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ABSTRACT

The contribution of structural connectivity to functional brain states remains poorly understood. We12

present a mathematical and computational study suited to assess the structure–function issue, treating a13

system of Jansen–Rit neural-mass nodes with heterogeneous structural connections estimated from14

diffusion MRI data provided by the Human Connectome Project. Via direct simulations we determine the15

similarity of functional (inferred from correlated activity between nodes) and structural connectivity16

matrices under variation of the parameters controlling single-node dynamics, highlighting a non-trivial17

structure–function relationship in regimes that support limit cycle oscillations. To determine their18

relationship, we firstly calculate network instabilities giving rise to oscillations, and the so-called ‘false19

bifurcations’ (for which a significant qualitative change in the orbit is observed, without a change of20

stability) occurring beyond this onset. We highlight that functional connectivity (FC) is inherited robustly21

from structure when node dynamics are poised near a Hopf bifurcation, whilst near false bifurcations,22

structure only weakly influences FC. Secondly, we develop a weakly-coupled oscillator description to23

analyse oscillatory phase-locked states and, furthermore, show how the modular structure of FC matrices24

1

Forrester, M. & Crofts, J. J. (2020). The role of node dynamics in shaping 
emergent functional connectivity patterns in the brain. Network Neuroscience. 
Advance publication. https://doi.org/10.1162/netn_a_00130

© 2020 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license

https://doi.org/10.1162/netn_a_00130
http://crossmark.crossref.org/dialog/?doi=10.1162/netn_a_00130&domain=pdf&date_stamp=2020-02-03


can be predicted via linear stability analysis. This study thereby emphasises the substantial role that local25

dynamics can have in shaping large-scale functional brain states.26

AUTHOR SUMMARY

Patterns of oscillation across the brain arise because of structural connections between brain regions.27

However, the type of oscillation at a site may also play a contributory role. We focus on an idealised28

model of a neural mass network, coupled using estimates of structural connections obtained via29

tractography on Human Connectome Project MRI data. Using a mixture of computational and30

mathematical techniques we show that functional connectivity is inherited most strongly from structural31

connectivity when the network nodes are poised at a Hopf bifurcation. However, beyond the onset of this32

oscillatory instability a phase-locked network state can undergo a false bifurcation, and structural33

connectivity only weakly influences functional connectivity. This highlights the important effect that34

local dynamics can have on large scale brain states.35

INTRODUCTION

Driven in part by advances in non-invasive neuroimaging methods that allow characterisation of the36

brain’s structure and function, and developments in network science, it is increasingly accepted that the37

understanding of brain function may be obtained from a network perspective, rather than by exclusive38

study of its individual sub-units. Anatomical studies using diffusion MRI allow estimation of structural39

connectivity (SC) of human brains, forming the so-called human connectome (Sporns, 2011; Van Essen40

et al., 2013) which reflects white matter tracts connecting large-scale brain regions. The graph-theoretical41

properties of such large-scale networks have been well studied, highlighting key features including42

small-world architecture (Bassett & Bullmore, 2006; Liao, Vasilakos, & He, 2017), hub regions and cores43

(Oldham & Fornito, 2018; van den Heuvel & Sporns, 2013), rich club organisation (Betzel, Gu,44

Medaglia, Pasqualetti, & Bassett, 2016; Van Den Heuvel & Sporns, 2011), a hierarchical-like modular45

structure (Meunier, Lambiotte, & Bullmore, 2010; Sporns & Betzel, 2016), and economical wiring46

(Betzel et al., 2017; Bullmore & Sporns, 2012). The emergent brain activity that this structure supports47

can be evaluated by functional connectivity (FC) network analyses, that describe patterns of temporal48
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coherence in neural activity between brain regions. These highly dynamic patterns are widely believed to49

be significant in integrative processes underlying higher brain function (Van Den Heuvel & Pol, 2010;50

van Straaten & Stam, 2013) and disruptions in SC and FC networks are associated with many psychiatric51

and neurological diseases (Braun, Muldoon, & Bassett, 2015; Menon, 2011).52

However, the relationship between the brain’s anatomical structure and the neural activity that it53

supports remains largely unknown (C. J. Honey, Thivierge, & Sporns, 2010; Park & Friston, 2013). In54

particular, the divergence between dynamic functional activity and the relatively static structural55

connections between populations is critical to the brain’s dynamical repertoire and may hold the key to56

understanding brain activity in health and disease (Park & Friston, 2013), though current models have not57

yet been able to accurately simulate the transitive states underpinning cognition (Petersen & Sporns,58

2015). Empirical studies suggest that while a structural connection between two brain areas is typically59

associated with a stronger functional interaction, strong interactions can nevertheless exist in their60

absence (Hermundstad et al., 2014; C. J. Honey et al., 2010); moreover, these functional networks are61

transient (Fox et al., 2005; Hutchison et al., 2013; Liegeois, Laumann, Snyder, Zhou, & Yeo, 2017; Preti,62

Bolton, & Van De Ville, 2017), motivating more recent consideration of dynamic (rather than63

time-averaged) FC networks, which have been proposed to more accurately represent brain function. An64

important example of SCFC divergence is provided by resting-state networks, such as the ‘default mode65

network’ and the ‘core network’ (Thomas Yeo et al., 2011; Van Den Heuvel & Pol, 2010). These66

networks comprise brain areas that can be strongly functionally connected at rest (Van Den Heuvel &67

Pol, 2010), but can also temporally vary. Indeed, a neural ’switch’ has been proposed that facilitates68

transitions between resting–state networks (Goulden et al., 2014) and a theoretical study by Messé,69

Rudrauf, Benali, and Marrelec (2014) estimated that non-stationarity of FC contributes to over half of70

observed FC variance.71

Theoretical studies deploying anatomically realistic structural networks obtained through tractography72

alongside neural mass models describing mean-field regional neural activity have been used to further73

investigate the emergence of large-scale FC patterns (Breakspear, 2017; Deco et al., 2013; C. J. Honey,74

Kötter, Breakspear, & Sporns, 2007; Messé, Hütt, König, & Hilgetag, 2015; Ponce-Alvarez et al., 2015;75

Rubinov, Sporns, van Leeuwen, & Breakspear, 2009). These findings suggest that through indirect76

network-level interactions, a relatively static structural network can support a wide range of FC77
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configurations; for example showing that FC reflects underlying SC on slow time scales, but significantly78

less so on faster time scales (C. Honey et al., 2009; C. J. Honey et al., 2007; Rubinov et al., 2009).79

In the context of mean-field models, simulated (typically time-averaged) FC has been found most80

strongly to resemble SC when the dynamical system describing regional activity is close to a phase81

transition (Stam et al., 2016), and strong structure–function agreement is reported near Hopf bifurcations82

in Hlinka and Coombes (2012). Similarly, analysis of the dynamical systems underpinning neural83

simulations have shown to be a good fit to fMRI data when the system is near to bifurcation (Deco et al.,84

2019; Tewarie et al., 2018). These results provide a possible manifestation of the so-called critical brain85

dynamics hypothesis (Cocchi, Gollo, Zalesky, & Breakspear, 2017; Shew & Plenz, 2013). In Crofts,86

Forrester, and O’Dea (2016), both SC and FC are analysed together in a multiplex network, proposing a87

novel measure of multiplex structure–function clustering in order to investigate the emergence of88

functional connections that are distinct from the underlying structure. Deco, Kringelbach, Jirsa, and89

Ritter (2017) consider dynamic FC, with transient FC states described as meta-stable states, and in Deco90

et al. (2019), meta-stability of a computational model of large-scale brain network activity was used to91

predict which structures of the brain could be influenced to force a transition between states of92

wakefulness and sleep. Hansen, Battaglia, Spiegler, Deco, and Jirsa (2015) were also able to observe93

dynamic transitions between states resembling resting-state networks in a noise-driven, non-linear,94

mean-field model of neural activity.95

In this paper, we adopt the mean-field neural-mass approach and present a combined computational96

and mathematical study, which significantly extends the related works of Hlinka and Coombes (2012)97

and Crofts et al. (2016) to investigate how the detailed and rich dynamics of the intrinsic behaviour of98

neural populations, together with structural connectivity, combine to shape FC networks. Thereby, we99

provide a complementary investigation to many of the aforementioned studies which focus on the100

analysis of brain networks themselves, or those that employ statistical models, by instead investigating101

the relationship between network structure and the emergent dynamics of these networks. Specifically,102

we consider synchrony between neural subunits whose dynamics are described by the neural mass model103

of Jansen and Rit (1995), and whose connectivity is defined by a tractography-derived structural network104

obtained from data in the Human Connectome Project (HCP) (Van Essen et al., 2013).105

Structure–function relations are interrogated by graph-theoretical comparison of FC and SC topology106
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under systematic variation of model parameters associated with excitatory/inhibitory neural responses,107

and analysed by making use of techniques from bifurcation and weakly-coupled oscillator theory.108

METHODS

Neural mass model109

We consider a network of interacting neural populations, representing a parcellation of the cerebral

cortex, such that each area (node) corresponds to a functional unit that can be represented by a neural

mass model, and with edges informed by structural connectivity. Neural mass activity is represented by

the Jansen–Rit model (Jansen & Rit, 1995) of dimension m = 6, that describes the evolution of the

average post-synaptic potential (PSP) in three interacting neural populations: pyramidal cells (y0), and

excitatory (y1) and inhibitory (y2) interneurons. These populations are connected with strengths Ci

(i = 1...4), representing the average number of synaptic connections between each population. The

Jansen–Rit model is mathematically described by three second order ordinary differential equations

which are commonly rewritten as six first order equations by adopting the notation (y0, . . . , y5) for the

dependent variables. The pairs (y0, y3), (y1, y4), and (y2, y5) are therefore associated with the dynamics

of the population average of PSPs and their temporal derivatives. The quantity of primary interest herein

is y = y1 − y2, which is physiologically interpreted as the average potential of pyramidal populations and

the main contributor to signals generated in EEG recordings (Teplan, 2002). Introducing an index

i = 1, . . . , N to denote each node in a network of N interacting neural populations, we write the

evolution of state variables as:

ẏ0i = y3i , ẏ1i = y4i , ẏ2i = y5i ,

ẏ3i = Aaf (y1i − y2i)− 2ay3i − a2y0i , (1)

ẏ4i = Aa

{
Pi + ε

N∑
j=1

wijf
(
y1j − y2j

)
+ C2f (C1y0i)

}
− 2ay4i − a2y1i ,

ẏ5i = BbC4f (C3y0i)− 2by5i − b2y2i .

Here f is a sigmoidal nonlinearity, representing the transduction of activity into a firing rate, and with the

specific form

f(v) =
νmax

1 + exp(r(v0 − v))
. (2)
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The model is identical to that presented in Jansen and Rit (1995) for a single cortical column, but is110

completed by the specifying the network interactions as a function of average membrane potential of111

afferently connected pyramidal populations, encoded in a connectivity matrix with elements wij112

(described in Structural and functional connectivity), with an overall scale of interaction set by ε. The113

remaining model parameters, together with their physiological interpretations and values (taken from114

Grimbert and Faugeras (2006), and Touboul, Wendling, Chauvel, and Faugeras (2011)), are given in115

Table 1. A schematic ‘wiring diagram’ for the model indicating the interactions between different neural116

populations is shown in Fig. 1.117

E I

PC

C1

C3C2

C4

Pi + ε
∑
j
wijf(y1j − y2j )

Figure 1. Wiring diagram for a Jansen-Rit network node, described by equations (1,2). Excitatory/inhibitory populations and synaptic connections are

highlighted in red/blue respectively. Interneurons (E, I) and pyramidal cells (PC) are interconnected with strengths Ci for i = 1...4. Also shown is the

expression for the external input to a PC population, consisting of a extracortical input Pi, as well as contributions from afferently connected nodes.

118

119

120

The Jansen–Rit model, defined by equation (1), can support oscillations that relate to important neural121

rhythms, such as the well known alpha, beta and gamma brain rhythms, and also irregular, epileptic-like122

activity (Ahmadizadeh et al., 2018). Moreover, the model is able to replicate visually-evoked potentials123

seen in EEG recordings (Jansen & Rit, 1995), from which FC may be empirically measured (Srinivasan,124

Winter, Ding, & Nunez, 2007).125

In what follows, we consider the patterns of dynamic neural activity that arise under systematic129

variation of the model parameters A and B, these being chosen as the parameters of interest because they130

govern the interplay between inhibitory and excitatory activity, which would typically vary due to131

neuromodulators in the brain (Rich, Zochowski, & Booth, 2018). It is known that a single Jansen–Rit132

node can support multi-stable behaviour which includes oscillations of different amplitude and frequency133
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Parameter Meaning Value

C1, C2, C3, C4 Average number of synapses between populations 135, 108, 33.75, 33.75

Pi

Basal extracortical input to main pyramidal excitatory

populations

120 Hz

A,B Amplitude of excitatory, inhibitory PSPs respectively [2, 14] mV, [10, 30] mV

a, b Lumped time constants of excitatory, inhibitory PSPs 100 s−1, 50 s−1

ε Global coupling strength 0.1

wij Coupling from node j to i [0, 1]

νmax Maximum population firing rate 5 Hz

v0 Potential at which half-maximum firing rate is achieved 6 mV

r Gradient of sigmoid at v0 0.56 mV−1

Table 1. Parameters in the Jansen–Rit model, given by equations (1) and (2) along with physiological interpretations and values/ranges used in simulations,

which were taken from Grimbert and Faugeras (2006) and Touboul et al. (2011). In particular, the values A and B, which modulate the strength of excitatory

and inhibitory responses respectively, were chosen as the key control parameters for varying network activity.

126

127

128

but, moreover, a network of these nodes can also exhibit various stable phase-locked states. A small134

amount of white noise is added to the extracortical input Pi on each node, in order to allow the system to135

explore a variety of these dynamical states: Pi + dWi(t), where dWi(t) is chosen at random from a136

Gaussian distribution with standard deviation 10−1 Hz and mean 0 Hz. For direct simulations of the137

network we use an Euler–Murayama scheme, implemented in Matlab®, with a fixed numerical time-step138

of 10−4, which we have confirmed ensures adequate convergence of the method.139

Structural and functional connectivity140

The structural connectivity was estimated using diffusion MRI data recorded with informed consent from144

10 subjects, obtained from the HCP (Van Essen et al., 2013). Briefly, we explain how this data is145

post-processed to derive connectomic data, though we direct the reader to Tewarie et al. (2019) and the146

references therein for a more detailed overview. 60,000 vertices on the white/grey matter boundary147
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Figure 2. The original structural matrix (a) is derived from DTI data taken from the Human Connectome Project database and parcellated on to a 78-region

brain atlas. This is thresholded and binarised to keep the top 23% strongest connections (b) and normalised by row so that
∑N

j=1 wij = 1 for all regions i) in

(c).

141

142

143

surface for each subject (Glasser et al., 2013) were used as seeds for 10,000 tractography streamlines.148

Streamlines were propagated through voxels with up to three fibre orientations, estimated from149

distortion-corrected data with a deconvolution model (Jbabdi, Sotiropoulos, Savio, Graña, & Behrens,150

2012; Sotiropoulos et al., 2016), using the FSL package. The number of streamlines intersecting each151

vertex on the boundary layer was measured and normalised by the total number of valid streamlines. This152

resulted in a 60,000 node structural matrix, which was further parcellated using the 78-node AAL atlas.153

This was used to describe connections between brain regions, providing an undirected (symmetric),154

weighted matrix whose elements wij define the strengths of the excitatory connections in equations (1).155

To enable a meaningful comparison between the network measures of SC and FC, the former reflecting156

the density of tractography streamlines and the latter that of correlated neural activity, we place them on a157

similar footing by thesholding and binarising, such that only the top 23% of the weights (ordered by158

strength) are retained; see Fig. 2. Thresholding is a widespread technique for removing spurious159

connections that may not in fact be a realistic representation of brain connectivity. We note that our160
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thresholding choice (that reduces the number of connections, while ensuring that the overall modular161

structure is unchanged) is commensurate with a recent study (Tsai, 2018), which employed DTI data162

averaged on the same brain atlas as used herein to consider thresholding approaches suitable to remove163

weak connections with high variability between (n = 30) different subjects. To generate nodal inputs164

with commensurate magnitudes, the structural connectivity matrix was normalised by row so that afferent165

connection strengths for each node sum to unity. This normalisation process permits some of the analysis166

that we undertake to help explain SC–FC relations (see Weakly coupled oscillator theory); however, we167

highlight that the results that we present herein are not crucially dependent on such a choice and so our168

conclusions generalise (see supplementary MATHEMATICAL METHODS).169

In view of the non-linear oscillations supported by the network model given by (1), functional

connectivity networks are obtained by computing the commonly-used metric of mean phase coherence

(MPC; Mormann, Lehnertz, David, and Elger (2000)), which determines correlation strength in terms of

the proclivity of two oscillators to phase-lock, giving a range from 0 (completely desynchronised) to 1

(phase-locking). We choose yj = y1j − y2j as the variable of interest because of its relation to the EEG

signal, making it a good candidate to produce timeseries more readily comparable with empirical data.

Pairwise MPC measures the average temporal variance of the phase difference ∆φjk(t) = φj(t)− φk(t),

between two time-series indexed by j and k, where here the instantaneous phase φj(t) is obtained as the

angle of the complex output resulting from application of a Hilbert transform to the time-series, yj(t).

The mean phase coherence of the time-series comprising M time-points tl (l = 1, . . . ,M ) is defined as:

Rjk =

∣∣∣∣ 1

M

M∑
l=1

ei∆φjk(tl)

∣∣∣∣. (3)

170

Structure–function relations are assessed by computing the Jaccard similarity coefficient (Jaccard,171

1912) of the non-diagonal entries of the binarised SC and FC matrices. This describes the relative number172

of shared pairwise links between the two networks, providing a natural measure of structure–function173

similarity, ranging from zero for matrices with no common links to unity for identical matrices.174

Since the SC–FC correlation patterns of interest here arise naturally from global synchrony or patterns175

of phase-locking of oscillatory node activity, the local stability of oscillatory node dynamics and of176

network (global or phase-locking) synchrony is a natural candidate to explain the structures we observe.177
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In the following subsections we consider bifurcation, false bifurcation and weakly-coupled oscillator178

theory approaches to address this.179

Bifurcation analysis180

Single node and network bifurcations Bifurcations for a single node are readily computed using the software181

package XPPAUT (Ermentrout, 2002), using A and B as the parameters of interest. The result is a Hopf182

and saddle-node set in parameter space, which bounds a region of oscillatory solutions. We also observe183

a region of bistability bounded by fold bifurcations of limit cycles, in which the types of activity184

described in Fig. 4(a) and (c) can both exist. This is shown in Fig. 3. We refer the reader to Grimbert and185

Faugeras (2006) Touboul et al. (2011) and Spiegler, Kiebel, Atay, and Knösche (2010) for a186

comprehensive analysis of the bifurcation structure of the Jansen–Rit model.187

The corresponding diagram for the full network requires numerical analysis of a much higher188

dimensional system, described by N ×m = 78× 6 = 468 ODEs; this is computationally demanding,189

and so in the supplementary MATHEMATICAL METHODS we develop a quasi-analytic approach by190

linearising the full network equations around a fixed point. The resulting equations can be diagonalised191

in the basis of eigenvectors of the structural connectivity, leading to a set of N equations, each of which192

prescribes the spectral problem for an m-dimensional system. Thus, each of these low dimensional193

systems can be easily treated without recourse to high performance computing. Moreover, this approach194

exposes the role that the eigenmodes of the structural connectivity matrix has in determining the stability195

of equilibria. We report the locus of Hopf and saddle-node sets for the network in Fig. 5. Comparison of196

Figs 3 and 5 shows that the bifurcation structure of steady states for the full network is practically197

identical to that of the single node (even for moderate coupling strength—here, ε = 0.1), highlighting the198

potential importance of single-node dynamics in driving SC–FC correlations.199

False bifurcations In Fig. 4 we consider in more detail the types of activity that the network model (1)205

supports. In particular, we observe that under changes to parameter values within the oscillatory region206

(see highlighted parameter values in Fig. 3), the time-course of activity shifts from single- to207

double-peaked waves, which could have consequences for synchronisation of oscillations and, moreover,208

FC. The points of transition are known as false bifurcations since there is a significant dynamical change209
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Figure 3. Two-parameter bifurcation diagram in the (A,B) plane in the single-node case of the Jansen–Rit system of equations (1). Other parameter values

are as stated in Table 1. Red dashes are Hopf bifurcations, black dots are false bifurcations and blue lines represent saddle points. There is also a region of

bistability, highlighted in yellow, which is bounded by saddle nodes and a set of fold bifurcations of limit cycles. The pink and yellow shaded regions indicates

parameter values for which there exist stable oscillatory solutions. The three coloured dots at B = 22, A = 7.0, 7.7, 9.0 indicate parameter values at which

we observe distinctly different dynamics as shown in Fig. 4.

200

201

202

203

204

that occurs smoothly rather than critically. False bifurcations in a neural context have previously been210

seen as canards in single neuron models (Desroches, Krupa, & Rodrigues, 2013) as well as in EEG211

models of absence seizures (Marten, Rodrigues, Benjamin, Richardson, & Terry, 2009). In the latter case212

the false bifurcation corresponds to the formation of spikes associated with epileptic seizures (Moeller et213

al., 2008).214

As illustrated in Fig. 4 the false-bifurcation transition is characterised by the change from a215

double-peaked profile (a) to a sinusoidal-like waveform (c) via the development of a point of inflection in216

the solution trajectory (b). Since this transition is not associated with a change in stability of the periodic217
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orbit, these false bifurcations are determined by tracking parameter sets for which points of inflection218

occur. We refer the reader to Rodrigues et al. (2010) for details on methods for detecting and continuing219

false bifurcations in dynamical systems. The result of this computation is shown in Fig. 3, where we220

observe the set of false bifurcations arising from the breakdown of two branches of fold bifurcations of221

limit cycles. In the full network (not shown), this computation is more laborious (and there is some222

delicacy in defining the bifurcation since the network coupling leads nodes to inflect at marginally223

different parameter values); however, we obtain very similar results to those obtained in Figure 3 for a224

single node (not shown).225

Weakly-coupled oscillator theory231

Further insight into the phase relationship between nodes in a network can be obtained from the theory of

weakly coupled oscillators (see, e.g., Hoppensteadt and Izhikevich (2012)). This technique reduces a

network of limit cycle oscillators to a set of relative phases in a systematic way. The resulting set of

network ODEs is (N − 1)-dimensional, as opposed to the (Nm)-dimensionality of the original system,

and provides an accurate model as long as the overall coupling strength is weak (|ε| � 1). This is

because when all oscillators lie on the same limit cycle of a system, the interactions from

pairwise-connected nodes can be considered as small perturbations to the oscillator dynamics. Moreover,

the resulting set of network ODEs only depends upon phase differences and it is straightforward to

construct relative equilibria (oscillatory network states) and determine their stability in terms of both

local dynamics and structural connectivity. A method to construct the phase interaction function, H , for

the network is provided in the supplementary MATHEMATICAL METHODS. Once this is known, the

dynamics for the phases of each node in the network, θi ∈ [0, 2π), takes the simple form:

θ̇i = Ω + ε

N∑
j=1

wijH(θj − θi), i = 1, . . . , N − 1, (4)

where Ω = 2π/T represents the natural frequency of an uncoupled oscillatory node with period T , and

the second term determines phase changes arising from pairwise interactions between nodes. We

emphasise that the T -periodic phase interaction function H(Ωt) = H(Ω(t+ T )) is derived from the full

system given by (1). For a given phase-locked state θi(t) = Ωt+ φi (where φi is the constant phase of

each node), local stability is determined in terms of the eigenvalues of the Jacobian of (4), denoted by
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Figure 4. Activity profiles of y = y1−y2, the potential of the main population of pyramidal neurons for a node in the Jansen–Rit network (1) in the absence

of noise, with B fixed at 22 and (a) A = 9.0; (b) A = 7.7; (c) A = 7.0 and other parameter values as in Table 1. Subfigures in the upper row are plots of the

timeseries solution, whereas the bottom row shows the trajectories of stable orbits in the (y, y′) plane. The chosen parameters lie at either side of the region

where a smooth transition between activity types occurs, corresponding to a false bifurcation (see highlighted parameter values in Fig. 3). In (b), an inflection

point occurs and is highlighted as a red star on the orbit.
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230

Ĥ(Φ) with Φ = (φ1, . . . , φN)ᵀ, with components:

[Ĥ(Φ)]ij = ε[H ′(φj − φi)wij − δij
N∑
k=1

H ′(φk − φi)wik]. (5)

The globally synchronous steady-state, φi = φ for all i, exists in a network with a phase interaction

function that vanishes at the origin (i.e. H(0) = 0, which is not the case here), or for one with a row-sum

constraint,
∑

j wij = Γ = constant for all i, which is true for our specific structural matrix (for which
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Γ = 1). Note that the emergent frequency of the synchronous network state is given explicitly by

Ω + εΓH(0). Using the Jacobian in (5), synchrony is found to be stable if εH ′(0) > 0 and all the

eigenvalues of the graph Laplacian of the structural network,

[L]ij = −wij + δij
∑
k

wik, (6)

lie in the right hand complex plane. Since the eigenvalues of a graph Laplacian all have the same sign232

(apart from, in this case, a single zero value) then local stability is entirely determined by the sign of233

εH ′(0). For example, for a globally coupled network with wij = 1/N then the graph Laplacian has one234

zero eigenvalue, and (N − 1) other degenerate eigenvalues at −1, and so synchrony is stable if235

εH ′(0) > 0.236

It is therefore useful to consider the condition εH ′(0) > 0 as a natural prerequisite for a structured237

network to support high levels of synchrony (without recourse to exploring the full Jacobian structure). A238

plot of εH ′(0) is shown in Fig. 5(b). For completeness, however, the full Jacobian was also computed in239

order to account for the potential influence of detailed structure on the correspondence with the observed240

SC–FC agreement measured in simulations. To do this, the system given by (1) was integrated with241

ε = 0.001 to a (stable) phase-locked state, and relative phases computed. The eigenvalues of the Jacobian242

(eq. (5)) were then computed, providing an indication of solution attractivity. The largest non-zero243

eigenvalue for each parameter choice is shown in Fig. 5(c).244

It has been shown in Tewarie et al. (2018) that the eigenmodes of the structural connectivity matrix are

predictive of emergent FC networks arising from an instability of a steady state. The largest non-zero

eigenvalue, which is related the most unstable eigenmode (or closest to instability), was found to be a

good predictor of resultant FC by computing the tensor product of its corresponding eigenvector, v ⊗ v.

Here we take this further by considering instabilities of the synchronous state. In this case the Jacobian

(5) reduces to −εH ′(0)Lij and the phase-locked state that emerges beyond instability of the synchronous

state has a pattern determined by the a linear combination of eigenmodes of the graph Laplacian, since all

eigenmodes destabilise simultaneously. It is known that the graph Laplacian can be used to predict

phase-locked patterns (Chen, Lu, Zhan, & Chen, 2012) and has indeed been used to predict empirical FC

from SC (Abdelnour, Dayan, Devinsky, Thesen, & Raj, 2018). Following from this, the eigenmodes of

the Jacobian in (5) can be used as simple, easily computable proxy for the FC matrix when the system is
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poised at a local instability. In Fig. 7 we compare the FC pattern from the (fully nonlinear) weakly

coupled network with a linear prediction, to highlight its usefulness. In this case, MPC (3) is not ideally

suited for our study because it struggles to discern between phase-locking and complete synchrony, yet

we consider situations where stable phase-locking naturally arises. Therefore, FC in the weakly-coupled

network is computed via the new metric of mean phase agreement (MPA), whereby patterns of coherence

are determined by a temporal average of relative phase differences:

R̂jk =
1

M

M∑
l=1

1

2

(
1 + cos(∆φjk(tl))

)
. (7)

For comparison, we use the tensor product sum,

R̂ =
N∗∑
i=1

λivi ⊗ vi (8)

of vk = (v1
k, . . . , v

N
k ), which denotes the kth eigenvector of the Jacobian for the synchronous state. These245

are weighted by their corresponding eigenvalues, λk, and we include the N∗ unstable eigenmodes.246

RESULTS

Fig. 5 shows plots in the (A,B) parameter space highlighting our studies on the combined influence of255

SC and node dynamics on FC. The region bounded by the bifurcation curves, obtained via a linear256

instability analysis of the network steady state, is where the network model supports oscillations as well257

as phase-locked states. In Fig. 5(a) the Jaccard similarity between SC and FC is computed from direct258

numerical simulations of the Jansen–Rit network model (1). Beyond the onset of oscillatory instability259

(supercritical Hopf bifurcation) the emergent phase-locked network states show a nontrivial correlation260

with the SC. This varies in a rich way as one traverses the (A,B) parameter space, showing that precise261

form of the node dynamics can have a substantial influence on the network state. The highest correlation262

between SC and FC coincides with a Hopf bifurcation of a network equilibrium (shown as a solid white263

line), whilst a band of much lower correlation coincides with the fold bifurcations of limit cycles and264

false bifurcations of a single node (in black), reproduced from Fig. 3. Indeed, it would appear that these265

mathematical constructs are natural for organising the behaviour seen in our in silico experiments. We266

reiterate that we have confirmed that the organising SC–FC features that we here identify are not267

crucially dependent on the binarisation, thresholding and normalisation procedure, described in268
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Structural and functional connectivity and are qualitatively similar under variation of coupling strength269

(see supplementary MATHEMATICAL METHODS); moreover, results obtained via MPC and of MPA270

are indistinguishable (data not shown). In Fig. 5(b) we show a plot of H ′(0). Recall from271

Weakly-coupled oscillator theory that a globally synchronous state (which is guaranteed to exist from the272

row-sum constraint) is stable if εH ′(0) > 0. Comparison with Fig. 5(a), highlights that when synchrony273

is unstable (εH ′(0) < 0) SC only weakly drives FC. Moreover, this instability region coincides with the274

region of bistability and the false bifurcation, stressing the important role of these bifurcations for275

understanding SC–FC correlation.276

Of course, there is a much finer structure in Fig. 5(a) that is not predicted by considering either the277

bifurcation from steady state, or the weakly-coupled analysis of synchronous states, and so it is278

illuminating to pursue the full weakly coupled oscillator analysis for structured networks. The279

eigenvalues of the Jacobian, corresponding to more general stable phase-locked states, can be used to280

give a measure of solution attractivity. The largest eigenvalue is plotted in Fig. 5(c). The most stable281

(non-synchronous) phase-locked states occur in the neighbourhood of the false bifurcations, as well as in282

the region of bistability and along the existence border for oscillations, defined by a saddle node283

bifurcation. Furthermore, apart from near false bifurcations, stronger stability of the general284

phase-locked states corresponds with stronger stability of global synchrony (Fig. 5(b)).285

To test the predictive power of the weakly-coupled theory, in Fig. 6 we compare the emergent FC286

structure obtained from direct simulations of the Jansen–Rit network model (1) against direct simulations287

of the weakly-coupled oscillator network (4). For the former, the phases required to compute the mean288

phase agreement (equation (7)) are determined from each timeseries by a Hilbert transform; in the latter289

case, the phase variables from equation (4) are employed directly. Since the weakly-coupled reduction of290

the Jansen–Rit model is deterministic, these computations were ran in the absence of noise (dWi = 0 for291

all nodes). As expected, we find excellent agreement between the modular FC structure in the case for292

very weak coupling, with this agreement reducing with increasing ε, as quantified by a reduction in293

Jaccard similarity (from 0.98 in panel (a) to 0.65 in (c)). This is a manifestation of the network moving294

from a dynamical regime that can be well described by the weakly-coupled reduction (4) to one where295

stronger network interactions dominate. Since an analogous theory does not exist for stronger coupling,296

we do not consider here how SC–FC relations arise from network dynamics within a strongly–coupled297
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framework. Moreover, through the instability theory of the synchronous state we can construct a proxy298

for the FC as described in Weakly-coupled oscillator theory. In Fig. 7 we compare simulated FC with299

that predicted by R̂ (equation (8); i.e. using the unstable eigenmodes of the Jacobian at synchrony), for300

parameter values that lie just beyond the onset of instability of the globally synchronous state and near301

the false bifurcation set (see Figs 5(a,b)). We observe that the key features of the FC are captured by the302

eigenmode prediction; indeed the (weighted) Jaccard similarity coefficient between predicted and303

simulated FC (both scaled to [0, 1]) is calculated to be 0.82. This is a much more efficient way of304

simulating an emergent FC pattern, since it does not require brute-force forward integrations of the305

model, which may take a long time to converge.306

All of these results highlight the strong impact that nodal dynamics can have on the correlation316

between SC and FC, and the utility of bifurcation theory and phase oscillator reduction techniques (that317

are naturally positioned to explain the generation of patterns of synchronous node and network activity)318

to provide insight into how SC-FC correlations are organised across parameter space.319

DISCUSSION

In this paper, we investigate the degree to which the dynamical state of neural populations, as well as320

their structural connectivity, facilitates the emergence of functional connections in a neural-mass network321

model of the human brain. We have addressed this by using a mixture of computational and mathematical322

techniques to assess the correlation between structural and functional connectivity as one traverses the323

parameter space controlling the inhibitory and excitatory dynamics and bifurcations of an isolated324

Jansen–Rit neural mass model. Importantly, SC has been estimated from HCP diffusion MRI datasets.325

We find that SC strongly drives FC when the system is close to a Hopf bifurcation, whereas in the326

neighbourhood of a false bifurcation, this drive is diminished. These results emphasise the vital role that327

local dynamics has to play in determining FC in a network with a static SC. In addition, we show that a328

weakly-coupled analysis provides insight into the organisation of SC–FC correlation features across329

parameter space, and can be exploited to predict emergent FC structure. Messé et al. (2014) considered330

statistical models to predict FC from SC (in particular, a spatial simultaneous autoregressive model331

(sSAR), whose parameters can be estimated in a Bayesian framework) and found, interestingly, that332

simpler linear models were able to fare at least as well. More recently, Saggio, Ritter, and Jirsa (2016)333
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were also able to make predictions of FC from empirical SC data (and vice versa) using a simple linear334

model. Since the only free parameter of their model for SC is the global coupling strength, results from335

this method are efficient and computationally inexpensive. We have not attempted to reproduce empirical336

data here, but we have show that similar predictions can be made using bifurcation theory and network337

reduction techniques; such an approach allows us to consider in more detail, and explain, the influence of338

the rich neural dynamics supported by the Jansen–Rit model on SC–FC relationships. Nevertheless, it is339

important to note that the FC structures we are concerned with are averaged over long-time scales and340

therefore represent a static FC state, as opposed to dynamic FC (as discussed in INTRODUCTION).341

Use of such static FC networks as a clinical biomarker is widespread; however, subject variability in FC342

means that their predictive power is restricted to group analyses (Mueller et al., 2013). To capture the rich343

dynamic FC repertoire exhibited in empirical resting state data, for example the distinct hierarchical344

organisation in switching between FC states (Vidaurre, Smith, & Woolrich, 2017), will require alternative345

approaches. One such approach is dynamic causal modelling, as employed in Goulden et al. (2014) and346

(Van de Steen, Almgren, Razi, Friston, & Marinazzo, 2019) for empirical data.347

The modelling work presented here is relevant in a wider neuroimaging context—for example, epilepsy348

is often considered to be caused by irregularities in synchronisation (Lehnertz et al., 2009; Mormann et349

al., 2003; Netoff & Schiff, 2002). It is noteworthy that the changes in synchrony patterns that we observe350

arise from local dynamical considerations as opposed to large scale structural ones. In the Jansen–Rit351

model, the bifurcations organising emergent FC take the form of Hopf, saddle, fold of limit cycle and352

false bifurcations. False bifurcations have received relatively little attention in the dynamical systems353

community (a notable exception being the work of Marten et al. (2009)), although our results indicate354

that they may be significant for understanding how ‘synchronisability’ of brain networks is reduced355

during seizures. This phenomena was reported in Schindler, Bialonski, Horstmann, Elger, and Lehnertz356

(2008), which also found that synchronisability increases as the patient recovers from seizure state.357

A natural extension to the work presented here would be the inclusion of conduction delays,358

characterised by Euclidean or path-length distances between brain regions, which are certainly important359

in modulating the spatiotemperal coherence in the brain (Deco, Jirsa, McIntosh, Sporns, & Kötter, 2009).360

These would manifest as constant phase shifts in the weakly-coupled reduction of the model (Ton, Deco,361

& Daffertshofer, 2014). For strongly coupled systems the mathematical treatment of networks with362
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delayed interactions remains an open challenge. Recent work in this vein by Tewarie et al. (2019)363

focusses on the role of delays in destabilising network steady states, and techniques extending the Master364

Stability Function to delayed systems (Otto, Radons, Bachrathy, & Orosz, 2018) may be appropriate for365

treating phase-locked network states.366

In summary, the findings reported here suggest that there are multiple factors which give rise to367

emergent FC. While structure clearly facilitates functional connectivity, the degree to which it influences368

emergent FC states is determined by the dynamics of its neural sub-units. Importantly, we have shown369

that local dynamics has a clear influence on SC–FC correlation, as does network topology and coupling370

strength. Our combined mathematical and computational study has demonstrated that a full description371

of the mechanisms that dictate the formation of FC from anatomy requires knowledge of how both372

neuronal activity and connectivity are modulated and, moreover, exposes the utility of bifurcation theory373

and network reduction techniques. This work can be extended to more complex neural mass models such374

as that derived in Coombes and Byrne (2019), to further explore the relationship between dynamics and375

structure–function relations in systems with more sophisticated models for node dynamics.376
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Figure 5. (a) Jaccard similarity coefficient between SC and FC (measured by MPC in (3)) when the Jansen–Rit network (1) supports an oscillatory solution,

averaged over 30 realisations of initial conditions chosen at random. Parameter values are given in Table 1. Warmer colours indicate greater SC/FC correlation.

Here we have superimposed the bifurcation diagram for the network steady state, which shows the oscillatory region being bounded by Hopf/saddle-node

sets in solid/dashed white lines respectively; boxes are Bogdanov–Takens points. False bifurcations in the single node case are indicated by a black line but,

because of its relative size, the bistable region is not shown (though can be seen for the single node case in Fig. 3). (b) The value of H′(0) (see eqs. (4,5)) in

the A,B-plane. When this value is positive/negative, the globally synchronised solution is stable/unstable (if it exists); (c) The largest non-zero eigenvalue of

the Jacobian for the full weakly-coupled oscillator network (equation (5)), calculated at a stable phase-locked state. More negative values indicate a stronger

stability.
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Figure 6. Comparison of FC patterns from averages of realisations of the weakly-coupled oscillator model (4) with corresponding Jansen–Rit (1) simulations,

with no noise present, at A = 5, B = 19, computing averages over 600 realisations with initial conditions chosen at random (other parameter values are given

in Table 1). (a) ε=0.01; (b) ε=0.1; (c) ε=1. These results show how the weakly-coupled theory becomes less predictive for stronger coupling strengths, resulting

in matrices with Jaccard similarity of 0.98, 0.76 and 0.65 (to 2 s.f.) respectively.
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Figure 7. (a) FC prediction given by the a linear combination of eigenmodes of the weakly-coupled oscillator system, given by tensor products of eigenvectors

of the SC graph Laplacian (8), with N∗ = N . (b) Direct simulation of the Jansen–Rit network model (1) with no noise present. Parameter values are chosen

as A = 6, B = 18, which lies near the existence border for stable synchronous solutions (see Fig. 5(b)); other parameter values are given in Table 1. The

(weighted) Jaccard similarity between the two FC networks (scaled to [0, 1] for comparability) is calculated to be 0.82, indicating the predictive power of

equation (8).
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