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H I G H L I G H T S

• Implemented model predictive control (MPC) strategy for seasonal thermal energy storage (STES).
• MPC strategy simulated in a real-world district heating (DH) system in the UK.
• Used SVR, regression tree, and LSTM models for heating demand forecasting in MPC.
• Achieved high predictive accuracy with LSTM for 12-h ahead forecasting.
• MPC controlled thermochemical storage system stored all the waste heat to and reduced unmet demand to 15% at 80% supply.
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A B S T R A C T

This research investigates the integration of model predictive control (MPC) with seasonal thermochemical
energy storage systems (STES) within district heating networks, focusing on the Nottingham district heating as a
case study. The primary aim is to develop an MPC strategy that utilizes machine learning models for accurate
heat load forecasting. This strategy optimizes the charging and discharging cycles of thermochemical energy
storage systems to mitigate the mismatch between heating energy supply and demand by storing surplus heat
during summer and utilizing it during winter. We employed and validated machine learning models, including
support vector regression (SVR), regression trees, and long short-term memory (LSTM) networks, using historical
heat load and meteorological data. A validated numerical model of the thermochemical energy storage system
(TCES) was integrated into the MPC framework, formulated as a mixed-integer linear program to optimize the
STES's operations. The performance of the MPC strategy was benchmarked against a rule-based control approach
under varying supply capacities to evaluate scalability and robustness. Our findings reveal that each machine
learning model achieved comparable performance, with CVRMSE values within the 9–11% range. The LSTM
model, in particular, provided accurate multi-step forecasts essential for the MPC framework. Incorporating these
models into the MPC strategy allowed for precise heat demand predictions, enhancing the management of energy
storage and distribution. Results confirmed that MPC effectively shifts energy seasonally, reduces reliance on
auxiliary heating during winter, and minimizes waste heat. The MPC strategy outperformed the rule-based
control by storing a significantly higher percentage of waste heat and meeting a greater portion of the addi-
tional heat demand that was not covered by the auxiliary heat supply. The system demonstrated effective per-
formance under varying supply capacities, with the MPC strategy efficiently utilizing stored heat to meet demand
at 80% supply capacity, achieving a waste heat reduction to 4% and meeting most of the heat demand. However,
performance declined at 60% capacity, indicating the need for careful consideration of supply capacities in
system design. This study highlights the potential of integrating machine learning models with MPC to enhance
the performance and adaptability of district heating systems with STES, minimizing waste heat and efficiently
meeting energy demands.
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1. Introduction and literature review

The transition towards sustainable energy systems is essential to
mitigate climate change and reduce dependence on fossil fuels. In re-
gions with cold climates, such as the UK, a significant portion of thermal
energy consumption in buildings is dedicated to space heating and do-
mestic hot water [1], with approximately 90% supplied by gas or oil-
burning boilers [2]. This reliance contributes significantly to green-
house gas emissions and substantial waste heat production [3].
Achieving the UK's carbon neutrality target by 2050 requires efficient
heating solutions that minimize waste heat and incorporate renewable
energy sources, supported by advanced storage technologies.

Efficient heating solutions, such as district heating (DH) systems, are
crucial for the transition towards sustainable energy systems. DH sys-
tems provide centralized heat to residential and commercial buildings
by generating heat at a central plant and distributing it through insu-
lated pipes, ensuring efficiency and reliability. Additionally, DH systems
can utilize various energy sources including renewable energy, waste
heat from industrial processes, and more efficient combined heat and
power (CHP) systems. However, a key challenge for DH systems is the
seasonal mismatch between heat supply and demand, leading to oper-
ational inefficiencies and an increased reliance on fossil fuels to meet
peak demand [4].

Seasonal thermal energy storage systems can effectively address the
seasonal imbalance between heat supply and demand by storing excess
thermal energy during low-demand periods, such as summer, and
releasing it during high-demand periods in winter. Among seasonal
thermal energy storage technologies, thermochemical energy storage
(TCES) stands out due to its high energy density, long-term storage
capability, and ability to discharge heat at high temperatures. TCES
systems use reversible chemical reactions to store and release energy,
making them ideal for integration with DH systems [5–7].

Installing thermal storage systems in DHs reduces reliance on peak-
time energy sources, thus increasing the efficiency of primary energy
consumption through thermal energy shifting. When selecting the
appropriate type of thermal energy storage system, the discharging
temperature levels should be considered to be compatible with DH

systems. TCES is particularly advantageous due to its operational flexi-
bility, allowing it to adapt to various temperature discharging scenarios
[4].

To maximize the efficiency of TCES systems within DH networks, it is
essential to develop and optimize effective control strategies, as these
strategies ensure that energy is stored and released at the most advan-
tageous times. A promising approach is model predictive control (MPC),
an advanced technique that forecasts future system responses and makes
optimal decisions based on multiple objectives and constraints. By uti-
lizing MPC, the charging and discharging cycles of TCES systems can be
dynamically managed, ensuring efficient energy use throughout the
year.

However, implementing MPC for TCES in DH systems presents
several challenges, such as accurately predicting heat demand, man-
aging the variability of energy sources, and ensuring scalability and
robustness. Machine learning models, particularly those capable of
multi-step forecasting, provide a solution for precise heat load predic-
tion, which is crucial for effective MPC operation. By integrating ma-
chine learning with MPC, the performance of TCES systems can be
enhanced, thereby improving the overall efficiency of DH networks.

This research aims to develop an MPC control strategy for a seasonal
thermochemical energy storage system (STES) within a district heating
network. The proposed approach integrates machine learning models
for accurate heat load prediction and evaluates system performance
under various supply capacity scenarios. Using a case study in Not-
tingham, UK, this research seeks to demonstrate the feasibility and
benefits of integrating STES with advanced control strategies in real-
world DH applications.

To further explore the potential and optimize the implementation of
STES within district heating networks, the following subsections in-
vestigates the current advancements in seasonal thermal energy storage
technologies, the principles and benefits of thermochemical storage
systems, the application of MPC strategies, and the integration of ma-
chine learning predictive models to enhance system performance and
efficiency.

Nomenclature

Symbols
A System matrix in state space model
As Solid cross section area (m2)
Af Air flow area (m2)
Ac Total heat transfer area (m2)
B System matrix in state space model
C Concentration of reactants (mole/m)
fh Hidden layer activation function
h Convective heat transfer coefficient (Wm− 2K− 1)
m Mass flow rate (kg/s)
Qi Actual heat load (kW)
Q̂i Predicted heat load (kW)
R Reaction rate
Ts Solid material temperature (K)
Tg Fluid temperature (K)
Sh Heat source (W/m)
wji Hidden layer weights
x Inputs of machine learning models

Greek letters
ρ Density (kg/m3)
ϵ Desired error range for all data points
λ Thermal conductivity (W/m.K)

φ Fraction of Co3O4 in total solid material
∅ Thermodynamic properties of solid material

Abbreviations
CHP Combined heat and power
COP Coefficient of performance
CVRMSE Coefficient of variation of root mean square error
DH District heating
EfW Energy-from-waste
LSTM Long short-term memory
MAE Mean absolute error
MPC Model predictive control
MSE Mean squared error
RBF Radial basis function
RES Renewable energy source
STES Seasonal thermochemical energy storage
SVR Support vector regression
TCES Thermochemical energy storage

Subscripts
s Solid
g Fluid
i Internal
j Time step
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1.1. Advancements in seasonal thermal energy storage

Recent advancements in seasonal thermal energy storage systems
showcase a variety of innovative approaches aimed at improving energy
efficiency and reducing emissions. For instance, Mahon et al. [3]
developed a seasonal thermal energy storage system along with an
advanced model-based control. Their study evaluated the feasibility of
the proposed system in terms of payback time, charging expense, and
installation cost, confirming its advantages in energy and CO2 reduction
(4.3% of the residential CO2 output). In a different approach, Alkhalidi
et al. [8] investigated a seasonal thermal energy storage charged during
the summer using solar collectors. Given the seasonal nature of solar
radiation, the stored heating energy was intended for use in winter, and
the results showed that the proposed seasonal thermal energy storage
systems system could meet up to 84% of the heating demand.

Li et al. [9] proposed a dual-mode thermochemical sorption energy
storage method for seasonal solar thermal energy storage with minimal
heat losses. During the summer charging phase, solar energy is stored via
a thermochemical decomposition process, allowing it to be kept at
ambient temperature for months. In winter, the stored energy is released
through a thermochemical synthesis process. This method achieved a
coefficient of performance (COP) of 0.6 and an energy density exceeding
1000 kJ/kg of salt. In a different approach, Yang et al. [10] conducted a
techno-economic-environmental analysis of seasonal thermal energy
storage with solar heating for residential use in China. They considered
the local context, performance, and feasibility of the system. Their
findings highlighted that STES reduced CO2 emissions by 52–72%
compared to conventional systems, although the heating costs were
higher. Furthermore, Benzaama et al. [11] developed a seasonal thermal
energy storage system with an earth-air heat exchanger to improve
thermal energy efficiency. A case study conducted on a test cell in Oran,
Algeria, demonstrated energy savings of 233 kWh and a reduction in
CO2 emissions of 21 t during the heating period.

The ongoing research highlights the potential of seasonal thermal
energy storage systems to address seasonal energy supply and demand
imbalances, offering energy savings and contributing to emission re-
ductions. Integrating these storage systems with district heating net-
works can further enhance their efficiency and sustainability.

1.2. Developments in thermochemical energy storage (TCES) system

Building on the advancements in seasonal thermal energy storage,
thermochemical energy storage (TCES) systems offer a promising
approach for long-term thermal energy storage. TCES systems utilize
reversible chemical reactions to store energy in a chemical form, which
can later be converted back to thermal energy as needed. These systems
are particularly notable for their ability to offer stability across a range
of temperatures [12,13]. The potential for achieving high energy density
and operating at elevated temperatures has driven increased interest in
TCES systems [14].

Recent research has explored various applications of TCES, particu-
larly in solar energy, showing potential for enhancing energy efficiency.
Wong [15] examined TCES for concentrated solar power (CSP) plants,
utilizing thermochemical cycles with reversible REDOX reactions of
oxides like cobalt and manganese. The system stores energy by reducing
oxides with hot air during daylight and releases it through re-oxidation
at night, enabling an 8-h charge-discharge cycle, achieving storage costs
around $40/kWh. Similarly, Singh et al. [16] focused on a cobalt/
cobaltous oxide (Co₃O₄/CoO) redox cycle using a cordierite honeycomb
structure, functioning as both a heat storage medium and heat
exchanger. A numerical model accurately predicted the charging and
discharging processes, validated by experiments from a 74 kWh proto-
type reactor at the Solar Tower Jülich facility in Germany.

Expanding on solar thermal storage, Li et al. [17] investigated TCES
for district heating in China, utilizing the MgO/Mg(OH)₂ system. Their
study showed stored thermochemical energy could meet 94.6% of

heating demand during the discharging stage, with a required solar
collector area two-thirds smaller than that for a water storage tank of
similar volume. Chen et al. [18] developed an ammonia-based solar
TCES system to produce supercritical steam for electricity generation,
heating steam from approximately 350 ◦C to 650 ◦C at 26MPa. Han et al.
[19] highlighted materials used in TCES for CSP plants, noting high
energy storage density and compatibility of metal oxides with CSP
temperatures. Cobalt oxides, despite their high energy density, face cost
and toxicity challenges, while manganese oxides are stable and inex-
pensive but have lower energy density, and copper oxide struggles with
melting issues despite its high energy density. These studies demonstrate
the versatility and efficiency of TCES systems in solar energy
applications.

In addition to solar energy, TCES systems have shown considerable
promise in utilizing industrial waste heat for energy storage and re-
covery [20]. Nagamani et al. [21] evaluated a mobile TCES system using
industrial waste heat. Their analytical model assessed energy efficiency,
round-trip efficiency, COP, and exergy performance, finding an average
round-trip efficiency of 53%, a maximum COP of 1.74, and an exergy
efficiency of 46.7%. The MTES truck demonstrated potential for sus-
tainable cooling in district energy networks. Böhm and Lindorfer [22]
assessed thermochemical materials for seasonal heat storage in district
heating, identifying hydration-based materials combined with industrial
waste heat as the most cost-effective, with production costs around 100
€/MWh.

Li et al. [23] proposed a solid-gas thermochemical sorption heat
transformer for integrated energy storage, cooling, heating supply, and
waste heat recovery. This system offers 10 times higher energy density
than conventional methods, making it suitable for large-scale industrial
processes. Li et al. [24] developed a similar system that upgrades low-
grade waste heat from 87 to 171 ◦C using reversible chemical re-
actions with MnCl2-CaCl2-NH3, allowing flexible temperature adjust-
ments. Mastronardo et al. [25] developed hybrid materials using
magnesium hydroxide with expanded graphite and carbon nanotubes
for waste heat storage, improving reaction rates and efficiency.

Gao et al. [26,27] explored systems to utilize engine exhaust waste
heat for truck refrigeration. They developed a compression-assisted
thermochemical sorption system with a COP of 1.65 at low load and
1.48 on average. Another system combined vapor-compression with
thermochemical resorption, achieving 2.2 kW cooling at − 15 ◦C and
doubling efficiency. Yan et al. [28] developed a thermochemical
adsorption heat storage system using MnCl2-NH3 with expanded
graphite, achieving a heat storage density of 3211.56 kJ/kg and an ef-
ficiency of 0.939, proving effective for solar thermal energy harvesting
and industrial waste heat recovery. These studies demonstrate the
versatility and efficiency of TCES systems in waste heat applications.

Innovative control strategies have been developed to enhance effi-
ciency and cost-effectiveness of TCES. Weber et al. [29] developed an
MPC system for cost-efficient building climate control using thermo-
chemical seasonal energy storage. The system stores summer surplus
electricity for winter heating, reducing operating costs by 18% in real-
istic scenarios and up to 80% with fluctuating electricity prices, without
needing long-term weather forecasts.

Moreover, practical evaluations of TCES systems have demonstrated
their robust performance and high storage capacity. Tescari et al. [30]
evaluated a pilot-scale thermochemical storage system for a solar power
plant using 88 kg of cobalt oxide on cordierite honeycomb supports.
Over 22 charge-discharge cycles, the system showed no degradation and
achieved a performance factor of 0.84. It provided nearly double the
storage capacity (47.0 kWh) compared to a sensible-only unit (25.3
kWh).

Coupling energy storage systems with decarbonization targets is
essential [31]. TCES systems are notable for their high energy density
and ability to operate at elevated temperatures, which can provide
significant advantages in specific applications [32]. Their ability to
provide flexibility, long-term storage [33], and adaptable discharge
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temperatures offers potential for district heating networks. By capturing
and utilizing surplus heat from various sources and storing energy over
extended periods, TCES ensures a steady supply even during peak de-
mand periods. Integrating TCES can also enhance the efficiency of CHP
systems within district heating by reducing the need for frequent ad-
justments and optimizing overall energy use [34–36]. Utilizing TCES
allows district heating networks to enhance sustainability, efficiency,
and cost-effectiveness.

1.3. Model predictive control (MPC) for optimizing seasonal thermal
energy storage

Building on the discussion of seasonal thermal energy storage sys-
tems as a promising solution to address the seasonal mismatch between
heating energy supply and demand, it is crucial to focus on the proper
design and effective control strategies for these systems. Properly sizing
the storage system [8] and implementing an effective control strategy
are essential for maximizing performance, minimizing waste heat, and
reducing CO2 emissions. This section explores into the use of MPC to
optimize the operation of seasonal thermal energy storage systems.

Li et al. [37] highlighted the importance of control strategies in
enhancing the performance of a solar heating system coupled with
seasonal thermal storage, showing that optimized control significantly
improved heat collection and exergy efficiency. MPC is one such strategy
that optimizes operation by predicting future system states and adjust-
ing the storage system accordingly. In the case of thermal storage,
employing MPC allows the system to activate storage during low-
demand periods and release energy during high-demand periods, lead-
ing to overall economic gains [38]. Building on this concept, Jonin et al.
[39] demonstrated the effectiveness of an MPC scheme for a large-scale
seasonal thermal energy storage tank connected to a solar panel, which
efficiently managed space heating and domestic hot water demands.
They incorporated seasonal features into the MPC, optimizing both
system exergy and storage tank size while ensuring user demand was
met.

Expanding on the use of MPC, Milewski et al. [40] proposed an
objective function based on techno-economic assumptions to optimize
the system's operation. They developed mathematical models for the
main components and validated the approach with simulations,
demonstrating its suitability for MPC in managing seasonal thermal
energy storage effectively. Similarly, Rostampour et al. [41] developed a
stochastic MPC framework for smart thermal grids using aquifer thermal
energy storage systems, addressing thermal energy imbalances and un-
certainties, and providing a computationally tractable solution for
optimizing building climate comfort.

Saloux et al. [42] developed an MPC strategy for a district heating
system, which uses solar thermal collectors and a borehole field for
seasonal energy storage. By optimizing circulation pump speed, the
strategy minimizes primary energy consumption, achieving a 47%
reduction in annual pump electricity use, a 38% cost savings, and a 32%
decrease in emissions. Lago et al. [43] developed control algorithms for
seasonal thermal energy storage systems to trade on wholesale elec-
tricity markets, using MPC for day-ahead markets and reinforcement
learning for real-time markets. Their study showed that these strategies
maximize operational profit, mitigate renewable energy uncertainty,
and help reduce grid imbalances.

MPC has proven effective for optimizing seasonal thermal energy
storage systems. Studies demonstrate that MPC improves energy effi-
ciency, economic gains, and CO2 emission reductions. By predicting
future system states and adjusting storage operations, MPC can enhance
the performance of district heating systems.

1.4. Machine learning predictive model for heat load forecasting

Accurately predicting heat loads is crucial for the effective formu-
lation of model predictive frameworks. Reliable heat load prediction

enables the optimization of MPC in seasonal energy storage, allowing for
efficient redistribution of heat supply, minimizing losses, and enhancing
overall energy efficiency. Traditionally, heat load forecasting methods
have relied on physics-based models, which use fundamental physical
principles and empirical data to predict heat demand. These models are
based on theories of heat transfer and other physical processes. In
contrast, data-driven models offer significant advantages by utilizing
large datasets to identify complex patterns and relationships that may
not be explicitly captured by physics-based approaches.

Data-driven methods such as machine learning can identify latent
correlations between heat loads. These methods derive parameters
directly from operational data, enabling more precise and adaptable
control strategies withinMPC frameworks. Machine learning, a subset of
artificial intelligence, enables numerical models to learn from data,
reducing the need for complex rule-based programming. However,
domain expertise remains important for selecting appropriate models
and interpreting their results effectively. By utilizing historical data and
real-time inputs, machine learning models can provide accurate and
reliable heat load forecasts, which are critical for the effective imple-
mentation of MPC strategies in district heating systems. This integration
of machine learning enhances the predictive capabilities of MPC,
ensuring efficient and optimized energy management.

Numerous studies have explored and assessed the suitability of
different machine learning algorithms for forecasting heat loads in dis-
trict heating systems. Commonly employed algorithms include linear
regression [44], seasonal autoregressive integrated moving average
[45], support vector machine [46], extreme gradient boosting [47], and
regression tree [46]. These machine learning models have proven to be
reliable tools for predicting building heating loads, demonstrating their
potential to significantly enhance the efficiency and effectiveness of
MPC in managing district heating systems.

For example, Grosswindhager et al. [48] used a seasonal autore-
gressive integrated moving average model to predict heat loads in dis-
trict heating networks, achieving high accuracy and suitability for
online short-term forecasting. Wang et al. [49] developed a dynamic
model combining wavelet analysis and neural networks to predict heat
demand using outdoor temperature and heating system characteristics,
demonstrating superior accuracy and tracking performance compared to
other methods for short-term thermal load forecasts.

Xue et al. [47] proposed a machine learning-based framework for
multi-step ahead heat load forecasting in district heating systems, using
support vector regression, deep neural networks, and XGBoost. They
demonstrated that the recursive strategy with the XGBoost model ach-
ieved the most accurate and stable predictions, with a CVRMSE of
10.52%. Idowu et al. [46] used district heating data from 10 buildings to
forecast thermal loads, finding that support vector machine had the
lowest normalized root mean square error (NRMSE) of 0.07 for a 24-h
forecast horizon, outperforming regression tree, feed-forward neural
network, and multiple linear regression models. Common input vari-
ables for these models included time variables, meteorological param-
eters, and historical heat load data. These findings highlight the
importance of selecting suitable machine learning methods and input
variables to improve prediction accuracy and reliability in district
heating systems.

As mentioned earlier, machine learning-based predictive models
offer a more intuitive and convenient tool for district heating heat load
prediction compared to traditional physics-based models. However,
these approaches face limitations, particularly as many studies often
focus on short-term predictions (e.g., 1-h intervals). This short-term
focus can limit their effectiveness for long-term energy management
and planning in district heating systems.

In the context of seasonal thermal energy storage operations, it is
crucial for the controller to anticipate the upcoming seasonal heat load
profile to effectively strategize heat supply and storage planning. To
meet this requirement, a recursive demand prediction based on a multi-
step forecasting approach is employed. At each time step, the algorithm
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predicts the next time step (t+ 1) and uses this prediction as an input for
the following step (t + 2, t + 3, …, t + n). This process continues using
the same machine learning model until the heat load profiles across the
entire prediction horizon are generated.

1.5. Novelty, aims and objectives

Despite the promising potential of seasonal thermal energy storage
systems and the advantages of MPC in optimizing energy use, gaps
remain in the literature. Current research primarily focuses on short-
term and medium-term storage solutions, with less emphasis on the
integration and long-term performance of STES within district heating
systems. While various machine learning algorithms have proven
effective in predicting heat loads, their application in multi-step fore-
casting for long-term STES operations is limited. Additionally, existing
studies often overlook the practical implementation challenges of these
integrated systems, particularly under varying demand scenarios.

Moreover, while the development of MPC strategies for seasonal
thermal energy storage has been explored, the combination of MPC with
machine learning for dynamic energy management in district heating
systems remains under-researched, particularly in the context of sea-
sonal thermal energy storage. Further research is required to compare
the effectiveness of various control strategies (e.g., rule-based control,
MPC) in district heating contexts to identify the most efficient and
practical approaches. Ensuring the scalability and robustness of MPC
strategies when integrated with machine learning for large-scale district
heating networks requires further exploration. A comprehensive
approach is needed that incorporates predictive models to optimize the
charging and discharging cycles of thermochemical energy storage
systems within district heating networks. This approach should address
the seasonal mismatch between supply and demand, minimize waste
heat, and enhance overall system efficiency.

This study aims to provide insights into the feasibility and potential
of integrating seasonal thermal energy storage with an intelligent MPC
control strategy. A numerical thermochemical storage system is incor-
porated within the MPC framework to illustrate how MPC makes de-
cisions on energy charging and discharging, using predictive models
enhanced by machine learning techniques for DH systems. The MPC
strategy seeks to minimize thermal energy waste by storing surplus
energy in the seasonal thermal energy storage system and utilizing it in
subsequent seasons. To evaluate the practicality and effectiveness of the
integrated system, scenario analyses with different rates of supply
reduction will be conducted, examining supply efficiency under varying
conditions.

Our contributions in this study are as follows:
• We propose a multimode control method for the district heating

system, which addresses different building patterns within the same
substation. Unlike traditional multimode approaches in DH demand
forecasting that rely on multiple physical-based models, our method
creates a single prediction model. This significantly reduces computa-
tional costs and meets the real-time demands of control processes in
practical applications.
• The proposed approach includes a multi-step ahead prediction

model specifically designed for the MPC strategy. This model compares
the effectiveness of three machine learning algorithms: support vector
regression (SVR), long short-term memory network (LSTM), and
regression tree. The effectiveness of this method is demonstrated using a
case study of an actual district heating system in Nottingham, UK.
•We introduce a seasonal storage MPC method to store surplus heat

generated in the summer for use during the winter. The primary
objective of this MPC strategy is to minimize the annual waste heat,
thereby enhancing the overall efficiency and sustainability of the district
heating system.
•Wewill compare the proposedMPC strategy with a traditional rule-

based control approach to evaluate the performance improvements. This
comparative analysis will highlight the advantages and potential of MPC

in district heating applications.

2. Method

This section outlines the methodology used to create an MPC system
for controlling STES. Initially, machine learning models are developed
for demand prediction, followed by validation using real-world DH de-
mand profiles. The thermochemical storage model is also presented,
along with its integration into the MPC strategy. The development of the
MPC model involved numerical modeling and simulations conducted on
the MATLAB platform.

2.1. Machine learning for district heating demand forecasting

Training a machine learning model generally involves two segments:
training data and testing data, both derived from the same dataset. The
training set, which constitutes a large portion of the dataset, is used to
train the model, while the testing set is used to evaluate the model's
performance. According to the study [47], it is suggested to allocate 80%
of the data samples for training and reserve 20% for testing. Following
this approach, we partitioned our dataset into 80% for training and 20%
for testing.

Three main types of influential parameters in DH heat load predic-
tion, according to [47], are weather conditions, time-related variables,
and DH operational characteristics. Among meteorological parameters,
outdoor temperature has been demonstrated as a primary influential

Fig. 1. (a) Time series representation of heat load and outdoor temperature
over the same period, and (b) average hourly heat demand in a day with
standard deviation for the entire year.
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factor in predicting DH heat load, as shown in the study [48]. Fig. 1a
illustrates that heat demand is primarily influenced by ambient tem-
perature. Fig. 1b shows the average hourly heat demand over a day,
along with the standard deviation for the entire year. The standard de-
viation (represented by error bars in Fig. 1b) is calculated based on
squared differences between each hourly demand and the average
hourly demand.

Daily demand often varies depending on the hours of the day
(Fig. 1b). Consequently, we chose 24 h in a day as influential variables in
our demand forecasting model. Historical heat load data also contains
valuable information, including building thermal inertia, time-based
regulation strategies, and building types. In this study, we utilized out-
door temperature and heat load measured over the previous 12 h,
following the approach outlined in [47], to ensure faster computational
time.

Following the selection of influential parameters for our machine
learning models, it was essential to transform categorical features into
numerical ones. We employed the one-hot encoding method to quantify
categorical variables, as per the guidelines in reference [50]. Specif-
ically, we used one-hot encoding to convert the numbers 1 through 24,
representing hours, into 24 binary variables. For the hour corresponding
to the current time step, the variable is set to 1, while the remaining 23
variables are set to 0. This data preparation resulted in 24 binary vari-
ables for the hours, 12 features of historical heat load, and one outdoor
temperature variable, amounting to a total of 37 features used for heat
load prediction.

When using our machine learning model for forecasting long-term
heat demand, we applied a recursive strategy as outlined in reference
[47]. At each time step, the predicted one-step future demand is fed into
the next prediction as an influential variable. This process continues
iteratively until predictions are made for the entire prediction horizon,
which, in our study, spans one year (Fig. 2).

2.2. Machine learning models

Machine learning methods entail learning a mapping from an input
dataset to an output dataset, based on a labelled set of input-output
pairs. Commonly employed machine learning methods include neural
network-based algorithms, support vector regression (SVR), and
regression trees, as highlighted in studies [51,52]. The subsequent sec-
tion outlines the technical details for each of these methods. In this
study, the machine learning model is applied to both the MPC and a
reference rule-based control strategy for demand prediction.

2.2.1. Support vector regression (SVR)
Support vector regression (SVR) is based on principles similar to

linear regression but extends them by using kernel functions to handle
non-linear relationships. This makes SVR well-suited for complex non-
linear optimization problems, which are common in demand fore-
casting. SVR maps the feature space created by the training dataset to a
higher-dimensional feature space using a kernel function. In this high-
dimensional space, SVR identifies a hyperplane that best fits the
training data. The optimal solution is found by minimizing the following
convex function [53]:

1
2
‖w‖2 +C

∑l

i=1
φi +φ*

i (1)

With the constraints:

yi − wT∅(xi) − b ≤ ϵ+φi (2)

wT∅(xi)+ b − yi ≤ ϵ+φ*
i (3)

Where ϵ represents the desired error range for all data points. φi and
φ*

i are slack variables. C is the penalty term used to balance data fitting
and smoothness. ∅ refers to a kernel function used for high-dimensional
mapping. This formulation allows SVR to handle the non-linearities in
the data effectively, making it suitable for complex demand forecasting
tasks.

2.2.2. Regression tree
A regression tree is a tree structure designed to predict continuous

output values by mapping input instances to leaves [54]. Specifically
tailored for regression tasks, it constructs a binary tree using a greedy
approach in a top-down recursive divide-and-conquer manner. This
method divides the large training data into smaller subsets corre-
sponding to the leaves of the regression tree. The split criterion for the
regression tree is based on minimizing the prediction error. This
approach is effective for capturing complex, non-linear relationships in
the data, making regression trees a valuable tool for demand forecasting
in district heating systems.

2.2.3. Long short-term memory (LSTM)
Neural network (NN)models are among the most extensively utilized

machine learning models [55]. Configuring a neural network requires
defining its structural components, including the number of hidden
layers, hidden units, and other pertinent parameters. The predictor (y)
in a neural network model can be represented by a generic expression
involving the inputs (x), as illustrated in the following equation:

y = f0

(
∑Nh

j=0
wjfh

(
∑K

i=0
wjixi

))

(4)

where f0 is the output layer activation function, fh is the hidden layer
activation function, wj is the output layer weights, wji are hidden layer
weights.

The long short-term memory (LSTM) network features an enhanced
structure that enables it to effectively retain crucial features from earlier
time-series data. The LSTM architecture incorporates distinct gates,
which progressively learn the mapping between historical input se-
quences and the predicted output sequence. The input gate decides how
much incoming information should be stored in the memory block,
while the forget gate determines which information should be omitted.
The retained information is stored in the memory cell, and finally, the
output gate filters this information to produce the network's output [56].
This structure allows LSTM networks to handle long-term dependencies
in time-series data, making them highly effective for tasks such as de-
mand forecasting in district heating systems.

Fig. 2. H-step ahead heat load forecasting using the recursive strategy [47].
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2.2.4. Model evaluation and platform
After creating the models, we employed the trained machine

learning models to predict heat load on the test dataset. The perfor-
mance of these models was assessed using two key metrics: mean ab-
solute error (MAE) and the coefficient of variation of root mean square
error (CVRMSE). The equations for MAE and CVRMSE are as follows:

MAE =
1
n
∑n

i=1
|Qi − Q̂i | (5)

CVRMSE =
1
m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Qi − Q̂i)
2

n

√

×100 (6)

where Qi and Q̂i represent the actual and predicted heat loads, respec-
tively, n is the number of observations, and m is the mean of the
measured values.

The mean absolute error (MAE) is a scale-dependent metric that can
be used to compare overall performance with similar studies. It provides
an average measure of the errors between predicted and actual values.
The coefficient of variation of root mean square error (CVRMSE), on the
other hand, accounts for the scale of the data and provides a normalized
measure of the prediction error. While CVRMSE normalizes the error, it
can still be influenced by outliers due to the squaring of errors. CVRMSE
allows for a more consistent comparison across different datasets and
conditions.

This study was conducted using Matlab R2019a [57], leveraging its
Deep Learning Toolbox for the LSTM model, and utilizing the built-in
functions “fitsvm” and “fittree” for SVR and regression tree imple-
mentations, respectively. Both the SVR and regression tree models
required minimal or no parameter tweaking. For SVR, we selected the
Gaussian function within the radial basis function (RBF) as the kernel
model. Regarding the LSTM algorithms, this investigation employed a 4-
layer LSTM network based on the findings in the study [46]. The
network layers included a sequence input layer, an LSTM layer, a
dropout layer, and a fully connected layer. Finally, for each control
implementation, machine learning demand predictions were run once to
extract one-year demand forecasts and next-hour demand forecasts for
MPC and rule-based control, respectively.

2.3. Thermochemical energy storage system model

The TCES system model used for our MPC was validated with that of
[16], which represents a scaled-down version of a storage unit that in-
cludes ceramic honeycombs. Within the chamber, the reactants consist

of cordierite coated with Co₃O₄. The redox pair of Co₃O₄/CoO, governed
by Eq. 7, has an equilibrium temperature of around 900 ◦C at atmo-

spheric pressure. This redox pair has a high energy density and long-
term material stability [58].

Co3O4 ̅→←̅
ΔH 3CoO+

1
2O2

ΔH = 196kJ
/

mol (7)

The process is detailed as follows: Initially, there is only sensible heat
transfer from the high-temperature fluid to the solid material until the
solid temperature reaches the reduction temperature of Co₃O₄ (around
1164 K at 1 bar pressure). The chemical reaction proceeds until all Co₃O₄
is converted to CoO. The CoO remains stable until the solid temperature
decreases to the oxidation temperature (around 1164 K at 1 bar pres-
sure) by flowing low-temperature fluid into the honeycomb structure.
During the chemical reaction, the solid temperature tends to remain
constant, forming a plateau.

The one-dimensional numerical model developed in MATLAB by
Zhou et al. [59] was used and then reformulated as a state space model
for the proposed MPC. The model is based on the following assumptions:

• The distribution of initial Co₃O₄ is assumed to be uniform.
• Conduction is considered only in one dimension along the flow
direction.
• The initial temperature of each temperature node is assumed to be
the same.
• The change in oxygen concentration is neglected.
• The flow rate is considered constant from inlet to outlet.
• The diffusion effect of the reaction is not considered.

2.3.1. Heat transfer modeling
The heat transfer process involves both conduction in the solid ma-

terial and convective heat transfer between the fluid and solid surfaces.
Thermal non-equilibrium separate energy equations are applied for each
phase [59]. Fig. 3a shows the cross-section of each cell in the honeycomb
reactor, while Fig. 3b illustrates the temperature node distribution in the
mathematical model of the TCES. Here, Tg and Ts represent the tem-
perature nodes of the fluid and solid, respectively. Heat transfer, either
through convection or conduction, is depicted by the interaction be-
tween each pair of temperature nodes.

The equations below illustrate the thermal non-equilibrium separate
energy equations for solid and air phases. They are developed and
validated in the study of Zhou et al. [59]. Af is the total flow area of all
channels and Ac is the total heat transfer area of all channels. As is the
cross section area of the solid. Heat transfer, represented by Eqns. 8 and
9, includes both conduction and convection between the denoted node
and neighboring nodes.

Solid:

Fluid:

ρj
si •As •dx•Cj

si
Tsj+1i − Tsji

dt
= λji

Tsj+1i− 1 − 2Ts
j+1
i +Tsj+1i+1

dx
+hjiAc

(
Tgj+1i +Tgj+1i+1

2
− Tsj+1i

)

+Sjhi •dx (8)

ρj
gi • Af • dx • Cj

gi
Tgj+1i − Tgji

dt
= ṁi− 1Cj

pi− 1Tg
j+1
i− 1 − ṁiCj

piTg
j+1
i − hjiAc

(
Tgj+1i + Tgj+1i+1

2
− Tsj+1i

)

(9)
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The thermodynamic properties of fluid, which are typically
temperature-dependent, are obtained from the NIST REFPROP database
[60]. For solid materials, the thermodynamic properties are calculated
by summing the fraction of each part of cobalt oxides (f) and the mass
fraction of cordierite (1 − φ). Here, ∅ represents the thermodynamic
properties of each solid material [16].

∅ = φ
∑

i
(fi •∅i)+ (1 − φ) •∅corderite (10)

Where i denote the respective cobalt oxide species.
The chemical heat source Sh is introduced by multiplying the reac-

tion rate R, concentration of reactive species C and enthalpy ΔH, in
which both of reaction rate and concentration are time dependent bases
on the study of [16].

Sh(t) = ΔH • Rt • Ct (11)

2.3.2. Model validation
The validation of the numerical model was performed by comparing

the experimentally measured temperatures, as reported in the study
[16], at the top and middle of the honeycomb with the model's pre-
dictions over a specific time period. This validation was conducted using
the same inlet temperature and mass flow rate (Fig. 4).

The solid lines represent the experimental results from the reference
study, while the dashed lines show the simulation results from the nu-
merical model. The simulated temperatures of the solid and the fluid
outlet closely match the experimental temperatures, confirming the
feasibility and applicability of the numerical model in simulating the
thermochemical storage system. The mean squared error (MSE) for the
solid temperature and outlet temperature are 17.31 K and 19.85 K,
respectively. The maximum deviation of solid temperature and outlet air
temperature between the simulation and experimental results are 4.1%
and 7.1% (Fig. 5).

This process explains the observed behavior by detailing the phases
of heat transfer and chemical reaction within the thermochemical
storage system. Initially, sensible heat transfer occurs from the high-

temperature air to the solid until the solid reaches the reduction tem-
perature of Co₃O₄ (1164 K at 1 bar). The concentration of reactive spe-
cies changes as the reaction progresses, continuing until all Co₃O₄
converts to CoO. CoO remains stable until the temperature decreases to
the oxidation temperature (1164 K at 1 bar) during the energy discharge
phase, facilitated by low-temperature air flowing into the honeycomb
structure.

2.4. Model predictive control (MPC) formulation

MPC is an advanced control method that makes real-time decisions
for the system by predicting future system responses. MPC allows users
to input multiple objectives into its formulation and then make decisions
aimed at minimizing the cost of these objective functions while ensuring
adherence to system operating constraints. MPC typically relies on time-
dependent models to predict the system's behavior under various future
control strategies. It selects an optimal control trajectory using complex
solution-searching methods. In practice, the control center only applies
the first step of the optimal control strategy and discards the rest. At each
time step, MPC repeats the optimization process and applies the first
control signal, ensuring continuous adjustment and optimization of the
system's performance.

In this study, MPC is used to make decisions regarding the heat
charging and discharging of the seasonal thermochemical energy stor-
age system (STES) system, based on the forecasted annual demand
illustrated in Section 2.2. Given that MPC can become computationally
intensive with a large prediction horizon, the hourly resolution was only
set for the first day. For the remaining periods, three different time steps
were used to manage computational costs. In the proposed MPC, 1233
time intervals were applied using four different time steps [43] (Fig. 6).

2.4.1. Storage capacity identification
In MATLAB, an MPC strategy was formulated to manage the heat

charging and discharging of the STES system. A decision variable u
represents the heat fed into the STES system during the current time

Fig. 3. (a) Cross section of each cell in the honeycomb reactor, and (b) temperature node distribution in the mathematical model of the thermochemical energy
storage model.

Fig. 4. (a) Schematic of the storage reactor, and (b) inlet temperature and mass flow rate in the experiment.
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step. The numerical form of charge and discharge is as follows:

storage(k+ 1) = storage(k)+ u(k) (12)

where: k represents the current time step and storage(k) denotes the
amount of heat stored in the STES system at that step. The objective of
the proposed MPC is minimize the total yearly waste heat:

objective = objective+ bound(k)́ × bound(k) (13)

Here bound(k) means the tolerance for the mismatch between heat
supply and demand at the current time step. The storage capacity of the
STES system and the predicted demand and supply data were con-
strained as follows:

constraints = [0 <= storage(k+ 1) <= limited amount (14)

constraints = [constraints,mismatch(k) − bound(k) <= u(k) <

= mismatch(k)+ bound(k) (15)

The MPCwas formulated using the Yalmip optimisation toolbox [61]
and solved with the Gurobi solver [62]:

optimize([constraints, storage(1) = current storage , objective] ) (16)

Fig. 5. Validation of the results of (a) solid temperature and (b) outlet fluid temperature.

Fig. 6. Prediction horizon [43].

Fig. 7. Reference rule-based control.
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Our system was developed with the aim of peak shaving the heating
load, enabling collaborative operation with district heating (DH) during
the winter. For scenario analysis, we considered storage capacities of up
to 1000MWh [63], to evaluate how the system performs with different
storage sizes. Additionally, we explored scenarios with various supply
conditions to understand the performance and adaptability of the MPC
strategy. This approach helps identify the thresholds at which the system
can no longer maintain optimal performance, highlighting the limits of
the current setup. Understanding these limits is crucial for planning and
improving the future resilience and capacity of the system.

2.4.2. Comparison of rule-based control and model predictive control
(MPC)

The finalized MPC results will be compared with a rule-based control
strategy (Fig. 7), which relies on a machine learning one-step ahead
demand prediction [64]. In this rule-based approach, the inlet temper-
ature is adjusted based on the mismatch between supply and demand at
the start of the next hour. First, the machine learning demand prediction
runs once at every control interval. The predicted demand is then
compared with the scheduled supply to determine the appropriate inlet
temperature for the TCES. If there is a mismatch between the predicted
demand and the supply, the inlet temperature is adjusted to balance the
system.

The MPC optimization problem, including the thermochemical
storage model, is formulated as a mixed-integer linear program with
both continuous and logic variables. The logic variables are used to
model the chemical reactions within the TCES. A receding horizon
approach is employed to enhance the robustness of MPC control by
minimizing forecast errors over time. We reformulated the thermo-
chemical storage model into state-space forms and increased the storage
capacity to 800 MWh by maximizing the number of TCES units installed
in the system, while adhering to temperature constraints. The assump-
tions made in the model include zero transmission loss in the DH
network and the exclusion of thermal behaviors of other components
such as pumping and piping systems. For simplicity, the prediction
models only consider sensible gains beyond the initial 24-h prediction
horizon.

Therefore, the primary objective of our MPC strategy is to minimize
the mismatch between supply and demand. MPC is more robust than
conventional controllers such as on/off control, PID control, and fuzzy
logic control [65] when dealing with multiple conflicting objectives in
an optimization problem. To incorporate thermal reactions in the model,
we relaxed the integer control variables by converting them into binary
variables [66]. At each time step, the reaction state (i.e., no reaction,
oxidation, reduction) is represented by a distinct binary variable. A
constraint ensures that the sum of the binary variables is 1, guaranteeing
that only one reaction mode is active at any given time. This can be
expressed as:

v =
∑nv

i
vibi (17)

1 =
∑nv

i
bi (18)

The MPC formulation is:

min
T1(t), b(t)

∫ ti+1233

ti
(abs(supply(t) − demand(t) − store(t ) )

)

dt (19)

subject to:

Tmin < T{t+1} < Tmax (20)

store(t) = m • Cp •
(
T1{t} − T{t}outlet

)
(21)

for t = 1 : 24

T{t+1} = A1 • T{t}+B1 • T1{t}+C1 • heat{t} (22)

N{t+1} = N{t} • (1 − R{t} ) (23)

heat{t} = H • R{t} • N{t} (24)

for t = 25 : 96

T{t+1} = A2 • T{t}+B2 • T1{t} (25)

for t = 97 : 222

T{t+1} = A3 • T{t}+B3 • T1{t} (26)

for t = 223 : 1233

T{t+1} = A4 • T{t}+B4 • T1{t} (27)

In this formulation, A, B, C are the system matrices for the numerical
model of the storage system. R{t} is the reaction rate, which is deter-
mined by the binary variables b(t) at each time step for each temperature
node. T{t} represents the temperature nodes of the system, encom-
passing both fluid and solid temperature nodesT1{t} is the continuous
variable in the system, representing the inlet temperature as determined
by the MPC. At each control step, a machine learning prediction is
performed once to forecast the demand for the entire year. This pre-
dicted demand is then used to inform theMPC strategy, ensuring that the
thermal storage system operates efficiently throughout the year.

3. Case study

The Nottingham district heating network, one of the largest and
oldest in the United Kingdom, exemplifies how cities can utilize waste-
to-energy solutions for heating. Fig. 8a provides an overview of the heat
generation and distribution process. The system employs an energy-
from-waste (EfW) facility to incinerate municipal waste collected from
households and businesses. The heat generated from burning the waste
produces steam, which is then transferred through heat exchangers to
convert it into hot water within the heat station. This hot water circu-
lates through the network, passing through substations before delivering
heat to both commercial and residential buildings.

Substations are strategically located throughout the network to
distribute heat energy to desired areas. Phase 1, situated in the St Ann's
region of Nottingham, is the selected area for this study and encom-
passes 10 different streets, including both commercial and residential
buildings. Data from one year (October 2021 to October 2022) with one-
hour intervals is shown in Fig. 9, highlighting that summer heat demand
is significantly lower than winter heat demand. The yearly total heat
demand for Phase 1 was 5,509,300 kWh, with a daily average of 15,052
kWh.

The supply temperatures of the DH system generally hover around
83 ◦C, measured on the consumer's secondary side. The primary supply
temperature varies throughout the year depending on the load, with
summer temperatures around 85 ◦C/75 ◦C (supply/return) and winter
temperatures around 110 ◦C/70 ◦C. The pumping station in the DH
system sets a pressure drop to control the water flow rate, meeting
varying demands throughout the day and year. The supply pressure is
adjusted based on the time of day and outdoor temperature, with the
highest pressure drops typically occurring during morning peak demand
periods when outdoor temperatures are lowest.

The relationship between heat demand and outdoor temperatures, as
shown in Fig. 1a, indicates that heat demand decreases when outdoor
temperatures are high and increases when outdoor temperatures are
low. For the summer months (June–September), the average tempera-
ture is 16.2 ◦C, with an average heat load of 422 kWh per hour. In
contrast, during the winter months (December–February), the average
temperature drops to 3.9 ◦C, and the average heat load rises to 1008
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kWh per hour.
To ensure that customer heat demand was satisfied at any given time,

four-time bands and seven temperature intervals were applied, as shown
in Table 1. The supply pressure adjusts according to a pre-determined
heuristic table based on the hours of the day and outdoor temperature
[67]. For example, during peak demand times and the lowest ambient
temperatures of the day (5:00–9:00), the supply pressure is set to its
highest level. However, this control strategy often resulted in excessive
heat dissipation due to frequent mismatches between supply and
demand.

We propose to apply the TCES system in our DH case study as a
model for efficient heat supply and storage. This TCES system will
operate alternately in storage mode or discharging mode to ensure an

uninterrupted heat supply. During the charging process, the energy
storage material will undergo conversion with the assistance of thermal
energy. When there is a need to release thermal energy, the reactants
will generate heat through a chemical reaction [68]. The medium will
flow into the reactor, where it will exchange heat with the solid material,
facilitating the continuous exchange of sensible and chemical heat.
During periods of excess heat generation from the power plant, the
waste heat will be used to regenerate the thermochemical storage (heat
storage process). At peak load demand during the space heating season,
the thermochemical store will release stored heat (heat discharge pro-
cess) to meet increased heat loads, thereby optimizing energy manage-
ment within the DH network.

Energy charge from thermochemical storage systems can serve as an

Fig. 8. (a) Heat generation and distribution across the Nottingham district heating network, and (b) pipeline of the district heating network in Phase 1 region.
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alternative supply source to CHP in DH systems as the proposed TCES
unit is a high-temperature heat storage and supply system [68]. There-
fore, in our case study of the district heating network, we propose
placing a TCES unit before the CHP and after the incinerator (Fig. 10).

4. Results and discussion

4.1. Validation of the demand prediction models

Fig. 11 presents a comparison between the actual and predicted heat
load curves over a 12-day validation period for three machine learning
models: support vector regression (SVR), regression tree, and long short-
termmemory (LSTM) networks. The prediction lines for all three models

closely align with the actual demand profile, effectively capturing daily
variations due to hourly changes. Although there are slight errors, with
occasional overestimation or underestimation of the heat demand, each
model demonstrates a strong ability to predict the majority of the daily
variations.

The SVR, regression tree, and LSTM methods examined in this study
yielded models with comparable performance errors, as shown in
Table 2. The evaluation of model performance indicates that the results
are consistent with findings from related studies on forecasting thermal
energy consumption in buildings [46,47], where CVRMSE values ranged
from 9 to 11% for all machine learning models [47].

As indicated in [46], SVR is effective for scenarios where input and
response variables exhibit either a linear or non-linear relationship. In

Fig. 9. DH heat supply rate and heat demand.

Table 1
Pressure management (bar) of DH.

Outdoor T
Time

To ≥10 8≤ To<10 5≤ To<8 3≤ To<5 1≤ To<3 ¡1≤ To<1 To<¡1

21:00–5:00 6 6 6 6 6 7 8
5:00–9:00 7 8 9 10 11 11.5 12
9:00–16:00 6 7 7.5 8 8.5 9 9.5
16:00–21:00 6 6 7.5 8 8.5 9 10

Fig. 10. Case study DH with TCES.
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our study, the input variables and the response variable demonstrate a
robust linear relationship, contributing to the SVR model's comparable
accuracy with other machine learning techniques. Additionally, the
regression tree method achieved notably high accuracy. Regression trees
are typically well-suited for discrete data types with limited datasets,
and the high accuracy observed in this study can be attributed to the
strong correlation between the chosen input variables and the demand

Fig. 11. Demand prediction results of different techniques.

Table 2
Prediction performance of three machine learning models.

SVR Regression tree LSTM

MAE (kW) 43.98 30.29 45.28
CVRMSE (%) 10.46 9.07 11.09
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in the substation under consideration.
LSTM, as confirmed in related papers [69–71] focusing on building

energy forecasting, demonstrated similar performance in our results.
These findings underscore the effectiveness of machine learning-based
methods for DH demand prediction. In our study, LSTM was selected
as the predictive model due to its strong compatibility with MPC [72].

Fig. 12 illustrates the comprehensive 12-h ahead forecasting accu-
racy of the recursive strategy employing LSTM. The CVRMSE for the
validation stands at 11.8%. Although this error is slightly higher than
the one-step ahead prediction, the studies [53,72,73] have established
that a CVRMSE of approximately 30% or less is acceptable for practical
engineering applications. Notably, the observed prediction result falls
well below this threshold, indicating the strong accuracy of the multiple
steps ahead demand prediction achieved by the proposed LSTM
network.

MPC determines optimal control trajectories using predictive math-
ematical models. Traditional physics-based models require detailed
system knowledge and are impractical for large-scale applications like
district heating systems. In contrast, machine learning models, such as
those discussed earlier (SVR, regression tree, and LSTM), are trained on
data and can predict building dynamics without detailed physical in-
formation. Therefore, machine learning offers a promising solution for
constructing MPC in complex systems, enabling efficient and accurate
demand forecasting and control [74–77].

4.2. Model predictive control (MPC) of seasonal thermal energy storage

This section compared the seasonal thermal energy storage capacity
without considering the chemical reaction process of the storage system.
In another word, this presents the results of the seasonal storage system
with immediate heat charge and discharge ignoring the heat loss. The
results indicate that different supply scenarios necessitate varying
maximal storage capacities. Simulations were conducted for storage
capacities ranging from 1000 MWh to 100 MWh, in decrements of 50
MWh. The optimal storage capacities identified for the 80%, 60%, and

50% supply scenarios were 1000 MWh, 400 MWh, and 150 MWh,
respectively. The corresponding waste heat and unmet heat demand
percentages are detailed in Table 3.

For the 80% supply capacity scenario, nearly all stored heat energy
was utilized to meet periods of insufficient demand. However, this was
not the case for the 60% and 50% scenarios, where stored heat energy
was inadequate to fully cover the demand shortfalls.

Fig. 13 illustrates the results for the MPC control strategy under
different supply scenarios. The “Storage amount” indicates the rate of
heat change in the storage system. “Mismatch” represents the difference
between the supply heat amount and the heat load, while “Storage”
shows energy being fed into (positive values) and supplied from
(negative values) the storage system. During warm months, the supply
amount often exceeds the demand, resulting in excess energy being
stored. Conversely, in cold months, the heat load might surpass the
supply rate, particularly under reduced supply capacity scenarios. This
highlights the necessity of a well-sized storage capacity to accommodate
seasonal variations in supply and demand. The storage capacity is
significantly larger than the hourly supply and demand rates due to the
need to store surplus energy generated during warm months for use
during cold months. This ensures that the system can effectively balance
supply and demand, even when the supply capacity is reduced.

The storage tank is typically charged before a significant mismatch,
such as during summer peaks, with heat storage preparation starting
around three months in advance. For example, heat stored from June
can be used in October (Fig. 13). This approach aligns with the study of
[75] where a calcium sulfoaluminate cement seasonal heat storage
system was charged with energy during the summer and successfully
discharged heat during the winter. The proposed MPC strategy effec-
tively eliminates waste heat from periods of excess heat production and
utilizes stored heat during periods of insufficient supply. This ensures
efficient energy use and highlights the system's capability to manage
seasonal supply and demand variations based on the amount of waste
heat stored from the summer.

MPC has demonstrated its capability to effectively shift energy
seasonally in all examined cases. With the installation of the proposed
STES system, there is a noticeable reduction in the need for auxiliary
heating during winter and a decrease in waste heat during summer. We
evaluated the energy performance of the STES under various assumed
lower supply capacities and their corresponding storage capacities. The
findings indicate that the STES system, under MPC control, could
manage a 20% lower supply capacity while only resulting 4% of waste

Fig. 12. 12-h ahead demand prediction by LSTM.

Table 3
Performance of different supply scenarios under proposed control strategy.

Supply capacity (based on original scenario) 80% 60% 50%
Waste heat (%) 4% 0% 0%
Unmet heat demand (%) 1% 10% 24%
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heat and meeting 99% of the total heat demand for the case study
substation. However, further reductions in supply capacity revealed that
the stored waste heat could not fully meet the heat demand during the
cold months. The results are consistent with those found in [76], which
demonstrated that the proposed STES system could save up to 60% of
energy.

It is important to develop the MPC with appropriate weighting pa-
rameters for optimizing STES performance. Additionally, proper
formulation can enhance the control and efficiency of seasonal energy
storage systems and should be explored further in future studies.
Although this study did not explore the integration of renewable energy
sources, typically, STES systems are feasible and robust with a stable and
sufficient renewable energy sources supply [77]. However, the variable
nature of heat sources in STES poses challenges in matching renewable
energy sources supply with heat demand using conventional control
strategies. Future work could investigate how accurate predictions of
RES and heat demand, along with proper sizing of the long-term storage
system, could allow MPC to increase RES penetration in district heating
grids by mitigating hourly or daily mismatches [6].

With regards to the optimization problem solved, most computation
times on a PC with an Intel Core i5-10300H 2.50 GHz processor took less
than one second, which is significantly faster than the minimum pre-
diction interval of one hour. This ensures that the MPC controller can
perform online control effectively. The proposed MPC implementation
allowed all decision information for seasonal storage charging and dis-
charging to be accessible within the prediction horizon of the first
control identification for the current year. Additionally, incorporating
reference tracking into the objective function by introducing slack var-
iables helps reduce the possibility of processing errors. This adjustment
can potentially lower operating costs and significantly reduce compu-
tation time in practical applications [47].

4.3. Comparison between model predictive control (MPC) and rule-based
control

This section presents the comparison of the results of MPC and a rule-
based control strategy, controlling the proposed TCES by taking chem-
ical reactions into account, aiming to determine the extent to which
receding horizon optimization outperforms pre-defined rules in long-
term decision-making processes. Both control strategies, based on ma-
chine learning predictions, successfully shift energy from warm months
to winter. Given the highly stochastic nature of demand in DH, accurate
demand prediction is crucial. Our results confirmed the direct impact of
accurate predictions on storage performance. Simulations were based on
the 80% supply capacity scenario, starting from April 27.

Compared to rule-based control, MPC demonstrated improved per-
formance in solving for the optimal inlet temperature (Fig. 14a). Overall,
the rule-based control strategy stored 17.2% of waste heat and supplied
27.4% of the total additional heat demand that was not covered by the
auxiliary heat supply. In contrast, MPC stored 99.6% of waste heat and
supplied 85.2% of the additional heat demand, showing its effectiveness
in optimizing energy use and meeting heat demand more efficiently.

Fig. 15a illustrates how the MPC strategy effectively minimizes the
mismatch between the heat supply rate and heat loads (“mismatch” in
Fig. 15a). Blue points mean surplus/shortfall in heat supply before the
implementation of the MPC strategy. Red points are showing that MPC
are trying to cover all surplus/shortfall heat by storing/releasing heat
into/from TCES. MPC is not able to cover the blue points towards the
end as there is not heat stored in TCES at that time. Overall, MPC
controlled TCES can provide 85% of the additional heat demand by
storing 99% waste heat.

Here, “surplus” (positive) indicates the waste heat generated from
excess heat production, while “insufficient” (negative) denotes the
shortfall in heat required to meet demand. Fig. 15b presents the
mismatch between the DH heat supply, coupled with the TCES system,
and heat loads after implementing the two control strategies. “Waste
heat” (positive) indicates the heat that was neither stored by the TCES
nor utilized by the demand side. “Insufficient” (negative) represents the
heat shortfall that could not meet the heat loads, even when using both
the stored heat from the TCES and the supply from the heat station. It is
evident that rule-based control often struggles to reduce waste heat
while meeting DH demand (Fig. 15b). This approach cannot ensure both

Fig. 13. Storage performance with (a) 80% supply capacity, (b) 60% supply
capacity, and (c) 50% supply capacity.
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the reduction of waste heat and adequate energy supply when demand
exceeds capacity, as it lacks the ability to manage system disturbances
effectively. In contrast, MPC optimizes energy storage and maintains
compliance with constraints, utilizing prediction models to accurately
manage and respond to system disturbances.

Fig. 15(c) illustrates the transition of Co3O4/CoO over a year under
the MPC strategy, with different lines indicating the amount of Co3O4 in
the TCES at various temperature nodes from the inlet to the outlet. In the
initial months, Co3O4 levels peak, indicating effective heat absorption
during the charging phase. This is followed by a stable period, signifying
the stability of the stored heat until the temperature drops enough to
initiate the oxidation reaction. During the colder months, the amount of
Co3O4 decreases, showing the discharge of stored chemical and sensible
heat. However, several limitations exist. Complete conversion of Co3O4
to CoO and vice versa is unlikely due to inefficiencies and incomplete
reactions, leaving residual Co3O4 at full discharge. Operational con-
straints such as temperature fluctuations, pressure variations, and ma-
terial degradation over time can impact TCES system efficiency and
performance.

The use of MPC in district heating systems demonstrates advantages
in managing the complexities and fluctuations of thermal loads. Oper-
ating DH systems with variable loads presents a challenging task that
necessitates control strategies capable of handling thermal energy
storage, flexible loads, and operational constraints [78]. The results
showed that MPC optimizes thermal energy storage, reduces waste heat,
and meets energy demands more efficiently than traditional rule-based
controls. By integrating predictive models, our study highlights MPC's
improved system performance and adaptability under various supply
conditions, emphasizing its potential for large-scale district heating
networks. These findings support the further exploration and adoption
of MPC to enhance the efficiency and sustainability of district heating
systems.

5. Conclusion and future works

This research has explored the integration of MPC with seasonal
thermochemical energy storage systems (STES) within the context of
district heating networks, focusing on the Nottingham district heating as
a case study. Our primary objective was to develop an intelligent MPC
strategy that employs machine learning models for accurate heat load
forecasting and optimizes the charging and discharging cycles of ther-
mochemical energy storage systems.

The method employed in this study utilized and validated machine
learning models, including support vector regression (SVR), regression
trees, and long short-term memory (LSTM) networks, for accurate heat
load prediction based on historical heat load and meteorological data. A
numerical model of the thermochemical energy storage system (TCES)
was adopted and validated with experimental data. This TCES model
was integrated into the MPC framework, formulated as a mixed-integer
linear program, to optimize the charging and discharging cycles of the

STES. The MPC strategy's performance was compared with a traditional
rule-based control approach, and various supply capacities were tested
to assess its scalability and robustness. Computational efficiency was
evaluated to ensure practical real-time control applicability.

Each machine learning model demonstrated comparable perfor-
mance, with CVRMSE values within the 9–11% range. The LSTM model
excelled in handling sequential data, providing accurate multi-step
forecasts crucial for the MPC framework. Incorporating these models
into the MPC strategy enabled precise heat demand predictions,
enhancing the control of energy storage and distribution. This highlights
the vital role of machine learning in optimizing district heating systems.

The MPC strategy outperformed the traditional rule-based control
approach. Simulations indicated that MPC could efficiently store surplus
heat during low-demand periods and utilize it during high-demand pe-
riods, reducing overall waste heat and meeting heating demands more
effectively. Specifically, the MPC strategy managed to store 99.6% of
waste heat and meet 85.2% of the total additional heat demand that was
not covered by the auxiliary heat supply, compared to the rule-based
control's 17.2% and 27.4%, respectively. This emphasizes MPC's capa-
bility in optimizing energy storage and distribution within district
heating networks.

The results demonstrated that the system could accommodate re-
ductions in supply capacity to a certain extent, but performance
degraded beyond specific thresholds. For instance, at 80% supply ca-
pacity, the system efficiently utilized stored heat to meet demand.
However, at 50% capacity, the stored waste heat was insufficient to
cover the entire demand during colder months. These insights are
crucial for planning and scaling district heating systems with integrated
STES, emphasizing the need for careful consideration of supply capac-
ities in system design.

The MPC optimization problem was computationally efficient, with
most computations taking less than a second on a standard PC, making it
viable for real-time control applications. This rapid computation capa-
bility ensures the MPC can adjust to changing conditions and maintain
optimal performance in dynamic environments.

Our study has shown the potential of machine learning models with
MPC to enhance the performance and adaptability of district heating
systems with STES under varying supply conditions. The MPC strategy
effectively manages energy storage and distribution, minimizing waste
heat and efficiently meeting energy demands. This adaptability is
essential for large-scale networks with fluctuating demand and supply.
The findings support wider adoption of MPC in district heating systems
for energy savings and emission reductions, aligning with global carbon
neutrality goals.

Despite the promising results, several limitations should be
acknowledged. The study did not integrate renewable energy sources
(RES) into the DH network, which could offer additional benefits and
challenges. The accuracy of machine learning models depends on high-
quality historical data and may be affected by data anomalies. The
simulations, based on a specific case study in Nottingham, may yield
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Fig. 14. Energy storage flow comparison under (a) rule-based strategy, and (b) MPC strategy.
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Fig. 15. (a) The MPC strategy addressing the mismatch between the heat supply rate and heat loads, (b) mismatch between DH heat supply (coupled with TCES) and
heat loads after implementing two control strategies, and (c) amount of Co3O4 in TCES under MPC control.
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different results in other locations or DH configurations. Lastly, larger
and more complex DH systems might require further optimization of the
MPC algorithms to maintain real-time performance.

Future research should prioritize integrating renewable energy
sources with STES in district heating networks to enhance performance
and sustainability. Additionally, exploring diverse heat sources can
significantly improve the system's flexibility and resilience. Further
refinement of MPC strategies, including appropriate weighting param-
eters, is essential for optimization. Additionally, investigating different
types of TCES systems with various materials will provide insights into
their efficiency. Practical challenges and solutions for implementing
MPC and STES in real-world networks should be investigated to ensure
scalability and robustness. Extensive simulations and real-world case
studies are crucial for further validation.
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