
integrals to their subscripted states.

x̃ =
[
xvsi ωVcd

ωVcq xafe ωiiq ωVdca

]T
(5)

P =


˜̇x = Ãx̃+B1w +B2u (6a)

z =

[√
Qγ
0

]
x̃+

[
0√
Rγ

]
u (6b)

The equations used to encapsulate the H2 problem for the
controller synthesis is shown in (6) where Ã is the original A
matrix extended with integral states. The signals v, w and z
are the controller outputs, plant disturbances, and plant perfor-
mance output respectively. The matrix B1 is the disturbance
matrix, detailing each of the states’ disturbance influence to
the system plant. As all states can be disturbed, this is set
to an identity matrix. B2 is the input matrix. Qγ and Rγ are
the controller weightings for the states and inputs respectively
derived from the Riccati equation [2]. Qγ is selected to only
weight the integral states of the system in order to dictate the
speed to steady-state error after system disturbance. The larger
the weight given, the faster the bandwidth to the associated
state. Rγ weights each of the inputs, as described in (3), and
dictates the size of the control effort permitted to each input
to correct error from disturbance. The larger the associated
weight to an input, the less control effort given, and thus
decreases overall controller bandwidth. The subsequent control
law being composed as shown in (7) shows the imposed
structural constraint on the controller optimization.

u = Kx̃ =

[
Kvsi 0

0 Kafe

]
x̃ (7)

Where Kvsi ∈ <2×6 and Kafe ∈ <2×5 are the to be
synthesized controller gains for each converter. The process in
order to synthesize the gains K is to solve the structured H2

optimization problem, for which the transfer function between
the disturbances w and the performance output z is minimized
by solving the following cost function (8).

K = min
K√∫ ∞

0

tr(B
′
1e

(Ã−B2K)′t(Q+K ′RK)e(Ã−B2K)tB1)dt (8)

The gain structure in (7) enforces linear constraints on K such
that the optimization problem in (8) becomes of the form:

K ∈ S (9)



Where S is a subspace containing all the possible gains of K
which stabilizes the closed-loop system. The integral in (8)
can also be shown to be in equivalent form to the following
Lyapunov equation:

(A−B2K)′P + P (A−B2K) = −(Q+K ′RK) (10)

which in turn implies the following:

J(K) = tr(B′1PB1) (11)

This cost function (11) develops a smooth function of K, as
a result of the exponential and polynomial terms of K in (8).
Each K ensures the system is asymptomatically stable for the
given closed-loop system. Therefore it becomes possible to
employ a gradient-based approach to solve the optimization
in (8) such that:

∇J(K) = (B′2P +RK)Ψ (12)

where Ψ is the solution to the Lyapunov equation such that:

(A−B2K)Ψ + Ψ(A−B2K) = B1B
′
1 (13)

Due to the non-convex nature of the optimization, a multiple
starting point approach must also be employed to avoid local
minima.

B. H2 Variable Frequency Controller

This section details the methodology to adapt the above
method into a variable frequency control. The controller is
designed to a specific frequency by selection of ωn in the
state equations. As a brief example the state equation for ˙iid
for the VSI is shown in (14).

˙iid = −R
L
iid −

1

L
+ ωniiq +

md

2L
Vdci (14)

Due to space limitations the all the state equations are not
presented in this work but are all fully described in [2]. The
state-space equations from which can be derived to be:

Ã =

[
˜Avsi ηv
ηa ˜Aafe

]
B2 =

[
B2V SI

0
0 B2AFE

]
(15)

˜Avsi =



−Ri

Li
− 1
Li

ωn 0 0 0
1
Ci

0 0 ωn 0 0

−ωn 0 −Ri

Li
− 1
Li

0 0

0 −ωn 1
Ci

0 0 0

0 −1 0 0 0 0
0 0 0 −1 0 0

 (16)

˜Aafe =


−Ra

La
ω − pd

2La
0 0

−ω −Ra

La
− pq

2La
0 0

3pd
4Ca

3pq
4Ca

PL

CaV 2
dca

0 −1 0 0 0
0 0 −1 0 0

 (17)

ηv =



0 0 0 0 0
− 1
Ca

0 0 0 0

0 0 0 0 0
− 1
Ca

0 0 0 0

0 0 0 0 0
0 0 0 0 0

 ηa =


0 1

La
0 0 0 0

0 0 0 1
La

0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(18)

B2V SI
=



Vdc
2L 0
0 0

0 Vdc
2L

0 0
0 0
0 0

 B2AFE
=


−Vdca

2La
0

0 −Vdca

2La
3Iad

4Ca

3Iaq

4Ca

0 0
0 0

 (19)

By selection of ωn, an optimal controller is then developed
for that given grid frequency. Therefore, to incorporate the
H2 optimization to a variable frequency controller synthesis,
several controllers at multiple frequencies can be computed
and interpolated. The performance of the global controller is
dictated by the weighting matrices Qγ and Rγ . The initial step
to this controller design is setting Rγ to an identity matrix,
and applying a weight of ’1’ to each element associated with
an integral state in Qγ . By analyzing the performance of
this system with these weights, the Rγ matrix is then tuned
such that the converters are in the region of desired operable
performance. In general, the larger the weight in Rγ , the
slower the associated input, and vice versa. Thus, increasing
Rγ decreases closed-loop bandwidth. Then tuning Qγ can
be used to fine-tune the performance state-by-state. Where
increasing the gain to associated integral states increases its
dynamic speed. Thus, increasing Qγ increases overall con-
troller bandwidth. If a desired response of the control can be
attained for both ωnmin and ωnmax independently, it can be
ensured that an interpolated control will operate with desired
performance across all frequencies. As an example below, Fig.
2 shows the performance of the system at 300Hz and 800Hz,
using the weights and system parameters specified in Table I.
Only AFE performance shown due to space limitations.

In Fig. 2 a 1kW step load is applied from no load to analyze
the non-linear system dynamics. At both frequencies, it is
clear a stable, and fast dynamic response can be achieved,
which concludes that using the Qγ and Rγ weights from
Table I should result in a stable control with the same relative
dynamics observed across the full frequency range. From the
simulations, it can be observed that the grid voltages are
largely unaffected by the disturbances. The grid being dictated
by the VSI shows the subsystem cross-coupling mitigation
achieved by this approach of controller design due to designing
the control with full knowledge of the system dynamics
described from Ã in (8).



TABLE I: System Parameters

VSI AFE
Ci 10µF Cdc 100µF
Ri 200mΩ Ra 300mΩ
Li 1000µH La 565µH
Vdci 290V Pl 1kW

Reference Values
Vcdref 100

√
2V Iaqref 0A

Vcqref 0V Vdcref 400V
Nominal Frequency Frequency Range

400Hz 300Hz - 800Hz
H2 Controller Weights

Qγ 10diag(
[
01×7 1 1 10 1.2

]
)

Rγ 10diag(
[
3 3 1 1

]
)

(a) Performance at 300Hz

(b) Performance at 800Hz

Fig. 2: Min (a) and Max (b) frequency performance for
controller validation

The intention of this controller design is to interpolate
several controllers to derive an expression for the relation
between frequency and the controller gains in K. Therefore, a
gain resolution for the control needs to be selected. The greater
the resolution of the interpolation, the better the performance,
and optimality of the control across the frequency range. The
drawback being increased computation time for the controller
synthesis at higher resolutions. A resolution of 0.5Hz was
selected for this study. Let this term for the resolution value be
Nres = 1000. Therefore, Nres + 1 controllers are going to be
synthesized using the controller synthesis described. Starting

Fig. 3: Variations of first row gains of Kafe with respect to
frequency, with interpolated gain function behaviour

at ωnmin
the controller is first synthesized using Qγ and Rγ .

This controller is saved into an array, and the synthesis loop
increases the frequency by 0.5Hz and develops the new control
for this frequency and repeats until ωnmax has been reached.

The algorithm, therefore, results in Nres controllers. One
can then realize from Fig. 3 how the gains of K change as
frequency increases.

Kafe =

[
K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

]
(20)

As can be observed, some gains vary greatly with the increase
in frequency, and others remain relatively static. It is also very
clear across all gains, each function can easily be interpolated
into a 2nd order polynomial with respect to frequency.

C. Interpolation Method Description

The interpolation method to get the controller gains (20) as
a function of the actual frequency is based on interpolating
a second order polynomial of the form K̂ij = aij0 + aij1 ·
f + aij2 · f2, with i = {1, 2} and j = {1, .., 6} for VSI, and
j = {1, .., 5} for AFE accordingly, where the parameters aijn ,
for n = {0, 1, 2}, are obtained by using the Least Square
Optimization Method, and K̂ij is the interpolated function of
Kij . For every Kij (f) a set of points is computed using the
Hifoo toolbox [11] as a function of the frequency and then, the
second order polynomial is adjusted with the optimal constants
aijn and the real values Kij as shown in (21):

Kij (f) =
[
1 f f2

] [
aij0 aij1 aij2

]T
(21)

Equation (21) is calculated for the specified frequencies be-
tween f1 = 300Hz and fNres

= 800Hz, and the optimal



constants aijn are found as:

aij0aij1
aij2

 =




1 f1 f21
1 f2 f22
...

...
...

1 fNres
f2Nres


T 

1 f1 f21
1 f2 f22
...

...
...

1 fNres
f2Nres



−1


1 f1 f21
1 f2 f22
...

...
...

1 fNres f2Nres


T 

Kij (f1)
Kij (f2)

...
Kij (fNres

)


(22)

This results in a decentralized 2nd order polynomial feedback
gain matrices being produced for each converter. The first
advantage of this approach is the self-tuning nature of the
controller. As the frequency of the grid changes, the gains
adjust accordingly to ensure optimal performance across all
frequencies. This leads to the second advantage being that
huge numbers of controllers need not be implemented on
hardware, as is usual with similarly related gain scheduling
techniques. Polynomial functions can instead be used to de-
scribe the change of gains with respect to frequency as an
offline, self-tuning optimal control strategy. This, therefore
means cheaper and less computationally heavy solutions to
controller implementation can be employed. The interpolated
polynomial gains are shown in blue in Figure 3.

IV. SIMULATION RESULTS AND PERFORMANCE
COMPARISON

The proposed controller shall be compared to a more
traditional PI control, to assess performance. The transfer
functions and design method for the PI controller are presented
in [4]. The PI transfer functions are not frequency dependent
and thus do not need adaptation and can work across the
full range of frequencies. Cascaded control loops are used to
incorporate the current and voltage controls for each converter,
as presented in [4]. By convention, inner current loops have
10x the bandwidth of the outer voltage loops and are designed
as such. However, for overall best performance, it was found
a ratio between bandwidths for AFE controller had to be 20x,
and this was used henceforth. The bandwidths used to design
the PI controllers in the study are shown in Table II. The
bandwidths selected were the fastest possible with stable non-
circulatory performance, at damping of 0.7.

TABLE II: PI Controller Bandwidths for Comparisons

VSI AFE
fI 1kHz 800Hz
fV 100Hz 40Hz

All tests have been performed in MATLAB 2017a. VSI
frequency is dictated by the user, and the PLL tracks this angle
of the grid for the AFE. The system will ramp up in frequency
starting at 300Hz (fnmin

) all the way to 800Hz (fnmax
) where

a step 1kW load is initiated during the ramp at 0.07s. To ensure

(a) VSI under PI control during frequency transient

(b) AFE under PI control during frequency transient

Fig. 4: Simulation Results. (d-axis terms noted in Blue, and
q in red for dq terms)

good tracking for the PLL of the grid angle during the ramp,
the PLL bandwidth ωpll is set to 300Hz in both tests.

Upon analyzing Figure 4, the PI control shows little in the
way of performance degradation during the frequency transient
as expected due to the control not being frequency dependant.
However, at the step 1kW load disturbance, distortions and
interactions occur across all states of the system. Most notably
the VSI output voltage Vcd. A distortion of 30V occurs on this
state which in turn results in large transients on the grid. In
applications such as aircraft grids, this is highly undesirable
where a constant grid voltage is to be expected for all types
of disturbances. This is largely due to interactions with the
AFE converter, whose DC-Link suffers a 40V undershoot



(a) VSI Behaviour during frequency transient

(b) AFE Behaviour during frequency transient

Fig. 5: Simulation Results. (d-axis terms noted in Blue, and
q in red for dq terms)

during load disturbance, which in turn influences the large
overshoots on the AFE current Iad. All states reach stable
equilibrium within 30ms. Figure 5 shows the results achieved
from the optimal H2 polynomial gain controller, where the
gains were generated using the HIFOO toolbox [11]. What
can be immediately seen is that across the AFE states, faster
and smaller transients are observed. The H2 control incurs
only a 10V undershoot for the DC-Link voltage, and reaches
equilibrium again within 5ms, which is 6x faster than that
of the PI control. However, most importantly are the states
of the VSI. It can be observed that minimalistic interactions
have occurred. By incorporating dynamic interactions between
converters into the controller design, the VSI has had little
effect imposed on it due to the AFE state disturbances. Grid
voltages have remained largely constant during the frequency
and load transients, with the remaining VSI states remaining
largely unaffected. The main drawback to the H2 control in

this application is due to the fact the controller is frequency
dependent, and small errors of around 1V on the DC-Link,
and 0.2A on both Iad and Iaq occur during the frequency
transient. However, once the transient is over, all terms reach
equilibrium with zero-steady state error, showing stable and
fast performance across the full frequency range.

V. CONCLUSION

This paper has presented a novel approach to optimal
decentralized controller design for a simplified embedded grid
system based on MEA applications. The new approach was
compared to a traditional method of design and the results
compared. The proposed approach showed fast performance
and little influence due to the frequency transient except for
some small but relatively negligible errors which incur due
to the frequency dependence of the proposed control. During
a frequency transient, a step load disturbance was applied
which showed the strengths of an optimal decentralized con-
trol, where disturbances on one converter, did not influence
or degrade the performance of other subsystems, presenting
cross-coupling mitigation. The control enabling self-tuning
to system frequency changes off-line makes the controller
computationally lightweight, easy to implement, and dynamic
performance superior to that of traditional controls schemes.
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