SGLT-2 Inhibitor Renal Outcome Modification in Type-2 Diabetes: Evidence from Studies in Patients with High or Low Renal Risk

Journal:	Diabetes, Obesity and Metabolism
Manuscript ID	DOM-19-1231-RA.R1
Manuscript Type:	Review Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Schernthaner, Guntram; Rudolfstiftung Hospital, Department of Medicine I,Rudolfstiftung Hospital, Juchgasse 25, 1030 Vienna, Austria. Groop, Per-Henrik; Helsinki University Central Hospital, Medicine Kalra, Philip A.; Salford Royal NHS Fdn Trust Ronco, Claudio; Int Renal Res Insititute Taal, M; University of Nottingham School of Medicine, Division of Health Sciences and GEM
Key Words:	SGLT2 inhibitor, cardiovascular disease, Canagliflozin, diabetes complications

1			
2 3 4	1	Review	
5 6	2	SGLT-2 Inhibitor Renal Outcome Modification in Type-2 Diabetes: Evidence	
7 8 9	3	from Studies in Patients with High or Low Renal RiskCritical Reappraisal of	
9 10 11	4	Sodium-Glucose Linked Transporter-2 Inhibitor Renal Outcome Modification in	ł
12 13	5	Type-2 Diabetes: Strength of Evidence from Cardiovascular Outcome Trials	
14 15	6	Guntram Schernthaner ^{1*} , Per-Henrik Groop ²⁻⁴ , Philip A Kalra ⁵ , Claudio Ronco ^{6,7} ,	
16 17 18	7	Maarten W. Taal ⁸	
19 20	8		
21 22	9	¹ Department of Medicine I, Rudolfstitung Hospital, Vienna, Austria	
23 24 25	10	² Abdominal Center, Nephrology, University of Helsinki and Helsinki University	
26 27	11	Hospital, Helsinki, Finland	
28 29	12	³ Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum	
30 31 32	13	Helsinki, Helsinki, Finland	
33 34	14	⁴ Department of Medicine, Central Clinical School, Monash University, Melbourne,	
35 36	15	Victoria, Australia	
37 38 39	16	⁵ Department of Renal Medicine, Salford Royal Hospital, Salford, UK	
40 41	17	⁶ Department of Medicine (DIMED), Università degli Studi di Padova, Veneto, Italy	
42 43	18	⁷ Department of Nephrology Dialysis & Transplantation, and International Renal	
44 45	19	Research Institute (IRRIV), San Bortolo Hospital, Vicenza, Italy	
46 47 48	20	⁸ Division of Medical Sciences and Graduate Entry Medicine, University of	
49 50	21	Nottingham, Nottingham, UK	
51 52	22		
53 54 55	23	Short Running Title: Strength of evidence for renal outcome modification with	
56 57	24	SGLT2 inhibitors in T2D	
58 59	25		
60			1

1	
2 3 26 4	
5 6 27	*Correspondence:
7 8 28	Professor Guntram Schernthaner, M.D.
9 10 29 11	Rudolfstiftung Hospital Vienna, Department of Medicine I,
12 13 30 14	A-1030 Juchgasse Vienna, Austria
15 16 31 17	E-mail: guntram.schernthaner@meduniwien.ac.at
18 19 32	
20 21 33 22	Abstract word count: 250
23 24 34 25	Main body word count: 4,234
26 27 35 28	Number of references: 42
29 30 36 31	Number of tables: 2
32 37 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 60	Number of figures: 2

Data from three completed cardiovascular outcome trials (CVOTs), EMPA-REG OUTCOME, CANVAS Program and DECLARE-TIMI 58, add to the evidence supporting the potential renoprotective effects of sodium-glucose linked transporter-2 (SGLT2) inhibitors in patients with type-2 diabetes (T2D). Despite recommendations in recent guidelines, it is difficult to support a view that definitive evidence for renoprotection exists from these SGLT2 inhibitor CVOT results. To date, the only dedicated trial to report definitive data on the renal impact of SGLT2 inhibition is CREDENCE. Notably, the total number of patient relevant renal endpoint events (dialysis, transplant or renal death) observed in CREDENCE was significantly higher than the total for all three CVOTs collectively (183 events/4,401 patients vs. 69 events/34,322 patients, respectively), which demonstrates the increased statistical power of CREDENCE for these renal endpoints. Treatment with canagliflozin was associated with a 30% relative risk reduction (RRR) in the primary composite endpoint of end-stage kidney disease, doubling of serum creatinine, or death from renal or cardiovascular causes and a 34% RRR for the renal-specific elements of this primary endpoint (P < 0.001). Canagliflozin has therefore become the first US approved SGLT2 inhibitor to include an indication for renal risk reduction, in addition to T2D glycemic control and cardiovascular (CV) risk reduction. While confirmatory of the exploratory data from CVOTs, CREDENCE provides the first robust data on the effects of canagliflozin on patient relevant renal endpoints. Extrapolation to a conclusion of a SGLT2 inhibitor class effect cannot be made until additional renal trials with other SGLT2 inhibitors are reported.

Keywords: SGLT-2 inhibitors, CVOT, CKD, DKD, T2D, renoprotection, MARE

Page 4 of 43

64 Introduction

Given the controversy that certain anti-diabetic drugs, notably the thiazolidinedione rosiglitazone, might increase the risk of cardiovascular (CV) death, the US Food and Drug Administration (FDA) mandated for all new anti-diabetic drugs to undergo proof of cardiovascular (CV) safety through large-scale cardiovascular outcome trials (CVOTs).^{1,2} Since 2008, a number of CVOTs aimed at validating cardiovascular safety using the FDA specified major adverse cardiology events (MACE: a composite of cardiovascular death, nonfatal heart attackmyocardial infarction, and nonfatal stroke) as the primary endpoint have been performed.² The EMPA-REG OUTCOME study published in 2015 was the first completed CVOT with a sodium-glucose linked transporter-2 (SGLT2) inhibitor.³ The study unexpectedly showed that a glucose-lowering agent, empagliflozin, could reduce 3-point MACE, as well as cardiovascular mortality, hospitalisation for heart failure (HHF) and overall mortality when given in addition to standard care in T2D patients at high CV risk.³ CVOTs with other SGLT2 inhibitors have also been completed and in keeping with the promising results from the EMPA-REG OUTCOME study also show reduction of CV events, particularly HHF.4,5

Besides the surprising cardioprotective benefits of empagliflozin, a beneficial effect was also discovered from analysis of the secondary composite microvascular outcome, which was driven entirely by its renal component with respect to mitigating albuminuria and slowing deterioration of kidney function.⁶ This potential renoprotective effect created much excitement within the scientific community, and consequently, the renal microvascular component of the secondary outcome was further explored in a post-hoc sensitivity analysis.⁶ Secondary or exploratory analyses of major adverse renal events (MARE) renal outcomes for other SGLT2

inhibitors in CVOTs have also been completed or are ongoing, providing valuable insights into the potential of this drug class to offer renoprotection.^{7,8} This review provides a critical reappraisal of the various renal outcomes reported from CVOTs to date. Whilst the CVOT secondary analyses prompted interesting hypotheses about the effect of SGLT2 inhibitors on renal outcomes in T2D patients, conclusive evidence required trials based on patient relevant renal endpoints, such as progression to end stage renal disease (ESRD) or death due to renal causes,⁹ requiring studies in T2D patients with more advanced baseline kidney disease. Of note, in all the SGLT2 inhibitor trials reporting renal outcomesMARE, none required either a biopsy or stringent exclusion of other potential causes of kidney disease. In the absence of clinical features suggestive of other aetiologies, there is a presumption that the underlying kidney disease is diabetic nephropathy but because other causes of chronic kidney disease (CKD) cannot be ruled out conclusively, diabetic kidney disease (DKD) is the term used in this review; this approach also mirrors current clincial practice. In addition, the first dedicated trial based on patient relevant renal endpoints, CREDENCE, has recently been published and is also discussed herein.

¹³ 106 General limitations of SGLT2 inhibitor CVOTs

The CV safety of empagliflozin, canagliflozin and dapagliflozin has been evaluated in
three large, placebo-controlled CVOTs, respectively named EMPA-REG OUTCOME,
CANVAS Program and DECLARE-TIMI 58.³⁻⁵ The CANVAS Program consisted of an
integrated analysis of two double-blind, randomised trials (CANVAS and CANVAS-R)
that assessed canagliflozin versus placebo in participants with T2D who were at high
risk of cardiovascular events. Another CVOT, VERTIS-CV, evaluating the SGLT2

Page 6 of 43

inhibitor ertugliflozin has recently been completed but results had not yet been published at the time of this review.¹⁰ To date, the four completed CVOTs have enrolled 42,322 patients with T2D. All four CVOTs are multicentre, multinational studies and are described in detail elsewhere.^{3-6,10-12} Whilst these trials all had the common aim of reporting cardiovascular benefits associated with SGLT2 inhibition, it should be noted that there were potentially important differences in study design between them (Table 1). Due to the differences in study design and baseline characteristics of the study populations, reported trial outcomes cannot be extrapolated to the general T2D patient population.¹³ This is exemplified by the fact that only 1% of the US adult T2D population would have met the eligibility criteria for all four CVOTs.¹⁴ In addition to CV endpoints, renal endpoints, including the impact on albuminuria and renal function, were included only as secondary or exploratory outcomes in all trials (Table 1). Therefore, renal outcomes with SGLT2 inhibitors needed to be confirmed in trials specifically powered to assess patient relevant renal endpoints, as in the case of canagliflozin in the CREDENCE trial.¹¹ Given the new evidence derived from CREDENCE and the CVOTs, the 2018 American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) guidelines recommend that patients with T2D and clinical cardiovascular disease (CVD) with inadequate glucose control despite treatment with metformin should receive an SGLT2 inhibitor or GLP-1 receptor agonist.¹⁵ More recently, in the 2019 European Society of Cardiology (ESC) and the EASD guidelines, SGLT2 inhibitors are recommended as first-line treatment, before metformin in T2D patients who are at very high/high CV risk: (1) to lower glucose; (2) to reduce risk of death (empagliflozin only) in patients with CVD; (3) to lower risk of

HF hospitalisation; and (4) to reduce progression of DKD.¹⁶ However, the use of
SGLT2 inhibitors or glucagon-like peptide-1 (GLP-1) receptor agonists as
monotherapy remains off-label in most countries since there are no studies to date
on the use of these compounds as monotherapy in any CVOT. In most of the SGLT2
inhibitor CVOTs, metformin was used as background therapy in 74-82% of patients
and CV outcomes in patients with and without metformin therapy were quite different
when the subgroup analyses data were reported.³⁻⁵

Baseline renal risk of study participants in SGLT2 inhibitor CVOTs

Figure 1 shows the very different baseline renal risk of patients included in the DECLARE-TIMI 58, EMPA-REG OUTCOME, CANVAS Program and CREDENCE studies. Since the primary aim of the CVOTs was assessment of CV safety, and although some of patients in the analysis populations of the three completed SGLT2 inhibitor trials showed prevalent kidney disease at baseline (e.g. 32% of patients in the EMPA-REG OUTCOME trial had prevalent DKD), overall the CVOTs populations did not match the high renal risk of patients in CREDENCE nor the high degree of renal progression required for inclusion of patients in the landmark RENAAL (Angiotensin II Antagonist Losartan) study and the Irbesartan Diabetic Nephropathy Trial (IDNT).¹⁷ Differences in design, study populations and renal outcomes among the three reported CVOTs prevent reliable comparison of between-study outcomes. In EMPA-REG OUTCOME, potential study participants were excluded with an eGFR < 30 ml/min/1.73m² but there was were no exclusion criteria for albuminuria or other aetiologies of kidney disease.³ In addition, subjects were not required to be on a maximum tolerated dose of an angiotensin converting enzyme (ACE) inhibitor or angiotensin-II receptor blocker (ARB), currently the primary treatment for the

Page 8 of 43

1 2		
3 4	162	prevention and treatment of DKD; however, nearly all participants at baseline were
5 6	163	reported to be taking a renin-angiotensin-aldosterone system (RAAS) blocker
7 8	164	(notably, 80.7% were on an ACE inhibitor or ARB as part of standard-of-care). ³
9 10 11	165	Of the 7,020 participants enrolled in EMPA-REG, there were 5,199 patients with an
12 13	166	eGFR of \geq 60mL/min/1.73 m ² , ^{3,6} of which 64% had normoalbuminuria (UACR < 30
14 15	167	mg/g), 27% had microalbuminuria and 8% had macroalbuminuria; two participants
16 17 18	168	had missing data for eGFR. ⁶ There were 1,819 patients with an eGFR <
19 20	169	60mL/min/1.73 m ² , ³ of which 47% had normoalbuminuria, 34% had
21 22	170	microalbuminuria and 18% had macroalbuminuria.6
23 24 25	171	Like EMPA-REG OUTCOME, subjects for both CANVAS and CANVAS-R were not
26 27	172	required to be on a maximum tolerated dose of an ACE inhibitor or ARB, although
28 29	173	nearly all were reported to be on a RAAS blocker at baseline (80.2%). ⁴ Of the 10,142
30 31 32	174	participants recruited, there were 8,101 patients with an eGFR of \geq 60mL/min/1.73
33 34	175	m ² at baseline, of which 73% had normoalbuminuria. ¹⁸ Notably, 2,039 (20.1%) of
35 36	176	participants had an eGFR < 60mL/min/1.73 m ² at baseline, of which 55% had
37 38 39	177	normoalbuminuria. ¹⁸
40 41	178	The DECLARE-TIMI 58 population was at lower risk of adverse renal
42 43	179	outcomesMARE than EMPA-REG OUTCOME and CANVAS Program populations
44 45	180	(Figure 1; Table 1), which themselves had overall lower renal risk populations
46 47 48	181	compared with the landmark ARB trials, RENAAL and IDNT. The study population in
49 50	182	DECLARE-TIMI 58 did not have substantially reduced eGFR at baseline (mean
51 52	183	eGFR was 85.2 ml/min/1.73 m ²) because patients with creatinine clearance <
53 54 55	184	60mL/min/1.73 m ² were excluded. Most participants had preserved renal function at
56 57	185	baseline and notably, 69.1% had normoalbuminuria, i.e. only 30% had baseline
58 59 60	186	DKD. ^{5,7} Of the 17,160 participants enrolled, 15,894 (93%) had an eGFR of \ge 60 ⁸

mL/min/1·73 m² and 1,265 (7%) had an eGFR of < 60 mL/min/1·73 m² at baseline.⁷ Similarly, the majority (approximately 85%) of study patients were taking an ACE inhibitor/ARB at baseline, however there was no specific directive to ensure optimal treatment.⁵

Renal endpoints and outcomes in SGLT2 inhibitor CVOTs

Although the CVOTs under consideration in this manuscript had MACE as the primary endpoint, the regulators asked different questions of the sponsors which affected the renal recruitment criteria. Overall, the main renal endpoint definitions in CVOTs prior to CREDENCE are heterogeneous making direct comparisons between trials difficult, and outcome measures were based on surrogate endpoints, such as creatinine doubling and progression of albuminuria (**Table 2**).³ Furthermore, renal composite endpoints were used to provide evidence of SGLT2 inhibitor efficacy in slowing the loss of renal function and delaying progression to ESRD.¹⁹ Efforts to identify optimal endpoints for evaluating DKD treatments, as well as efforts to standardise the reporting of the data, are important for expediting the development of new anti-diabetic treatments for DKD. For future trials, uniformly agreed definitions for renal endpoints would make meta-analyses easier and would facilitate the comparison of different studies.⁹ New major renal events (MARE) definitions have been developed, which include major morbidity and mortality events (e.g. development of new-onset DKD, reaching ESRD, starting RRT or receiving a kidney transplant, and mortality from renal cause).⁹ Results from future trials that adopt the use of MARE as a primary outcome and add intermediate endpoints and surrogate endpoints where appropriate would be more comparable and patient relevant.9 Indeed CREDENCE, a post-hoc analysis of the composite endpoint of RRT,

transplantation or death was assessed with a view to providing patient relevant
clinical trial data.⁸

Figure 2 shows the composite renal outcome rates and composite renal outcomerelative risk reductions (RRRs) in CVOTs.

BOX 1 provides a summary of key issues with renal endpoints and outcomes
 pertaining to the design of EMPA-REG OUTCOME, CANVAS Program and
 DECLARE-TIMI 58 CVOTs.

⁰ 218 EMPA-REG OUTCOME

In analyses of the renal endpoints, it was concluded that empagliflozin improved
 renal outcomes defined by reduced risk of incident or worsening DKD, reduced
 progression to macroalbuminuria, reduced incidence of renal-replacement therapy
 and reduced occurrence of doubling of serum creatinine compared with placebo

223 (**Table 2; Box 1**).

It is however important to note that renal endpoints were redefined during the main EMPA-REG OUTCOME trial and that key aspects of the endpoints were either defined after trial completion (although reportedly before database lock) or were not defined prospectively.²⁰ No renal related endpoints were included in plans to control the overall Type-1 error rate because, as the sponsor explicitly stated, the endpoints "are of exploratory nature and no correction for multiple hypothesis testing was made."²¹ In the final protocol, the secondary safety outcome was a composite microvascular outcome that included the first occurrence of any of the following: the initiation of retinal photocoagulation, vitreous haemorrhage, diabetes-related blindness, or new or worsening DKD. The first renal microvascular outcome was incident or worsening DKD, defined as progression to macroalbuminuria (UACR >

Page 11 of 43

300 mg/g), doubling of serum creatinine with an eGFR (MDRD) \leq 45 mL/min/1.73m², initiation of continuous renal replacement therapy, or death due to renal disease.^{3,6} EMPA-REG OUTCOME was not a dedicated renal outcomes trial and renal endpoints were not adjudicated during the study. However, the results for the composite renal outcomesMARE were validated in a post-hoc sensitivity analysis in a subgroup analysis of patients with prevalent DKD at study entry defined as eGFR (Modification of Diet in Renal Disease (MDRD) Study equation) < 60 ml/min/1.73 m² and/or macroalbuminuria (UACR > 300mg/g) at baseline.⁶ The first renal outcome of this post-hoc subgroup study was a four-point composite of new onset or worsening of DKD (defined as progression to macroalbuminuria, doubling of serum creatinine level associated with an eGFR \leq 45 mL/min/1.73 m², initiation of RRT and renal death). A total of 6,185 patients entered this pre-specified subgroup analysis. The incident or worsening DKD endpoint occurred in 388 of 2061 (18.8%) placebo and 525 of 4124 (12.7%) in empaglifozin treated patients which resulted in a relative risk reduction of 39% in patients that received empaglifozin (Hazard Ratio (HR): 0.61; 95% CI: 0.53, 0.7; P < 0.001).⁶ As defined, the new onset macroalbuminuria component could capture small, transient and/or reversible changes in albuminuria of uncertain clinical significance.²¹ In fact, there was no difference in albuminuria between the placebo and empagliflozin arms following discontinuation of study drug. It has been postulated that SGLT-2 inhibitors exert a haemodynamic effect rather than a direct effect on the underlying disease process, however the exact mechanism remains to be elucidated.²² In the recent randomised, double-blind RED trial, the renal haemodynamic effects of an SGLT-2 inhibitor were shown to be caused by

post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated T2D patients.²³ In EMPA-REG OUTCOME, there was no significant between-group differences in the rate of incident albuminuria for patients with normoalbuminuria at baseline (51.5 and 51.2% with empagliflozin and placebo, respectively; P =0.25).⁶ However, overall progression to macroalbuminuria was reduced by 38% (P < 0.001), suggesting a different effect of the SGLT-2 inhibitor on patients with different levels of urinary albumin excretion.⁶ Efficacy claims of "sustained normo- or microalbuminuria in patients with baseline macroalbuminuria" are difficult to maintain.²⁴ To date, regulatory agencies have not accepted on-treatment effects on albuminuria as a surrogate for clinical outcomes in diabetic nephropathy, in part because therapies can have acute and reversible pharmacologic effects on albuminuria that may differ from their long-term effects on the irreversible loss of renal function and underlying disease progression.^{25,26} It is also important to note that persons with a reduction in eGFR without elevations in urinary albumin may or may not show benefit from SGLT-2 inhibitor treatment, however further trials will be required to determine this. CANVAS Program

Analysis of renal endpoints showed that canagliflozin reduced the occurrence of
progression to albuminuria and increased the occurrence of regression of
albuminuria (Table 2; Box 1). A renal adjudication committee was responsible for
adjudicating the following endpoint events: ESRD (i.e. need for RRT), doubling of
serum creatinine and 40% reduction of eGFR.⁴ However, as with EMPA-REG
OUTCOME, the CANVAS Program was not designed to formally examine renal
outcomes and the total number of renal events was small. The decrease in HR for

<u>composite renal outcome was driven primarily by the surrogate endpoints of renal</u>
 <u>function rather than patient relevant MARE namely, ESRD, renal transplantation or</u>
 renal death.

Canagliflozin reduced the time to first occurrence of all adjudicated renal composite endpoints relative to placebo with the upper bound of the 95% CI excluding 1.0.⁴ The composite outcome of sustained 40% reduction in eGFR, renal death and RRT occurred less frequently in the canagliflozin group compared with the placebo group (5.54 vs. 9.03/1,000 patient-years, respectively) corresponding to a HR of 0.60 (95% CI: 0.47, 0.77).⁴ Furthermore, lower HRs were also observed in the canagliflozin group when progression to macroalbuminuria (HR: 0.57; 95% CI: 0.50, 0.66) or CV death (HR: 0.77; 95% CI: 0.66, 0.89) were included in this composite.⁴

The CANVAS Investigators introduced alternative renal endpoints in their analyses, i.e. a 40% decline in eGFR and eGFR slope, which might be more practical in trials of shorter duration.^{4,27} However, since these endpoints are less applicable at higher baseline renal function (e.g. as typically the case in CVOTs), effects on these endpoints might not translate into true improvement in MARE. For each of these outcomes, substituting the 40% reduction in eGFR component with doubling of serum creatinine resulted in fewer events but similar canagliflozin treatment effect estimates.⁴ The results of the composite endpoints were mainly driven by sustained 40% reduction in eGFR and doubling of serum creatinine.⁴

302 DECLARE-TIMI 58

In addition to the FDA-mandated primary safety endpoint (non-inferiority for 3-point
 MACE) and the primary efficacy endpoint superiority for 3-point MACE, a new co primary composite efficacy endpoint of HHF and CV death was added, due to new

Page 14 of 43

insights from previously reported SGLT2 inhibitor CVOTs.⁵ However, because the study failed to meet the primary efficacy endpoint of superiority for 3-point MACE, the pre-specified adjudicated secondary cardio-renal composite outcome defaulted to an exploratory endpoint. This cardio-renal exploratory endpoint was defined as a sustained decline of at least 40% in estimated eGFR to < 60 mL/min/1.73m², ESRD (defined as dialysis for \geq 90 days, kidney transplantation, or confirmed sustained eGFR < 15mL/min/1.73 m²), or death from renal or cardiovascular causes.⁵ A second, renal-specific composite outcome was the same but excluded death from CV causes and this occurred in 1.5% versus 2.8% of patients in the dapagliflozin and placebo treatment groups, respectively (HR 0.53; 95% CI: 0.43-0.66).⁵ Hence, the exploratory outcome analysis showed a 47% RRR with dapagliflozin in the composite renal outcome.⁵ Despite the good HR reported for the renal composite endpoint, it was mainly driven by a reduction in doubling of serum creatinine.⁷ Overall, the authors from DECLARE-TIMI 58 concluded that dapagliflozin was able to prevent renal function deterioration and clinically important renal endpoints compared with placebo in T2D patients with and without established atherosclerotic CVD and preserved renal function.⁵ Based on the Phase 3 DECLARE-TIMI 58 trial results, the European Commission has recently approved a label update for dapagliflozin to include both CV and renal data. However, owing to the fact that this trial included a population with near normal renal function at baseline (93% eGFR > 60mL/min/1.73m²), only a small number of renal events was actually reported (Table 1; Box 1).⁵ Of the 17,160 patients enrolled in this study, only 11 vs. 27 ESRD or renal death events were reported for the dapagliflozin and placebo groups, respectively (HR: 0.41; P = 0.012).⁷ The inclusion of sustained eGFR changes only

330 (i.e. with two consecutive tests ≥ 30 days apart) was an important parameter in the
331 renal endpoint definition.

Supporting the DECLARE-TIMI 58 cardio-renal outcomes, results from a pre-

specified sub-analysis, recently presented at the 2019 ESC conference, showed that dapagliflozin's effect on CV death/HHF and MACE was consistent across baseline renal function and albuminuria status (P = 0.29 for CV death/HHF and P = 0.62 for 3-point MACE), ²⁸ although numerically greatest (42% RRR) in patients with reduced eGFR and albuminuria.²⁸ Similarly in a recent meta-analysis which included EMPA-REG OUTCOME, CANVAS Program, DECLARE-TIMI 58 and CREDENCE data, renoprotection was consistent irrespective of baseline albuminuria ($P_{trend} = 0.66$) with benefit identified at all levels of kidney function, including for patients with a baseline eGFR 30-40 mL/min/1.73m² (Relative Risk 0.70: 95% CI 0.54-0.91; P =0.008).²⁹ Despite the results of this meta-analysis being driven predominantly by canagliflozin in the single CREDENCE study, renoprotection with the other SGLT2 inhibitors, empagliflozin and dapagliflozin, seems consistent.²⁹

Renal endpoints and outcomes in CREDENCE

As previously mentioned, CREDENCE is the first and only completed clinical trial to investigate a SGLT2 inhibitor primarily for renal protection in patients with T2DM and CKD.¹² Baseline eGFR and UACR for CREDENCE was 56.2 mL/min/1.73 m² and 927 mg/g, respectively.¹² **Figure 2** shows the composite renal outcome rates and composite renal outcome relative risk reductions (RRRs) in CREDENCE versus the SGLT2 inhibitor CVOTs.

352 CREDENCE included 4,400 patients and was stopped early due to a signal of clear
 353 efficacy in the prevention of the composite renal and cardiovascular primary

Page 16 of 43

endpoint, ¹² doubling of serum creatinine, ESRD, renal death and CV death; both ESRD and renal death were robustly defined. In addition, unlike the SGLT2 inhibitor CVOTs, all renal endpoints were assessed by a blinded adjudication committee.¹² The relative risk of the primary outcome was 30% lower for patients taking 100mg of canagliflozin (a dose that had no effect upon lowering of HbA1C) compared with placebo (HR: 0.70; 95% CI: 0.59, 0.82; P =0.00001).^{12,16} There was also 34% RRR for the renal-specific elements of the primary endpoint, excluding CV death, for those taking canagliflozin (HR: 0.66; 95% CI: 0.53, 0.81; P < 0.001) (Table 2).12 By 42 months, eGFR had dropped by a mean of -1.85 mg/mL/min/1.73m² per year in the canagliflozin group and a mean of -4.59 mg/mL/min/1.73m² per year in the placebo group, which translates to a 60% reduction in eGFR slope decline.⁸ The renal results observed in the overall study population were consistent across the primary and secondary prevention groups, across all 15 subgroups tested, regardless of prior CVD history. Specifically, canagliflozin reduced the risk of ESRD by 32% (HR: 0.69; 95% CI: 0.51 to 0.95; P =0.89) and 33% (HR: 0.67; 95% CI: 0.47, 0.96; P = 0.89) in the primary (\geq 50 years of age with \geq 2 risk factors for CV events but with no prior CV event) and the secondary (\geq 30 years of age with a prior CV event) prevention groups, respectively.³⁰ The number needed to treat with canagliflozin was 22 to prevent one primary composite outcome event (doubling of serum creatinine, ESRD, renal death, or CV death) over 2.5 years.¹² To prevent one primary composite outcome event over 2.5 years in patients with eGFR (> 30 to < 45 ml/min/1.73m²) the number needed to treat with canagliflozin was 16.^{12,31} A signal of potential increased risk of distal fracture and lower limb amputation was noted in the CANVAS Program ¹² but was not seen in CREDENCE or in a cohort study of 79,964 T2D patients.^{16,32}

Based on the exploratory/secondary renal endpoints of the CVOTs plus the
dedicated CREDENCE trial, empagliflozin, canagliflozin or dapagliflozin are now
recommended as treatment to reduce progression of DKD.¹⁶ CREDENCE also
demonstrated that canagliflozin may be used with benefit down to an eGFR of 30
mL/min/1.73m².^{12,16} Hence the ESC/EASD 2019 guidelines state that "treatment with
an SGLT2 inhibitor is associated with a lower risk of renal endpoints and should be
considered for T2D patients if eGFR is 30 to < 90 mL/min/1.73 m²."¹⁶

386 Strength of evidence for renal outcome modification in T2DM with SGLT2 387 inhibitors

Ideally, before adoption of the SGLT2 inhibitor CVOT results to support indications for renoprotection in guidelines, confirmatory results from other dedicated renal outcome trials in addition to CREDENCE are needed.³³ Such studies must include patients that who are at substantially higher risk of renal events than those enrolled in the published CVOTs, to ensure that a sufficient number of sustained renal events is accrued, that there is appropriate follow-up, and that the study design uses the US Food and Drug Association (FDA)-approved and generally-accepted renal endpoints, appropriate measurements and adjudication.³⁴ Notably, longer duration of follow-up (e.g., \geq 3 years) in kidney trials many be more important for renal outcomes than cardiovascular outcomes. Despite consistency of RRR for renal outcomesMARE across the SGLT2 inhibitor CVOTs (EMPA-REG OUTCOME, CANVAS Program and DECLARE-TIMI 58), the rate of sustained renal events was extremely low at just 69 events per 34,322 participants.²⁹ In contrast, the total number of sustained RRT events from CREDENCE was 183 events per 4,401 participants (HR: 0.72; 95% CI: 0.54-0.97).12

Page 18 of 43

	403	Excluding CREDENCE data, the strength of evidence for renoprotection with SGLT2
	404	inhibitors in patients with CKD has also been assessed in a second recent systematic
	405	review and meta-analysis. ³⁵ The results for Renal outcomesMARE were found to be
	406	less robust than for CV outcomesMACE, due to the relatively small number of renal
	407	events.35 The systematic review states that the "effect on the renal composite
	408	outcome was no longer clear in a sensitivity analysis excluding the DECLARE-TIMI
	409	58 trial," because most of the renal events used in the meta-analysis were from this
	410	trial. ³⁵
	411	Nevertheless, it is noteworthy that there were 765, 533, 1,184 and 758 persons with
	412	baseline macroalbuminuria in EMPA-REG OUTCOME, CANVAS Program,
	413	DECLARE-TIMI 58 and VERTIS-CV, respectively, for a total of 3240 persons, which
	414	is comparable to the 3,873 with macroalbuminuria in CREDENCE, although the
	415	prevalence of macroalbuminuria was lower in the CVOTs and eGFR was certainly
	416	lower in CREDENCE.
	417	Taken together it is clear that the renoprotective effects reported in the SGLT2
	418	inhibitor CVOTs are substantially less robust than those observed in CREDENCE. As
	419	highlighted in the recent ESC/EASD guidelines, whether the renoprotection
	420	demonstrated in CREDENCE is a SGLT2 inhibitor class effect or specific to
•	421	canagliflozin remains to be determined by further additional trials with the other
	422	SGLT2 inhibitors in patients with more advanced CKD. ¹⁶
	423	Ongoing and future studies
	424	Based on the results from the landmark CREDENCE renal outcomes trial,
	425	canagliflozin has recently been approved by the FDA to reduce the risk of (i) end-
	426	stage kidney disease; (ii) worsening of kidney function; and (iii) cardiovascular
	0	

Page 19 of 43

1		
2 3 4	427	death/hospitalisation for heart failure in people with T2D and CKD. Canagliflozin is
5 6	428	therefore the first SGLT2 inhibitor to include indications for T2D glycemic control, CV
7 8	429	risk reduction and renal risk reduction. ³⁶
9 10 11	430	Several trials are underway to further investigate the cardiovascular and renal
12 13	431	benefits of the other SGLT2 inhibitors. The Study of Heart and Kidney Protection
14 15	432	With Empagliflozin (EMPA-KIDNEY; NCT03594110), will evaluate approximately
16 17 18	433	5,000 patients with established CKD, with and without T2DM, to determine the effect
19 20	434	of empagliflozin on time to clinically relevant kidney disease progression or CV
21 22	435	death. ³⁷ The findings of this trial will build on results of the EMPA-REG OUTCOME
23 24 25	436	trial, with new data on the effects of empagliflozin in a broad range of people, with or
25 26 27	437	without T2D.
28 29	438	The DAPA-CKD (Study to Evaluate the Effect of Dapagliflozin on Renal Outcomes
30 31	439	and Cardiovascular Mortality in Patients With Chronic Kidney Disease;
32 33 34	440	NCT03036150), evaluating the effect of dapagliflozin on renal outcomes and
35 36	441	cardiovascular mortality in patients with chronic kidney disease is already fully
37 38	442	recruited with patients now under follow-up. The primary endpoint will be time to the
39 40 41	443	first occurrence of any of the components of the composite: ≥50% sustained decline
42 43	444	in eGFR or reaching ESRD, CV death or renal death.37
44 45	445	The recently completed VERTIS-CV CVOT (NCT01986881) is evaluating ertugliflozin
46 47 48	446	in 8,238 patients with established atherosclerotic CVD and includes a secondary
49 50	447	composite outcome of renal death, dialysis/transplant or doubling of baseline serum
51 52	448	creatinine. ^{10,37}
53 54 55	449	Outcomes have recently been reported for the DAPA-HF trial (Study to Evaluate the
55 56 57	450	Effect of Dapagliflozin on the Incidence of Worsening Heart Failure or Cardiovascular
58 59	451	Death in Patients With Chronic Heart Failure; NCT03036124).38,39 DAPA-HF primarily
60		19

Page 20 of 43

452 investigated the effect of dapagliflozin on a composite of worsening heart failure
453 (hospitalisation or an urgent visit resulting in intravenous therapy for heart failure) or
454 cardiovascular death in patients with chronic heart failure with reduced ejection
455 fraction (HR: 0.74; 95% CI: 0.65, 0.85; P <0.001).³⁹ A secondary outcome measure
456 will include time to the first occurrence of any of the components of a renal composite
457 (≥50% sustained decline in eGFR, ESRD, or renal death).^{37,38}

Two Phase 3 trials are currently recruiting subjects to investigate the safety and efficacy of empagliflozin versus placebo added to guideline-directed therapy in patients with heart failure. The two EMPEROR (EMPagliflozin outcomE tRial in Patients With chrOnic heaRt Failure) trials will include patients with heart failure due to either reduced ejection fraction (EMPEROR-Reduced; NCT03057977) or with preserved ejection fraction (EMPEROR-Preserved; NCT03057951).37 Secondary endpoints in both trials will include change/slope in eGFR from baseline, and time to first occurrence of chronic dialysis or renal transplant and sustained reduction of eGFR.37

Conclusions

Insights into the potential role of the SGLT2 inhibitor class of drugs in the prevention and treatment of DKD have been provided by CVOTs and CREDENCE.^{4,6,7,12} The overall renoprotective effect, although a secondary outcome in the CVOTs, does seem to be consistent for empagliflozin, canagliflozin and dapagliflozin with no evidence of heterogeneity.²⁹ In a recent meta-analysis, SGLT2 inhibition reduced ESRD (0.65, 0.53–0.81, p<0.0001), and acute kidney injury (0.75, 0.66–0.85, p<0.0001), with consistent benefits across studies (EMPA-REG OUTCOME, CANVAS Program and CREDENCE, and DECLARE-TIMI 58).²⁹ Irrespective of

2		
2 3 4	476	baseline albuminuria and use of RAAS blockade, renoprotection was also consistent
5 6	477	across the studies. ²⁹ However, concurrent with the latest 2019 ESC/ EASD
7 8 9	478	guidelines, Neuen et al. (2019) highlighted that the consistency of RRR in renal
9 10 11	479	outcomes being a class effect among the SGLT2 inhibitors remains uncertain
12 13	480	because of the different characteristics of participants in the included SGLT2 inhibitor
14 15	481	CVOTs as well as the fact that only the CREDENCE trial was specifically powered for
16 17 18	482	renal outcomes. ^{16,29}
19 20	483	Thus, from the CVOT data alone, it would be inappropriate to conclude that SGLT2
21 22	484	inhibitors provide a clear favourable effect on patient relevant clinical outcomes in
23 24 25	485	DKD and also that any such effect would be a class effect. ¹⁶ The only definitive
25 26 27	486	prospective clinical trial that has demonstrated a clear, highly clinically significant
28 29	487	effect on major renal outcomes in participants with CKD has been CREDENCE. Until
30 31 32 33 34	488	the ongoing dedicated renal trials for empagliflozin and dapagliflozin report
	489	conclusions on the renoprotective efficacy of these compounds in DKD and on class
35 36	490	effects cannot be made with complete confidence.
37 38	491	Acknowledgements
39 40 41	491	, territe wiedgemente
41 42 43	492	Editorial assistance was provided by Dr Klara Belzar (PhD), XLR8 Health Ltd., UK.
44 45	493	Disclosures
46 47	494	Guntram Schernthaner has received honoraria for speaking at sponsored meetings
48 49 50	495	and attending advisory board meetings for AstraZeneca, Boehringer Ingelheim, Eli
51 52	496	Lilly, Mundipharma, Servier and Takeda. Per-Henrik Groop has received research
53 54	497	grants from Eli Lilly and Roche, is an advisory board member for AbbVie, Astellas,
55 56 57	498	Astra Zeneca, Boehringer-Ingelheim, Eli Lilly, Janssen, Medscape, MSD,
57 58 59	499	Mundipharma, Novartis, Novo Nordisk and Sanofi. He has received lecture fees from
60		21

Astellas, Astra Zeneca, Boehringer-Ingelheim, Eli Lilly, Elo Water, Genzyme, MSD, Mundipharma, Novartis, Novo Nordisk, PeerVoice and Sanofi; Philip Kalra has received honoraria from Mundipharma, Napp Pharmaceuticals and Astra Zeneca for speaking at sponsored meetings; Claudio Ronco has no disclosures; Maarten Taal has received: honoraria from Mundibiopharma for speaking at sponsored meetings and attending advisory boards, travel sponsorship to attend a scientific conference from Napp Pharmaceuticals, travel sponsorship to attend a scientific meeting and an honorarium to attend an advisory board from Vifor Pharma UK, and grant funding Care. from Fresenius Medical Care.

Table 1. Key differences between the study design of SGLT2 inhibitor CVOTs and CREDENCE.

Trial Name		EMPA-REG OUTCOME	CANVAS Program	DECLARE-TIMI 58	VERTIS-CV	CREDENCE
Comparisons			CANVAS 1:1:1 ratio: canagliflozin 300 mg, canagliflozin 100 mg, placebo; CANVAS-R 1:1 ratio: canagliflozin 100 mg (optional increase to 300 mg), placebo 10,142	1:1 ratio: dapagliflozin 10mg, placebo 17,160	1:1:1 ratio: ertugliflozin 5mg, ertugliflozin 15 mg, placebo 8,238	1:1 ratio: canagliflozin 100mg, placebo 4,401
Number of patients i	n primary analysis					
Main inclusion criter •	ia: CVD	established CVD	age \geq 30 years and established CVD or age \geq 50 years with \geq 2 CVD risk factors	high CVD risk or established CVD	established vascular complications	no criteria
•	Renal	no criteria	micro- or macroalbuminuria	no criteria	no criteria	stage 2 or 3 CKD or macroalbuminuria
•	eGFR	\geq 30 mL/min/1.73m ²	>30 mL/min/1.73m ²	CCr ≥60 ml/min	≥45 to ≤60 mL/min/1.73m ²	≥30 to <90 mL/min/1.73m²
•	HbA1c	≥7.0% to ≤9.0%	≥7.0% to ≤10.5%	≥6.5% to ≤12.0%	$\geq 7.0\%$ to $\leq 10.5\%$	≥6.5% to ≤12.0%
•	UACR	no criteria	no criteria	no criteria	no criteria	>300 to 5,000 mg/g
Primary endpoint		3P-MACE	3P-MACE	3P-MACE; CV composite of CV death or HHF	3P-MACE	renal composite o ESRD, SCr doubling, renal/C\

					death
Secondary CV endpoint	4P-MACE (composite of the primary outcome plus hospitalisation for unstable angina)	all-cause mortality, CV death, composite of death from CV causes and HHF	no criteria	CV death or HHF; CV death	composite of CV death and HHF; CV death; all- cause death; CV composite of CV death, nonfatal MI, nonfatal stroke, HHF and hospitalisation for unstable angina
Secondary/exploratory renal endpoint	progression to macroalbuminuria, SCr doubling, initiation of RRT or death from renal disease	renal composite endpoint: 40% reduction in eGFR, need for RRT, or death from renal causes; albuminuria progression/regression	renal composite endpoint: 40% reduction in eGFR, new ESRD, or death from CV and/or renal causes	renal composite of renal death, dialysis/ transplant, or doubling of SCr from baseline	renal composite endpoint of ESRD, SCr doubling, and renal death; composite endpoint of ESRD and renal/CV death; individual components of the composite endpoints
Median follow-up (years)	3.1	2.4	4.2	ongoing	2.6
Patients with established CVD	99%	65.6%	40.6%	99.9%	50.4%
Baseline renal characteristics mean eGFR 	eGFR: 74.0 ml/min/1.73 m² (25.9% < 60 and 74.1% >60 ml/min/1.73m²);	76.5 ml/min/1.73 m² (20.1% < 60 and 79.9% >60 ml/min/1.73m²)	85.2 ml/min/1.73 m ² (45% between 60 and 90 ml/min/1.73 m ² and 7.0% < 60 ml/min/1.73 m ²)	76.0 ml/min/1.73 m ² (22% < 60 and 78% >60 ml/min/1.73m ²)	56.2 ml/min/1.73 m ² (60% < 60 and 40% >60 ml/min/1.73m ²)

	median UACR	78 mg/g	12.3 mg/g	13.1 mg/g	ns	927.0 mg/g
	microabuminuria	28.5%	22.6%	23.9%	30.2%	11%
	macroalbuminuria	10.9%	7.6%	6.9%	9.2%	88%
Refer	ence(s)	3,6	4	5,7	10	11,12
510	CCr: creatinine clearance rate					
511	glomerular filtration rate; ESR	D: end stage renal disea	ase; HbA1c: glycated h	aemoglobin; HHF: ho	spitalisation for I	neart failure; 3-P
512	MACE: 3 point major adverse	cardiovascular event =	CV death, nonfatal MI,	or nonfatal stroke; ns	: not specified; F	RRT: renal
513	replacement therapy; SCr: se	rum creatinine; SGLT2:	sodium glucose linked	transporter-2; T2D: ty	/pe-2 diabetes; L	JACR: Urine
 replacement therapy; SCr: serum creatinine; SGLT2: sodium glucose linked transporter-2; T2D: type-2 diabetes; UACR: Urine albumin-to-creatinine ratio. 						

Table 2. Summary of key renal outcome measures across SGLT2 inhibitor CVOTs and CREDENCE.

Trial	EMPA-REG	CANVAS	DECLARE-TIMI 58	CREDENCE
	N = 7,020	N = 10,142	N = 17,160	N = 4,401
	3,6	4,8	5,7	12
Cardiovascular Endpoint:		HR (95% CI	; <i>P</i> -value)	
3-point MACE	0.86	0.86	0.93	0.80
	(0.74-0.99; <i>P</i> <0.001 for noninferiority and <i>P</i> =0.04 for superiority)	(0.75-0.97; <i>P</i> <0.001 for noninferiority and <i>P</i> =0.02 for superiority)	(0.84-1.03; <i>P</i> =0.17)	(0.67-0.95; <i>P</i> =0.01)
Renal Endpoint:		HR (95% CI	, <i>P</i> -value)	
Cardiorenal composite			0.76	0.70
			(0.67-0.87; <i>P</i> <0.0001)	(0.59-0.82; <i>P</i> =0.00001)
Renal-specific composite [†]	0.54	0.60	0.53	0. 70-<u>66</u>
	(0.40-0.75; <i>P</i> <0.001)	(0.47-0.77)	(0.43-0.66; <i>P</i> <0.0001)	(0. 59<u>53</u>-0.8281; P<0.001)
Doubling of serum creatinine	0.56			0.60
	(0.39-0.79; <i>P</i> <0.001)			(0.48-0.76; <i>P</i> <0.001)
40% eGFR reduction			0.54	
			(0.43-0.67; P <0.0001)	
ESRD (initiation of dialysis)	0.45		0.31	0.68
	(0.21-0.97; <i>P</i> = 0.04)		(0.13-0.79; <i>P</i> =0.013)	(0.54-0.86; <i>P</i> =0.002)
Dialysis, kidney transplant or death				0.72
				(0.54-0.97; <i>P</i> = NA§)

	Prog	ression of albuminuria [‡]	0.62 (0.54-0.72)	0.73 (0.67-0.79; <i>NR</i>)	0.84 (0.79-0.89)	NA			
51	.6 †De	escribed as the composite	isk of doubling of serum	creatinine level accomp	panied by an estimated glo	omercular filtration rate	(eGFF		
517	.7 of≤	of ≤ 45 ml/min/1.73 m², initiation of renal replacement therapy, or death from renal disease in the EMPA-REG OUTCOME trial; as the							
51	.8 cor	composite risk of 40% reduction in eGFR, renal replacement therapy, or renal death in the CANVAS Program; as the composite risk							
51	.9 of >	40% decrease in eGFR to	o < 60 ml/min/1.73 m², ES	SRD, or death from rena	I cause in the DECLARE	TIMI 58 trial; and as th	е		
52	0 cor	nposite outcome of end-sta	age kidney disease, doul	oling of serum creatinine	e level, or renal or cardiov	ascular death in the			
52	1 CR	EDENCE trial.							
52	2 [‡] De	escribed as progression to	macroalbuminuria in the	EMPA-REG OUTCOME	E trial; as > 30% increase	in albuminuria, change	from		
52	either normoalbuminuria to micro-/macroalbuminuria or micro- to macroalbuminuria in the CANVAS Program; a			ogram; and as the comp	oosite				
52	4 risk	of normo- to micro- or ma	croalbuminuria in the DE	ECLARE-TIMI 58 trial.					
52	.5 §NA	A: not applicable since P-va	alues were only reported	in CREDENCE for outc	omes that were included	in the hierarchical-testi	ng		
52	6 stra	ategy.							
52	7 SG	LT2: sodium-glucose linke	d transporter-2; CVOTs:	cardiovascular outcome	e trials; HR: hazard ratio; (CI: confidence interval;	CV:		
52	8 car	diovascular; ESRD: end st	age renal disease; eGRI	-: estimated glomerular	filtration rate; NA: not app	licable; NR: not reporte	ed.		

Box 1. Key renal endpoint and outcome considerations with regard to the EMPA-REG OUTCOME, CANVAS Program and DECLARE-TIMI 58 study designs

a. In EMPA-REG OUTCOME, the "new or worsening nephropathy" component of the
 microvascular composite outcome was largely driven by cases of new onset
 macroalbuminuria, which accounted for over 85% of events.²¹

As defined, the new onset macroalbuminuria component could capture small, transient and/or reversible changes in albuminuria of uncertain clinical significance.²⁴ In fact, there was no difference in albuminuria between the placebo and empagliflozin arms following discontinuation of study drug, suggesting a haemodynamic effect rather than a direct effect on the underlying disease process.²²

540 b. In EMPA-REG OUTCOME, there was no significant between-group 541 differences in the rate of incident albuminuria for patients with 542 normoalbuminuria at baseline (51.5 and 51.2% with empagliflozin and placebo, 543 respectively; P =0.25).⁶ However, overall progression to macroalbuminuria was 544 reduced by 38% (P <0.001), suggesting a different effect of the SGLT2 inhibitor 545 on patients with different levels of urinary albumin excretion.⁶

Efficacy claims of "sustained normo- or microalbuminuria in patients with baseline macroalbuminuria" are difficult to maintain.²⁴ To date, regulatory agencies have not accepted on-treatment effects on albuminuria as a surrogate for clinical outcomes in diabetic nephropathy, in part because therapies can have acute and reversible pharmacologic effects on albuminuria that may differ from their long-term effects on the irreversible loss of renal function and underlying disease progression.^{25,26} c. The CANVAS Investigators introduced alternative renal endpoints in their analyses, i.e. a 40% decline in eGFR and eGFR slope, which might be more practical in trials of shorter duration.^{4,27} However, since these endpoints are less applicable at higher baseline renal function (e.g. as typically the case in CVOTs) and are limited for drugs that cause an acute reduction in eGFR via haemodynamically-mediated mechanisms (e.g. as with SGLT2 inhibitors), effects on these endpoints might not translate into true improvement in renal outcomes.

For each of these outcomes, substituting the 40% reduction in eGFR component with
 doubling of serum creatinine resulted in fewer events but similar canagliflozin
 treatment effect estimates.⁴ The results of the composite endpoints were mainly
 driven by sustained 40% reduction in eGFR and doubling of serum creatinine.⁴

db. In CANVAS, the annual eGFR decline was slower with canagliflozin (slope difference between groups 1.2mL/min/1.73m²/year; 95% CI: 1.0, 1.4).⁸ This effect is similar to that observed with RAAS blockers. An initial, functional 'dip' in eGFR is associated with long-term nephroprotection and is reversible upon discontinuation of the drug.⁴⁰ However, as with EMPA-REG OUTCOME, the programme was not designed to formally examine renal outcomes, the total number of renal events was small. The decrease in HR for composite renal outcome was driven primarily by the surrogate endpoints of renal function rather than patient relevant renal outcomes namely, ESRD, renal transplantation or renal death.

ec. Post-hoc analyses of data from the CANVAS Program have shown that the
beneficial effects of canagliflozin on CV and renal outcomes were not influenced by
baseline renal function in people with T2DM and a history or high risk of CVD down

to eGFR levels of 30 mL/min/1.73.m^{2.18}_This finding led to the suggestion that the use of canagliflozin might be appropriate for patients with eGFR levels that are below the previously recommended level in view of the potential CV and renal benefits of therapy.⁴¹

fd. As with the other CVOTs, despite an impressive HR reduction in the exploratory composite renal endpoint in DECLARE-TIMI 58, it was driven by the components of eGFR decrease to < 60 mL/min/1.73.m² and CV death.⁷ Of note, the patient relevant renal endpoints of ESRD, renal death and ESRD or renal death were comparatively rare events in this study.^{7,42}

2		
3 4	587	Figure 1. Baseline renal risk in study populations of SGLT2 inhibitor CVOTs
5 6 7	588	and CREDENCE. Adapted from ¹¹ .
8 9	589	Figure 2. Composite renal outcome rates and composite renal outcome relative
10 11 12	590	risk reductions (RRRs) in SGLT2 inhibitor CVOTs and CREDENCE. Adapted
12 13 14 15 16 17 18 20 21 22 24 25 26 27 28 29 30 12 33 34 56 37 38 90 41 42 43 44 56 57 56 57	591	from ⁴³ .
58 59 60		31

1 2				
3 4	593	Refe	rences	
5 6 7	594	1.	Nissen SE, Wolski K. Effect of Rosiglitazone on the Risk of Myocardial	
, 8 9	595		Infarction and Death from Cardiovascular Causes. New England Journal of	
10 11	596		Medicine. 2007;356(24):2457-2471.	
12 13 14	597	2.	Food and Drug Administration (FDA). Guidance for industry diabetes mellitus-	
15 16	598		evaluating cardiovascular risk in new antidiabetic therapies to treat type 2	
17 18	599		diabetes. 2008; https://www.fda.gov/media/71297/download. Accessed	
19 20 21	600		October 14th, 2019.	
21 22 23	601	3.	Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular	
24 25	602		Outcomes, and Mortality in Type 2 Diabetes. The New England journal of	
26 27 28	603		medicine. 2015;373(22):2117-2128.	
28 29 30	604	4.	Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and	
31 32	605		Renal Events in Type 2 Diabetes. New England Journal of Medicine.	
33 34	606		2017;377(7):644-657.	
35 36 37	607	5.	Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular	
38 39	608		Outcomes in Type 2 Diabetes. New England Journal of Medicine.	
40 41	609		2018;380(4):347-357.	
42 43 44	610	6.	Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and Progression of	
45 46	611		Kidney Disease in Type 2 Diabetes. New England Journal of Medicine.	
47 48	612		2016;375(4):323-334.	
49 50 51	613	7.	Mosenzon O, Wiviott SD, Cahn A, et al. Effects of dapagliflozin on	
51 52 53	614		development and progression of kidney disease in patients with type 2	
54 55	615		diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. The lancet	ı
56 57	616		Diabetes & endocrinology. 2019;7(8):606-617.	
58 59 60			32	,
			52	•

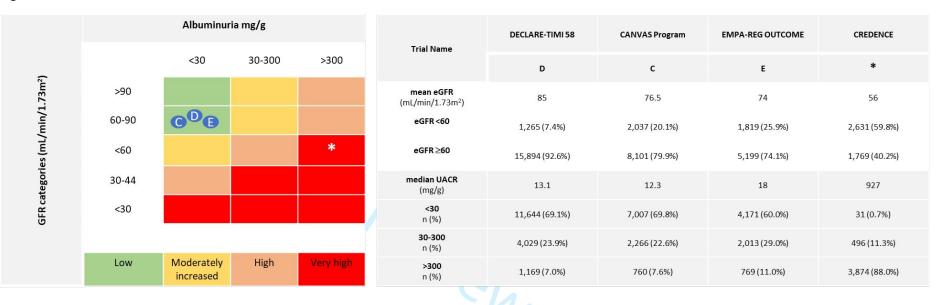
2				
2 3 4	617	8.	Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal	
5 6	618		outcomes in type 2 diabetes: results from the CANVAS Program randomise	d
7 8	619		clinical trials. The lancet Diabetes & endocrinology. 2018;6(9):691-704.	
9 10 11	620	9.	Prischl FC, Wanner C. Renal Outcomes of Antidiabetic Treatment Options f	or
12 13	621		Type 2 Diabetes-A Proposed MARE Definition. Kidney Int Rep.	
14 15	622		2018;3(5):1030-1038.	
16 17 18	623	10.	Cannon CP, McGuire D, Pratley R, et al. Design and Baseline Characteristic	cs
19 20	624		of the Evaluation of ertugliflozin Efficacy and Safety Cardiovascular Outcom	ies
21 22	625		Trial (VERTIS-CV). Journal of the American College of Cardiology.	
23 24	626		2018;71(11 Supplement):A1825.	
25 26 27	627	11.	Jardine MJ, Mahaffey KW, Neal B, et al. The Canagliflozin and Renal	
28 29	628		Endpoints in Diabetes with Established Nephropathy Clinical Evaluation	
30 31	629		(CREDENCE) Study Rationale, Design, and Baseline Characteristics.	
32 33 34	630		American journal of nephrology. 2017;46(6):462-472.	
35 36	631	12.	Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in	
37 38	632		Type 2 Diabetes and Nephropathy. The New England journal of medicine.	
39 40 41	633		2019;380(24):2295-2306.	
41 42 43	634	13.	Cefalu WT, Kaul S, Gerstein HC, et al. Cardiovascular Outcomes Trials in	
44 45	635		Type 2 Diabetes: Where Do We Go From Here? Reflections From a Diabete	es
46 47	636		Care Editors' Expert Forum. <i>Diabetes care.</i> 2018;41(1):14-31.	
48 49 50	637	14.	Wittbrodt ET, Eudicone JM, Bell KF, Enhoffer DM, Latham K, Green JB.	
51 52	638		Eligibility varies among the 4 sodium-glucose cotransporter-2 inhibitor	
53 54	639		cardiovascular outcomes trials: implications for the general type 2 diabetes	US
55 56 57	640		population. The American journal of managed care. 2018;24(8 Suppl):S138	-
57 58 59	641		s145.	
60				33

Page 34 of 43

1				
2 3 4	642	15.	Davies MJ, D'Alessio DA, Fradkin J, et al. Management of Hyperglycemia in	
5 6	643		Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes	
7 8	644		Association (ADA) and the European Association for the Study of Diabetes	
9 10 11	645		(EASD). <i>Diabetes care.</i> 2018;41(12):2669-2701.	
12 13	646	16.	Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes,	
14 15	647		pre-diabetes, and cardiovascular diseases developed in collaboration with the	
16 17 18	648		EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular	
19 20	649		diseases of the European Society of Cardiology (ESC) and the European	
21 22	650		Association for the Study of Diabetes (EASD). European Heart Journal.[Epub	
23 24 25	651		ahead of print].	
26 27	652	17.	Rodby RA, Rohde RD, Clarke WR, et al. The Irbesartan Type II Diabetic	
28 29	653		Nephropathy Trial: study design and baseline patient characteristics.	
30 31 32	654		Nephrology Dialysis Transplantation. 2000;15(4):487-497.	
33 34	655	18.	Neuen BL, Ohkuma T, Neal B, et al. Cardiovascular and Renal Outcomes	
35 36	656		With Canagliflozin According to Baseline Kidney Function. Circulation.	
37 38	657		2018;138(15):1537-1550.	
39 40 41	658	19.	Thompson A. Rethinking End Points in Clinical Trials of Renoprotective	
42 43	659		Medication. Clinical Journal of the American Society of Nephrology.	
44 45	660		2017;12(10):1561-1562.	
46 47 48	661	20.	Saiz L. The EMPA-REG OUTCOME trial (empagliflozin). A critical appraisal.	
49 50	662		The power of truth, the truth of power. DTB Navarre. 2017;24:1-13.	
51 52	663	21.	Tampakis A, Tampaki Ekaterini C, Gürke L. Letter by Tampakis et al	
53 54 55	664		Regarding Article, "Empagliflozin and Clinical Outcomes in Patients With Type	
55 56 57	665		2 Diabetes Mellitus, Established Cardiovascular Disease, and Chronic Kidney	
58 59	666		Disease". Circulation. 2018;138(8):848-849.	
60			34	

Page 35 of 43

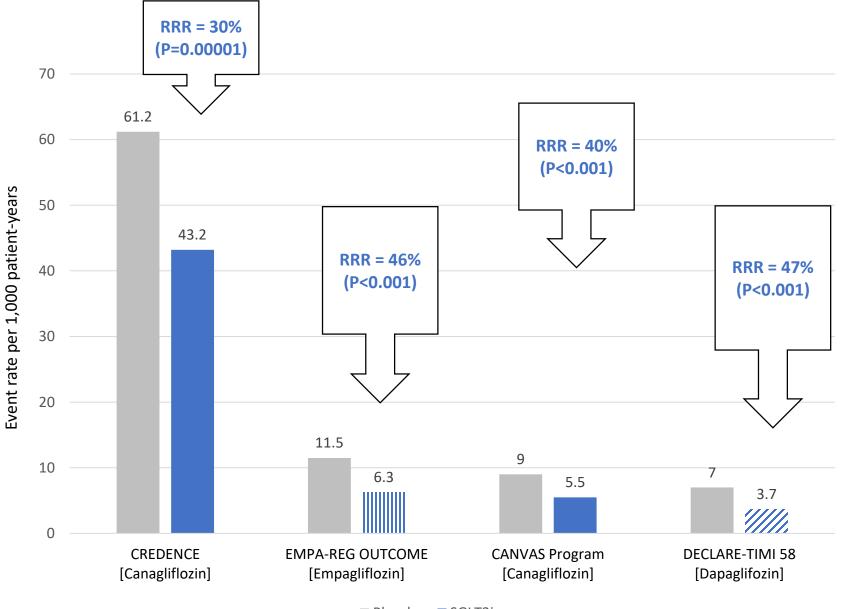
1			
2 3 4	667	22.	Tamargo J. Sodium-glucose Cotransporter 2 Inhibitors in Heart Failure:
5 6	668		Potential Mechanisms of Action, Adverse Effects and Future Developments.
7 8	669		<i>Eur Cardiol.</i> 2019;14(1):23-32.
9 10 11	670	23.	van Bommel EJM, Muskiet MHA, van Baar MJB, et al. The renal
12 13	671		hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-
14 15	672		glomerular vasodilatation rather than pre-glomerular vasoconstriction in
16 17 18	673		metformin-treated patients with type 2 diabetes in the randomized, double-
19 20	674		blind RED trial. Kidney international. 2020;97(1):202-212.
21 22	675	24.	Mayer GJ, Wanner C, Weir MR, et al. Analysis from the EMPA-REG
23 24 25	676		OUTCOME trial indicates empagliflozin may assist in preventing progression
23 26 27	677		of chronic kidney disease in patients with type 2 diabetes irrespective of
28 29	678		medications that alter intrarenal hemodynamics. Kidney international.
30 31 32	679		2019;96(2):489-504.
32 33 34	680	25.	Hartung EA. Biomarkers and surrogate endpoints in kidney disease. Pediatric
35 36	681		nephrology (Berlin, Germany). 2016;31(3):381-391.
37 38	682	26.	Roscioni SS, Lambers Heerspink HJ, de Zeeuw D. Microalbuminuria: target
39 40 41	683		for renoprotective therapy PRO. <i>Kidney international.</i> 2014;86(1):40-49.
42 43	684	27.	Coresh J, Turin TC, Matsushita K, et al. Decline in estimated glomerular
44 45	685		filtration rate and subsequent risk of end-stage renal disease and mortality.
46 47 48	686		JAMA. 2014;311(24):2518-2531.
49 50	687	28.	Zelniker TA, Raz I, Mosenzon O. Effect of dapagliflozin on cardiovascular
51 52	688		outcomes in patients with type 2 diabetes according to baseline renal function
53 54	689		and albuminuria status: Insights from DECLARE-TIMI 58. Paper presented at:
55 56 57	690		European Society of Cardiology (ESC) Congress; Aug 31-Sept 4, 2019; Paris,
58 59	691		France.
60			35


Page 36 of 43

1				
2 3 4	692	29.	Neuen BL, Young T, Heerspink HJL, et al. SGLT2 inhibitors for the prevention	l
5	693		of kidney failure in patients with type 2 diabetes: a systematic review and	
7 8	694		meta-analysis. The Lancet Diabetes & Endocrinology. 2019;7(11):845-854.	
9 10 11	695	30.	Mahaffey KW, Jardine MJ, Bompoint S, et al. Canagliflozin and	
12 13	696		Cardiovascular and Renal Outcomes in Type 2 Diabetes and Chronic Kidney	
14 15	697		Disease in Primary and Secondary Cardiovascular Prevention Groups:	
16 17 18	698		Results from the Randomized CREDENCE Trial. Circulation.	
19 20	699		2019;140(9):739-750.	
21 22	700	31.	Zinman B. Presented at the 79th Scientific Sessions of the American Diabetes	\$
23 24 25	701		Association; June 7-11, 2018; San Fransisco, USA.	
25 26 27	702	32.	Fralick M, Kim SC, Schneeweiss S, Kim D, Redelmeier DA, Patorno E.	
28 29	703		Fracture Risk After Initiation of Use of Canagliflozin: A Cohort Study. Annals of	f
30 31	704		<i>internal medicine.</i> 2019;170(3):155-163.	
32 33 34	705	33.	Schernthaner G, Drexel H, Moshkovich E, et al. SGLT2 inhibitors in T2D and	
35 36	706		associated comorbidities - differentiating within the class. BMC Endocr Disord	
37 38	707		2019;19(1):64-64.	
39 40 41	708	34.	Baigent C, Herrington WG, Coresh J, et al. Challenges in conducting clinical	
42 43	709		trials in nephrology: conclusions from a Kidney Disease-Improving Global	
44 45	710		Outcomes (KDIGO) Controversies Conference. Kidney international.	
46 47 48	711		2017;92(2):297-305.	
48 49 50	712	35.	Toyama T, Neuen BL, Jun M, et al. Effect of SGLT2 inhibitors on	
51 52	713		cardiovascular, renal and safety outcomes in patients with type 2 diabetes	
53 54	714		mellitus and chronic kidney disease: A systematic review and meta-analysis.	
55 56 57	715		Diabetes, obesity & metabolism. 2019;21(5):1237-1250.	
58 59				
60			3	6

1				
2 3 4	716	36.	Janssen. U.S. FDA Approves INVOKANA®. 2019;	
5 6	717		https://www.prnewswire.com/news-releases/us-fda-approves-invokana-	
7 8	718		canagliflozin-to-treat-diabetic-kidney-disease-dkd-and-reduce-the-risk-of-	
9 10 11	719		hospitalization-for-heart-failure-in-patients-with-type-2-diabetes-t2d-and-dkd-	
12 13	720		300927348.html. Accessed October 14th, 2019.	
14 15	721	37.	ClinicalTrials.gov. 2019; https://clinicaltrials.gov/ct2/home. Accessed August	
16 17 18	722		18, 2019.	
19 20	723	38.	McMurray JJV, DeMets DL, Inzucchi SE, et al. The Dapagliflozin And	
21 22	724		Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline	
23 24 25	725		characteristics. European journal of heart failure. 2019;[Epub ahead of print].	
26 27	726	39.	McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with	۱
28 29	727		Heart Failure and Reduced Ejection Fraction. New England Journal of	
30 31	728		Medicine. 2019;[Epub ahead of print].	
32 33 34	729	40.	Bakris G, R. Weir M. Angiotensin-Converting Enzyme Inhibitor-Associated	
35 36	730		Elevations in Serum Creatinine: Is This a Cause for Concern? Archives of	
37 38	731		internal medicine. 2000;160:685-693.	
39 40 41	732	41.	Davidson JA. SGLT2 inhibitors in patients with type 2 diabetes and renal	
42 43	733		disease: overview of current evidence. Postgraduate Medicine.	
44 45	734		2019;131(4):251-260.	
46 47 48	735	42.	Gorriz JL, Cos Claramunt FX, Duque N, Matali A. Review of the renal	
48 49 50	736		endpoints used in cardiovascular safety clinical trials in type 2 diabetes	
51 52	737		mellitus patients and their importance in primary care. Primary care diabetes.	,
53 54	738		2019.	
55 56 57	739	43.	Kluger AY, Tecson KM, Lee AY, et al. Class effects of SGLT2 inhibitors on	
58 59	740		cardiorenal outcomes. Cardiovascular diabetology. 2019;18(1):99-99.	
60				37

1		
2		
3	741	
4		
5		
6 7		
7 8		
o 9		
9 10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25 26		
20 27		
28		
29		
30		
31		
32		
33		
34		
35		
36 37		
38		
39		
40		
41		
42		
43		
44		
45		
46 47		
47 48		
48 49		
49 50		
51		
52		
53		
54		
55		
56 57		
57		
58		


Figure 1.

Empaglilozin: EMPA-REG OUTCOME; Canagliflozin: CANVAS Program, and CREDENCE; Dapagliflozin: DECLARE-TIMI 58.

SGLT2: sodium-glucose linked transporter-2; CVOTs: cardiovascular outcome trials; eGRF: estimated glomerular filtration rate; UACR: urine albumin-to-

creatinine ratio.

■ Placebo ■ SGLT2i

Due to the heterogeneity of populations and endpoints, any comparison between studies and SGLT-2 inhibitors should be made with caution.

Manuscript Revisions (DOM-19-1231-RA)

Reviewer Comment	Revisions/Rebuttal
Editor-in-Chief	·
I wonder if you might come up with a more eye-catching title that better	SGLT-2 Inhibitor Renal Outcome Modification in Type-2 Diabetes: Evidence
reflects the key conclusions or key message in your review	from Studies in Patients with High or Low Renal Risk
Reviewer 1	
It is however noteworthy that, based on the authors prevalences of	Statement added: P18, L408:
macroalbuminuria given in Table 1, there were 765, 533, 1184 and 758	"Nevertheless, it is noteworthy that there were 765, 533, 1,184 and 758
persons in EMPA-REG, CANVAS, DECLARE & VERTIS, for a total of 3240	persons with baseline macroalbuminuria in EMPA-REG OUTCOME, CANVA
persons, quite comparable to the 3873 with macroalbuminuria in	Program, DECLARE-TIMI 58 and VERTIS-CV, respectively, for a total of 3240
CREDENCE, although the eGFR was certainly lower in the latter trial.	persons, which is comparable to the 3,873 with macroalbuminuria in
	CREDENCE, although the prevalence of macroalbuminuria was lower in the
	CVOTs and the eGFR was certainly lower in CREDENCE. "
a reasonable combined analysis of the evidence of renal disease 🚫 👔	Many thanks for this proposal. Since the heterogeneity among the studies
progression among persons with macroalbuminuria in the four non-renal	is so large, we feel that a meta-analysis would be more informative and
trials would seem to be a powerful way of addressing the question of 👘 🦯	scientifically correct when the other large prospective studies analysing the
whether renal protection could be considered a feature of all the SGLT2	nephroprotective effects of SGLT-2 inhibitors become available.
inhibitors, and the authors might comment on whether a meta-analysis of	
all the trials using individual patient-level information might be useful in	
better understanding the issue while we await the results of the large trials	
mentioned in the manuscript	
Box 1 is unusually long for such a manuscript feature, and the very	Box 1 has been amended and the interesting points have now been
interesting points it contains should be incorporated into the appropriate	incorporated into the appropriate sections of the manuscript, as suggeste
sections of the manuscript. A replacement box of some three or four	(see P11, L248 and P12, L258 for EMPA-REG OUTCOME comments and P1
sentences would be more reasonable.	L277 and P13, L280 for CANVAS Program comments). Box 1 now contains
	only 4 key statements
Box 1(a) suggests that the lack of difference between placebo and	This comment has been noted and the BOX 1(a) text revised accordingly –
empagliflozin following study drug discontinuation suggests "a	see P11 L252:
hemodynamic effect rather than a direct effect on the underlying disease	"It has been postulated that SGLT-2 inhibitors exert a haemodynamic effe
process," and a similar point is made in 1(c). Inasmuch as the mechanism	rather than a direct effect on the underlying disease process, however the
of the renal effect of SGLT2i might well be hemodynamic (see for example	exact mechanism remains to be elucidated. In the recent randomised,
van Bommel EJM, Muskiet MHA, van Baar MJB, Tonneijck L, Smits MM,	double-blind RED trial, the renal haemodynamic effects of an SGLT-2

h	
2	
3	
4	
4 5	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
23	
24	
25	
25 26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
37 27	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
10	

Emanuel AL, Bozovic A, Danser AHJ, Geurts F, Hoorn EJ, Touw DJ, Larsen EL,	inhibitor were shown to be caused by post-glomerular vasodilatation
Poulsen HE, Kramer MHH, Nieuwdorp M, Joles JA, van Raalte DH. The renal	rather than pre-glomerular vasoconstriction in metformin-treated T2D
hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by	patients."
post-glomerular vasodilatation rather than pre-glomerular vasoconstriction	
in metformin-treated patients with type 2 diabetes in the randomized,	Similarly for BOX 1(c), the following statement has been deleted – see P13
double-blind RED trial. Kidney Int. 2019 Oct 10. pii: S0085-2538(19)30991-	L294:
3. doi: 10.1016/j.kint.2019.09.013), it seems to this reviewer spurious to	" and are limited for drugs that cause an acute reduction in eGFR via
argue that an effect not present after drug withdrawal would be in some	haemodynamically-mediated mechanisms (e.g. as with SGLT2 inhibitors)"
fashion not an important aspect of potential renal protection.	
The Bold section of Box 1(b) addressing different renal protection in	The following sentence has been added – see P12 L269:
patients with different levels of albuminuria is an important point, although	"It is also important to note that persons with a reduction in eGFR without
one likely relevant to any agent protecting persons with diabetes against	elevations in urinary albumin may or may not show benefit from SGLT-2
DKD development; similarly, different levels of eGFR may be associated	inhibitor treatment, however further trials will be required to determine
with different degrees of protection against DKD, and the authors might	this."
point out that persons with reduction in eGFR without elevations in urinary	
albumin may or may not show benefit from SGLT2i (and that a	Regarding the proposal of a meta-analysis: Since the heterogeneity among
metaanalysis of the sort mentioned above might be particularly useful in	the studies is so large, we feel that a meta-analysis would be more
providing preliminary answers to this question).	informative and scientifically correct when the other large prospective
	studies analysing the nephroprotective effects of SGLT-2 inhibitors become
	available.
Box 1(d) is, again, an interesting point. It suggests to this reviewer that	We think that examining the data from the large prospective studies
although "the total number of renal events was small," a large subset of	analysing the nephroprotective effects of SGLT-2 inhibitors when available will be more informative in this context.
patients in the trials showed changes in renal function, both in eGFR and in	will be more informative in this context.
albuminuria, which could certainly be examined to get a sense of the effect	
of the agents on the potential for overall renal function benefit. Rather than using figure 1 in its present form, it would be of interest to give	Figure 1 has been revised with an updated table. However, stratification by
the numbers of persons in the intervention and control groups in each trial	eGFR and albuminuria categories have been reported only for DECLARE-
in each of the eGFR vs albuminuria bins.	TIMI and in a sub-analysis of CANVAS, which means that this information is
	not transferrable for all trials to the heat map in Figure 1.
Reviewer 2	
My only comment is regarding figure 2 - I worry that, given the	The following statement has been added at the bottom of figure 2 to avoid
heterogeneity of populations and endpoints, readers will cross-compare	confusion:

between studies and drugs. Thus, I wonder whether it would be better to	"Due to the heterogeneity of populations and endpoints, any comparison
remove Figure 2 to avoid this confusion.	between studies and SGLT-2 inhibitors should be made with caution."
Reviewer 3	
Intro, first sentence. A slight adjustment to the wording of the opening sentence may be warranted. Although new glucose-lowering agents have been subject to large outcome trials, some beginning in phase 3, some beginning as phase 4, the 2008 guidance published by FDA and cited in reference #2 of the present manuscript actually refers to the requirement for pre-marketing evaluation of CV risk. "Sponsors should perform a meta-analysis of the important cardiovascular events across phase 2 and phase 3 controlled clinical trials and explore similarities and/or differences in subgroups (e.g., age, sex, race), if possible. "	Many thanks for this proposal. Since the heterogeneity among the studies is so large, we feel that a meta-analysis would be more informative and scientifically correct when the other large prospective studies analysing th nephroprotective effects of SGLT-2 inhibitors become available.
Would it be useful to note that although the CVOTs under consideration in this manuscript had MACE as the primary endpoint, the regulators asked different questions of the sponsors which affected the renal recruitment criteria.	Statement incorporated – P9, L190
While views vary concerning the levels of credibility that should be given to secondary endpoints, do the authors consider that such renal endpoints from CVOTs can be included as part of the labelling of newer agents? (cf comments on Declare).	Prospective studies analysing primarily kidney endpoints have a much higher value and should be used for labelling of newer agents.
Could differences in the duration of follow-up impact findings (given the	Sentence added- see P17, L393:
different parameters to be measured), and if so, how should this be factored into the design of future trials? (eg, P15, L351)	"Notably, longer duration of follow-up (e.g., \geq 3 years) in kidney trials may be more important for renal outcomes than cardiovascular outcomes."
P6, L132. I'm not sure that the ESC guideline has been endorsed by the EASD because the ESC guideline is at odds with the ADA/EASD consensus regarding first-line metformin in patients with very high CV risk. (also P15, L341, and P16, L368, and P19, L426).	The 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases were developed in collaboration with the EASD.
P7, L156 should read "wereno criteria"	Amended
P15, L349, patients who.	Amended