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Abstract: This paper studies the universal first-order Massey product of a prefactor-
ization algebra, which encodes higher algebraic operations on the cohomology. Explicit
computations of these structures are carried out in the locally constant case, with appli-
cations to factorization envelopes on R

m and a compactification of linear Chern–Simons
theory on R

2 × S
1.
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1. Introduction and Summary

Prefactorization algebras [CG17,CG21] are a modern and versatile approach to quantum
field theory (QFT) with a broad range of applications, e.g. in topological [GG14,GW19,
ES19,EG22], holomorphic [Wil17,Wil20,GW21] and Lorentzian [GR20,BPS19,BMS22,
GR22] settings. They are designed to axiomatize the algebraic structure of observables
in a QFT on a manifold M , possibly with additional geometric structure, such as an ori-
entation, a metric or a complex structure. In its most basic form, this algebraic structure
is relatively simple: To every suitable open subset U ⊆ M is associated a cochain com-
plex F(U ) of observables and to every mutually disjoint family (U1, . . . ,Un) ⊆ U of
suitable open subsets is associated a cochain map

⊗n
i=1 F(Ui ) → F(U ) that combines

observables in the small opens Ui to an observable in the big open U . From a math-
ematical perspective, prefactorization algebras are algebras over a colored dg-operad
PM whose objects are suitable opens U ⊆ M and whose operations are mutually dis-
joint families of inclusions (U1, . . . ,Un) ⊆ U . Depending on the flavor of QFT that
one intends to describe, there may be additional axioms. Most notably, in a topological
QFT, one demands that the structure map F(U )

∼−→ F(U ′) is a quasi-isomorphism for
every isotopy equivalence U ⊆ U ′, which formalizes the intuition that observables in a
topological field theory depend only on the ‘shape’, but not on the ‘size’, of the subset
U ⊆ M . Prefactorization algebras F with this property are called locally constant and
they are related to factorization homology [AF15,CFM21].

In the discussion above, we have intentionally kept vague the term ‘suitable opens’
U ⊆ M for the objects of the prefactorization operad PM in order to accommodate for
the different choices which appear in the literature. In the books of Costello and Gwilliam
[CG17,CG21] and follow-up works such as [IR23], the default choice is to consider all
open subsets U ⊆ M . In contrast to this, Lurie considers only topological open disks
D ⊆ M , i.e. open subsets which are homeomorphic to R

m with m = dim(M), see
[LurHA, Definition 5.4.5.6 and Remark 5.4.5.7]. The latter choice is consistent with the
one of Ayala and Francis by noting that what they define in [AF15, Definition 2.9] is not
the operad PM but rather its monoidal envelope P⊗

M , which is a universally constructed
symmetric monoidal category whose objects are tuples of the objects of PM . (In this
case these are finite disjoint unions of disks.) In our paper we follow [LurHA,AF15]
and focus on disks D ⊆ M rather than general open subsets U ⊆ M .

Cochain complexes appear in prefactorization algebras as a manifestation of the BV
formalism from theoretical physics. They are necessary to capture the rich and interesting
homological phenomena that arise from gauge symmetries and the complicated dynam-
ical behavior of QFTs. The world of cochain complexes is naturally ∞-categorical,
with higher morphisms given by (higher) cochain homotopies and equivalences given
by quasi-isomorphisms, which leads to conceptual and also practical difficulties when
working with prefactorization algebras. The main complication is that cochain com-
plexes may contain redundancies, e.g. one can replace the complex of observables F(U )

with a much bigger quasi-isomorphic complex (in physics terminology, this corresponds
to introducing ‘auxiliary fields’), hence it is difficult to give a concrete interpretation of
elements in F(U ). One way to circumvent such issues is to take the cohomology HF of
the prefactorization algebra, which produces a prefactorization algebra that takes values
in graded vector spaces (i.e. cochain complexes with trivial differential). Unfortunately,
this construction in general forgets/truncates some of the structure of the original pref-
actorization algebra F, except in very special cases where F is formal. Using more
sophisticated technology from operad theory, there are ways to recover the entire struc-
ture of F at the level of the cohomology HF. The relevant concept is the so-called
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homotopy transfer theorem (see e.g. [LV12]), or more specifically the minimal model
construction, which allows one to transfer the prefactorization algebra structure on F
to an ∞-prefactorization algebra structure on HF, such that there exists an equivalence
HF

∼� F.
The main goal of this paper is to describe the first, potentially non-trivial, higher

structure of the cohomology ∞-prefactorization algebra HF, and to illustrate this struc-
ture by simple examples. Abstractly, it is given by the universal first-order Massey
product [Mur23a,Mur23b]. It is realized by a cohomology class, constructed from any
choice of minimal model, that describes the first-order obstruction of F being formal
[Dim12]. The advantage of this cohomology class, in contrast to a minimal model, is
that it is insensitive to the choice of minimal model, hence it does not suffer from any
redundancy or dependence of auxiliary choices. We would like to mention that there
also exist successive higher obstruction classes [Dim12], or in other words higher-order
Massey products [FM23], which encode higher-order obstructions to F being formal. In
the present paper, we restrict our attention to the simplest case of universal first-order
Massey products, but we hope to come back to their higher-order variants in a future
work.

The main mathematical tools that we use for formulating and proving our results
are from homotopical algebra and operad theory, see e.g. the influential works [Hin97,
Hin15] and the comprehensive monograph [LV12]. Similar techniques have been used
previously in the context of prefactorization algebras. For instance, Carmona, Flores and
Muro [CFM21] describe the abstract homotopy theory of prefactorization algebras and
factorization algebras, which are variants satisfying a descent condition, using model cat-
egory theory and Bousfield localizations. A more concrete and computational approach,
based on Koszul duality of dg-operads, was studied recently by Idrissi and Rabinovich
in [IR23]. Their main result is a proof that a certain variant of the prefactorization operad
(whose objects are all open subsets and not only disks) is Koszul, which implies that
there exists a quite concrete model for homotopy-coherent prefactorization algebras, a
homotopy transfer theorem, and hence a concept of minimal models in this case.

The outline of the remainder of our paper is as follows. In Sect. 2, we recall the rel-
evant background on operadic homological algebra, following mainly the presentation
of Loday and Vallette [LV12], but slightly generalizing their constructions to the case
of colored dg-operads. More specifically, we recall the operadic bar-cobar adjunction,
which allows us to determine a semi-free resolution P∞ ∼−→ P of any augmented col-
ored dg-operad P , and hence a concept of homotopy-coherent P-algebras, also known
as P∞-algebras. With these methods we also obtain a homotopy transfer theorem, as
well as a minimal model construction. We conclude this section with an explicit and
computationally accessible description of the cohomology class that describes the uni-
versal first-order Massey product, slightly generalizing the constructions in [Dim12] and
[Mur23a,Mur23b] to the case of colored operads.

In Sect. 3, we apply these homological techniques to prefactorization algebras on a
manifold M , thereby obtaining an explicit description of the minimal model and the
universal first-order Massey product of any prefactorization algebra F. In the special
case of a locally constant prefactorization algebra F on M = R

m , which as explained
above describes a topological QFT on the Cartesian space, we prove some non-trivial
results that provide a simplified model for the cocycle that determines the universal first-
order Massey product, see in particular Proposition 3.7. In Sect. 3.4 we determine a very
simple and computationally accessible invariant for a locally constant prefactorization
algebra on the 2-dimensional Cartesian space R

2, which provides sufficient conditions
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for proving non-triviality of the universal first-order Massey product. In contrast to
the entire cohomology class that defines the universal first-order Massey product, our
invariant has pleasant algebraic properties, namely it is given by a degree −1 Poisson
bracket, i.e. a P2-algebra structure, see Theorem 3.12. This allows us to make contact with
the result of Lurie [LurHA, Theorem 5.4.5.9], see also [AF15] and [CFM21], that locally
constant prefactorization algebras on R

m are equivalent to Em-algebras. (See Remark
3.9 for further explanations and comments on this point.) We would like to emphasize
that our Poisson bracket invariant has the practical advantage that it is described very
explicitly, hence it can be computed in examples. A more physical approach towards
such higher structures, in the context of supersymmetric QFTs, has previously appeared
in [BBBDN20].

In Sect. 4, we illustrate and apply our results to the factorization envelope F = UgR
m

on the m-dimensional Cartesian space R
m , where gR

m = g ⊗ �•
Rm denotes the local

dg-Lie algebra determined by an ordinary Lie algebra g and the sheaf of de Rham
complexes �•

Rm on R
m . In m = 1 dimensions, we prove that UgR is formal, i.e. there do

not exist higher structures. We also show by an explicit computation, using homological
perturbation theory and homotopy transfer, that the cohomology of UgR is equivalent
to the associative and unital algebra

(
Sym(g), �, 1

)
with multiplication � given by the

Gutt star-product [Gut83]. This provides an alternative proof for the result in [CG17,
Proposition 3.4.1]. In m ≥ 3 dimensions, we prove that the cohomology of UgR

m
is

simply given by the associative, unital and commutative algebra Sym(g[1 − m]) and
that the universal first-order Massey product is trivial. We expect that in this case there
are non-trivial higher obstruction classes [Dim12], i.e. higher-order Massey products
[FM23], but we do not attempt to describe these in our work. The most interesting
case for us is m = 2 dimensions, where we prove that the cohomology of UgR

2
is the

associative, unital and commutative algebra Sym(g[−1]) and that the universal first-order
Massey product is non-trivial. This non-triviality follows from a detailed investigation
of the simple 2-dimensional Poisson bracket invariant from Sect. 3.4. Hence, with our
methods we are able to show that the 2-dimensional factorization envelope UgR

2
is a

non-formal prefactorization algebra, and we are able to compute explicitly to first order
the higher structures that cause this non-formality.

In Sect. 5 we study linear Chern–Simons theory FCS with structure group G = R,
another simple example of a locally constant prefactorization algebra. When defined on
M = R

3, we find similarly to the case of factorization envelopes in Sect. 4 that the uni-
versal first-order Massey product is trivial, but we again expect that there are non-trivial
higher obstruction classes, i.e. higher-order Massey products. In order to exhibit a non-
trivial universal first-order Massey product, we consider the compactification of linear
Chern–Simons theory on M = R

2 × S
1, which we regard as a 2-dimensional prefactor-

ization algebra along R
2. We show that the cohomology of FCS is the associative, unital

and commutative algebra Sym
(
H•

dR(S1)
)
, with H•

dR(S1) the de Rham cohomology of
the circle S

1, and that the universal first-order Massey product is non-trivial. For the lat-
ter conclusion we again compute explicitly the 2-dimensional Poisson bracket invariant
from Sect. 3.4.

2. Background on Operadic Homological Algebra

In this section we recall some relevant concepts and homological tools from operad the-
ory that are needed for this work. This also allows us to fix our notations and conventions.
We refer the reader to [LV12] for further details.
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2.1. Cochain complexes. Let us fix a field K of characteristic 0. We work with coho-
mological degree conventions and denote by Ch the category of cochain complexes of
K-vector spaces. This category is closed symmetric monoidal with respect to the usual
structures that we shall briefly recall. The tensor product V ⊗ W ∈ Ch of two cochain
complexes V and W is the cochain complex defined by

(V ⊗ W )i :=
⊕

j∈Z

(
V j ⊗ Wi− j

)
, (2.1a)

for all i ∈ Z, and the differential

dV⊗W (v ⊗ w) := (dV v) ⊗ w + (−1)|v| v ⊗ (dWw), (2.1b)

for all homogeneous v ∈ V and w ∈ W , where |v| ∈ Z denotes the cohomological
degree. The monoidal unit is K ∈ Ch, regarded as a cochain complex concentrated in
degree 0 and endowed with the trivial differential. The symmetric braiding is given by
the Koszul sign rule

τ : V ⊗ W −→ W ⊗ V, v ⊗ w 
−→ (−1)|v| |w| w ⊗ v (2.2)

on homogeneous elements v ∈ V and w ∈ W . The internal hom [V,W ] ∈ Ch between
two cochain complexes V and W is the cochain complex defined by

[V,W ]i :=
∏

j∈Z

HomK

(
V j ,W j+i ), (2.3a)

for all i ∈ Z, where HomK denotes the vector space of linear maps, and the differential

∂L := dW L − (−1)|L| L dV , (2.3b)

for all homogeneous L ∈ [V,W ].
Given any integer p ∈ Z and cochain complex V ∈ Ch, our convention for the

p-shifted cochain complex V [p] ∈ Ch is V [p]i := V i+p, for all i ∈ Z, and dV [p] :=
(−1)p dV .

2.2. Operads and cooperads. Let us fix a non-empty set C ∈ Set, which will play the
role of the set of colors (or objects) for our operads. We denote by �C the groupoid
whose objects are (possibly empty) tuples c := (c1, . . . , cn) of elements in C and whose
morphisms are right permutations c = (c1, . . . , cn) → cσ := (cσ(1), . . . , cσ(n)), where
σ ∈ �n is an element of the permutation group on n letters. The category of symmetric
sequences is defined as the functor category

SymSeqC := Ch�C×C . (2.4)

Explicitly, this means that an object is a functor X : �C × C → Ch assigning to
each (c, c) = ((c1, . . . , cn), c) a cochain complex X

(c
c
) ∈ Ch and to each permutation

(c, c) → (cσ, c) a cochain map X
(c
c
) → X

( c
cσ

)
, and that a morphism X → Y is a

family of cochain maps X
(c
c
) → Y

(c
c
)
, for all (c, c), that is equivariant with respect
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to permutations. The category SymSeqC is monoidal with respect to the circle-product
X ◦ Y ∈ SymSeqC , which is defined object-wise by the coend formula

(X ◦ Y )
(c
c
) :=

∫ a∈�C
∫ (b1,...,bk )∈�k

C
�C

(
(b1, . . . , bk), c

) ⊗ X
(c
a
) ⊗ Y

(a1
b1

) ⊗ · · · ⊗ Y
(ak
bk

)
,

(2.5)

for all (c, c), where k denotes the length of the tuple a = (a1, . . . , ak) and �C
(
(b1, . . . ,

bk), c
) ∈ Set the Hom-set in �C . The Set-tensoring on cochain complexes is defined by

⊗ : Set ×Ch → Ch, S×V 
→ S⊗V := ⊕
s∈S V . The monoidal unit I◦ ∈ SymSeqC

for the circle-product is

I◦
(c
c
) := �C (c, c) ⊗ K =

{
K, if c = c,
0, else ,

(2.6)

for all (c, c).

Definition 2.1. (a) A (C-colored symmetric dg-)operad is an associative and unital
monoid P = (P, γ : P ◦ P → P,1 : I◦ → P)

in the monoidal category
(SymSeqC , ◦, I◦). We denote the category of operads by OpC . An augmented op-
erad is a pair (P, ε) consisting of an operad P and an operad morphism ε : P → I◦.
We denote the category of augmented operads and augmentation preserving mor-
phisms by Opaug

C .
(b) A (C-colored symmetric dg-)cooperad is a coassociative and counital comonoid

C = (C,
 : C → C ◦ C, ε : C → I◦
)

in the monoidal category (SymSeqC , ◦, I◦).
We denote the category of cooperads by CoOpC . A coaugmented cooperad is a
pair (C,1) consisting of a cooperad C and a cooperad morphism 1 : I◦ → C.
We denote the category of coaugmented cooperads and coaugmentation preserving
morphisms by CoOpcoaug

C . The full subcategory of conilpotent cooperads is denoted
by CoOpconil

C ⊆ CoOpcoaug
C , see e.g. [LV12, Section 5.8] for the definition of a

conilpotent cooperad.

We briefly recall the construction of free augmented operads and of cofree conilpotent
cooperads in terms of tree modules, see [LV12, Section 5] for the details. Given any
X ∈ SymSeqC , we define inductively a family of SymSeqC -objects by

T0X := I◦, Tn X := I◦ ⊕ (
X ◦ Tn−1X

)
, (2.7a)

for all n ≥ 1, and a family of SymSeqC -morphism ιn : Tn−1X → Tn X by the inclusion
map ι1 : T0X = I◦ → I◦ ⊕ X = T1X and

ιn := id ⊕ (
id ◦ ιn−1

) : I◦ ⊕ (
X ◦ Tn−2X

) −→ I◦ ⊕ (
X ◦ Tn−1X

)
, (2.7b)

for all n ≥ 2. The tree module is then defined as the colimit

TX := colimn≥0Tn X ∈ SymSeqC (2.7c)

in the category of symmetric sequences. This admits a graphical interpretation in terms
of C-colored rooted trees whose vertices are ordered and decorated by elements of X
that match the color pattern given by the tree.

A model for the free augmented operad associated with X ∈ SymSeqC is given by

TX := (
TX, γ,1, ε

) ∈ Opaug
C (2.8)
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with composition γ : TX ◦ TX → TX given by grafting of trees, unit 1 : I◦ → TX
the inclusion of I◦ = T0X into the colimit, and augmentation ε : TX → I◦ induced by
the projections pr1 : Tn X = I◦ ⊕ (

X ◦ Tn−1X
) → I◦. The universal property of the

free augmented operad functor T : SymSeqC → Opaug
C is that it is left adjoint to the

forgetful functor U : Opaug
C → SymSeqC , (P, γ,1, ε) 
→ P := ker

(
ε : P → I◦

)
that

assigns the augmentation ideal.
A model for the cofree conilpotent cooperad associated with X ∈ SymSeqC is given

by

T
cX := (

TX,
, ε,1
) ∈ CoOpconil

C (2.9)

with decomposition 
 : TX → TX ◦TX given by degrafting of trees, counit ε : TX →
I◦ induced by the projections pr1 : Tn X = I◦⊕(

X ◦Tn−1X
) → I◦, and coaugmentation

1 : I◦ → TX the inclusion of I◦ = T0X into the colimit. The universal property of
the cofree conilpotent cooperad functor T

c : SymSeqC → CoOpconil
C is that it is right

adjoint to the forgetful functor U
c : CoOpconil

C → SymSeqC , (C,
,1, ε) 
→ C :=
coker(1 : I◦ → C) that assigns the coaugmentation coideal.

2.3. Operadic bar–cobar adjunction. The operadic bar-cobar adjunction

� : CoOpconil
C ⊥

��
Opaug

C�� : B (2.10)

introduces a fruitful interplay between augmented operads and conilpotent cooperads.
Its relevance in the context of our paper is that it allows us to construct a semi-free
resolution

P∞ := �BP ∼−→ P (2.11)

of an augmented operad P ∈ Opaug
C , which provides a concept of homotopy-coherent

P-algebras (in terms of ordinary P∞ = �BP-algebras) that is stable under homotopy
transfer. A detailed description of the bar-cobar adjunction is spelled out in [LV12,
Section 6.5], but we will briefly sketch the relevant steps in order to fix our notations.

The bar construction B assigns to an augmented operad P = (P, γ,1, ε) ∈ Opaug
C

the semi-cofree conilpotent cooperad

BP := T
cP[1]γ := (

T
cP[1], d

TcP[1] + dγ

) ∈ CoOpconil
C (2.12)

that is given by forming the cofree conilpotent cooperad (2.9) over the 1-shifted aug-
mentation ideal P[1] = ker(ε)[1] ∈ SymSeqC and then deforming its differential by a
coderivation dγ that is constructed out of the operadic composition map γ of P .

The cobar construction � assigns to a conilpotent cooperad C = (C,
, ε,1) ∈
CoOpconil

C the semi-free augmented operad

�C := TC[−1]
 := (
TC[−1], d

TC[−1] + d


) ∈ Opaug
C (2.13)

that is given by forming the free augmented operad (2.8) over the (−1)-shifted coaugmen-
tation coideal C[−1] = coker(1)[−1] ∈ SymSeqC and then deforming its differential
by a derivation d
 that is constructed out of the cooperadic decomposition map 
 of C.
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One proves that (2.10) is indeed an adjunction by using an intermediate step

Hom
Opaug

C

(
�C,P) ∼= Tw

(C,P) ∼= Hom
CoOpconil

C

(C,BP)
(2.14)

that relates morphisms in these categories to so-called operadic twisting morphisms.
The latter are degree 1 elements α ∈ [C,P]1 in the cochain complex

[C,P] :=
∫

(c,c)∈�C×C

[C(c
c
)
,P(c

c
)] ∈ Ch (2.15)

of natural transformations between C,P ∈ SymSeqC , constructed as usual in terms of
an end over the internal hom complexes (2.3), that annihilate the (co)augmentations, i.e.
α 1C = 0 and εP α = 0, and satisfy the Maurer–Cartan equation

∂α + α � α = 0 (2.16a)

with respect to the convolution product

α � α : C 
(1)
�� C ◦(1) C

α◦(1)α
�� P ◦(1) P

γ(1)
�� P . (2.16b)

The subscripts (1) denote the infinitesimal composites from [LV12, Section 6.1], which
are linearizations of the circle-product (2.5) in the right entry. The identifications in
(2.14) then work as follows: By semi-freeness of �C, the datum of an Opaug

C -morphism
�C → P is equivalent to a degree 0 map C[−1] → P , or equivalently a degree 1
map C → C → P → P annihilating the (co)augmentations, that due to the definition
of the differential on (2.13) satisfies the Maurer–Cartan equation (2.16). Similarly, by
semi-cofreeness of BP , the datum of a CoOpconil

C -morphism C → BP is equivalent
to a degree 0 map C → P[1], or equivalently a degree 1 map C → C → P → P
annihilating the (co)augmentations, that due to the definition of the differential on (2.12)
satisfies the Maurer–Cartan equation (2.16).

Remark 2.2. The bijections in (2.14) can be generalized to the case where the operads are
not augmented. Given any non-augmented operad P = (P, γ,1) ∈ OpC , one defines
similarly to (2.12), but without taking an augmentation ideal,

BnaP := T
cP[1]γ := (

T
cP[1], dTcP[1] + dγ

) ∈ CoOpconil
C . (2.17)

We further write �C ∈ OpC for the non-augmented operad given by forgetting the
augmentation of the cobar construction in (2.13). Then one has bijections

HomOpC

(
�C,P) ∼= Twna(C,P) ∼= Hom

CoOpconil
C

(C,BnaP)
, (2.18)

where the relevant twisting morphisms in this case are degree 1 elements α ∈ [C,P]1

that annihilate the coaugmentation α 1C = 0, but of course not an augmentation since
there is none, and satisfy the Maurer–Cartan equation (2.16). It is important to stress
that, even though one has an adjunction � � Bna in the non-augmented case, its counit

�BnaP �∼−→ P does not define a resolution of the non-augmented operad P ∈ OpC .
This is inessential for the purpose of our paper since we are using (2.18) only as a tool to
relate the different equivalent models for homotopy-coherent algebras over an augmented
operad. As a side-remark, resolutions of non-augmented operads can be constructed from
the curved bar-cobar adjunction [HM12,LeG19], but this is not needed in our paper.
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2.4. Algebras and coalgebras. We have to introduce some further terminology before
we can define the important concepts of (co)algebras over (co)operads. A symmetric
sequence N ∈ SymSeqC is called a C-colored object if

N
(c
c
) = 0 ∈ Ch, (2.19)

for all (c, c) with c = (c1, . . . , cn) a tuple of length n ≥ 1. The full subcategory of
C-colored objects is thus given by the functor category ChC ⊆ SymSeqC , i.e. an object
N ∈ ChC is simply a family of cochain complexes {N (c) = N

( c
∅

) ∈ Ch}c∈C . From
the definition of the circle-product (2.5), one immediately observes that it restricts to a
functor

◦ : SymSeqC × ChC −→ ChC , (2.20a)

which for X ∈ SymSeqC and N ∈ ChC is given explicitly by

(X ◦ N )(c) =
∫ a∈�C

X
(c
a
) ⊗ N (a1) ⊗ · · · ⊗ N (ak), (2.20b)

for all c ∈ C . This implies that (ChC , ◦) is a left-module category over the monoidal
category (SymSeqC , ◦, I◦).
Definition 2.3. (a) Let P = (P, γ,1) ∈ OpC be an operad. A P-algebra is a pair

(A, γA) consisting of an object A ∈ ChC and a ChC -morphism γA : P ◦ A → A
(called left action) that satisfies the axioms of a left module, i.e.

P ◦ P ◦ A

γ ◦id

��

id◦γA �� P ◦ A

γA

��

I◦ ◦ A
1◦id ��

∼=
���

���
���

���
P ◦ A

γA

��

P ◦ A
γA

�� A A

. (2.21)

A morphism f : (A, γA) → (B, γB) of P-algebras is a ChC -morphism f : A → B
that preserves the left actions, i.e. γB (id ◦ f ) = f γA. We denote the category of P-
algebras by AlgP . IfP = (P, γ,1, ε) ∈ Opaug

C is an augmented operad, the category
ofP-algebras is defined as the category AlgP of algebras over the underlying operad
(P, γ,1).

(b) Let C = (C,
, ε) ∈ CoOpC be a cooperad. A C-coalgebra is a pair (D,
D)

consisting of an object D ∈ ChC and a ChC -morphism 
D : D → C ◦ D (called
left coaction) that satisfies the axioms of a left comodule, i.e.

D


D

��


D �� C ◦ D

id◦
D

��

D

∼=
���

��
��

��
��


D �� C ◦ D

ε◦id
��

C ◦ D

◦id

�� C ◦ C ◦ D I◦ ◦ D

. (2.22)

A morphism f : (D,
D) → (E,
E ) of C-coalgebras is a ChC -morphism f :
D → E that preserves the left coactions, i.e. (id ◦ f )
D = 
E f . We denote the
category of C-coalgebras by CoAlgC . If C = (C,
, ε,1) ∈ CoOpconil/coaug

C is a
conilpotent (or coaugmented) cooperad, the category of C-coalgebras is defined as
the category CoAlgC of coalgebras over the underlying cooperad (C,
, ε).
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Remark 2.4. It is sometimes useful to work with an equivalent description of P-algebras
that uses the concept of endomorphism operads. For this we recall that the monoidal
category (SymSeqC, ◦, I◦) is right closed, i.e. there exists an internal hom functor
[−,−]◦ : SymSeqop

C × SymSeqC → SymSeqC such that

HomSymSeqC

(
X ◦ Y, Z

) ∼= HomSymSeqC

(
X, [Y, Z ]◦

)
, (2.23)

for all X,Y, Z ∈ SymSeqC . When applied to a left action γA : P ◦ A → A, this defines
an OpC -morphism (denoted with abuse of notation by the same symbol)

γA : P −→ EndA := [A, A]◦ (2.24)

to the endomorphism operad associated with A ∈ ChC . The endomorphism operad
EndA = (EndA, γ,1) is given concretely by the symmetric sequence that is defined by

EndA
(c
c
) = [

A(c1) ⊗ · · · ⊗ A(cn), A(c)
] ∈ Ch, (2.25)

for all (c, c), where on the right-hand side [−,−] denotes the internal hom (2.3) in Ch,
with γ : EndA ◦ EndA → EndA defined by composing maps and 1 : I◦ → EndA
assigning the identity maps.

2.5. Homotopy-coherent P-algebras. Let P = (P, γ,1, ε) ∈ Opaug
C be an augmented

operad. Using the bar-cobar adjunction (2.10), one obtains a semi-free resolutionP∞ :=
�BP ∼−→ P of P that allows one to introduce a concept of homotopy-coherent P-
algebras.

Definition 2.5. A P∞-algebra is an algebra (A, γA : P∞ ◦ A → A) ∈ AlgP∞ over the
augmented operadP∞ := �BP ∈ Opaug

C given by the semi-free resolution �BP ∼−→ P .
A strict morphism f : (A, γA) → (B, γB) of P∞-algebras is an ordinary P∞-algebra
morphism, i.e. a ChC -morphism f : A → B satisfying γB (id ◦ f ) = f γA.

Although conceptually very clear, this definition is impractical for concrete compu-
tations because P∞ = �BP ∈ Opaug

C is a complicated operad that is obtained from
P by taking twice a tree module, see (2.12) and (2.13), i.e. it consists of trees whose
vertices are decorated by trees whose vertices are decorated by elements of P . This can
be simplified considerably by making use of the endomorphism operads from Remark
2.4 and the variant of the bar-cobar adjunction from Remark 2.2. Indeed, the datum of
a left action γA : �BP ◦ A → A is equivalent to an OpC -morphism (denoted with
abuse of notation by the same symbol) γA : �BP → EndA to the endomorphism op-
erad associated with A. Via bar-cobar, the latter can be expressed in the following three
equivalent ways

HomOpC

(
�BP, EndA

) ∼= Twna(BP, EndA
) ∼= HomCoOpconil

C

(
BP,BnaEndA

)
.

(2.26)

The phenomenon of having available multiple useful descriptions of P∞-algebra struc-
tures is known as the Rosetta Stone in [LV12, Theorem 10.1.13]. The latter comes with
one further equivalent description that we will briefly recall. Given a P∞-algebra struc-
ture that is described, say, by a twisting morphism α ∈ Twna

(
BP, EndA

)
, i.e. a degree 1

element α ∈ [BP, EndA]1 that annihilates the coaugmentation α 1BP = 0 and satisfies
the Maurer–Cartan equation (2.16), one can use that EndA = [A, A]◦ is given by the
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internal hom in SymSeqC in order to identify α with a degree 1 element (denoted by
the same symbol) α ∈ [BP ◦ A, A]1. Interpreting BP ◦ A as a cofree coalgebra over
BP ∈ CoOpconil

C , with left coaction 
BP ◦ id : BP ◦ A → BP ◦BP ◦ A, one can extend
the element (εBP ◦ id) dBP◦A + α ∈ [BP ◦ A, A]1 given by adding α to the differential
on BP ◦ A to a deformed differential on BP ◦ A. (This differential squares to zero
as a consequence of the Maurer–Cartan equation, see [LV12, Proposition 10.1.11].)
Hence, the datum of a P∞-algebra structure on A is equivalent to a deformation of
the cofree coalgebra BP ◦ A ∈ CoAlgBP to a semi-cofree one, which we denote by
(BP ◦ A)α ∈ CoAlgBP . The latter point of view is useful to introduce a weaker concept
of morphisms between P∞-algebras.

Definition 2.6. Consider two P∞-algebras (A, γA), (B, γB) ∈ AlgP∞ and denote by
α, β the twisting morphisms corresponding to the left actions γA, γB . An ∞-morphism
ζ : (A, γA) � (B, γB) between P∞-algebras is an ordinary CoAlgBP -morphism ζ :
(BP ◦ A)α → (BP ◦ B)β between the associated semi-cofree coalgebras. An ∞-
morphism is called an ∞-quasi-isomorphism if the composite morphism

A ∼= I◦ ◦ A
1BP◦id

�� (BP ◦ A)α
ζ

�� (BP ◦ B)β
εBP◦id

�� I◦ ◦ B ∼= B (2.27)

is a quasi-isomorphism in ChC , i.e. an object-wise quasi-isomorphism of cochain com-
plexes.

There exist other equivalent descriptions of ∞-morphisms, see [LV12, Section 10.2],
but these will not be needed in our paper.

2.6. Homotopy transfer and minimal models. Consider any homotopy retract

B A
i

p
h (2.28)

in the category ChC of C-colored objects. This consists of two quasi-isomorphisms
i : B → A and p : A → B in ChC , and a homotopy h ∈ [A, A]−1, such that
∂h = i p − id.

Theorem 2.7 (Homotopy transfer theorem). Let P = (P, γ,1, ε) ∈ Opaug
C be an aug-

mented operad. Any P∞-algebra structure on A ∈ ChC can be transferred along the
homotopy retract (2.28) into a P∞-algebra structure on B ∈ ChC such that i extends
to an ∞-quasi-isomorphism.

The proof of the homotopy transfer theorem is constructive and rather explicit, see
[LV12, Theorem 10.3.1], but it heavily uses the identifications given by the Rosetta Stone
(2.26). Since we are interested in explicit computations, we have to spell out concretely
how the transferred P∞-algebra structure on B can be computed from the given P∞-
algebra structure on A. For the applications considered in this paper, it suffices to consider
the case where A is endowed with a strict P∞-algebra structure γA : P → EndA. Ap-
plying the bar construction we obtain a CoOpconil

C -morphism α̂ : BP → BnaEndA that,
via the Rosetta Stone, gives an equivalent description of the given P-algebra structure
γA. Explicitly, when interpreted in terms of trees, α̂ sends a tree that is decorated with
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operations inP[1] to the same tree, but now decorated with the corresponding operations
in EndA[1] that are obtained from the left P-action γA : P → EndA. (See (2.32) below
for an illustration.) The transferred P∞-algebra structure on B ∈ ChC is then given by
the composite CoOpconil

C -morphism

β̂ : BP α̂ �� BnaEndA
� �� BnaEndB , (2.29)

where � is determined from the homotopy retract (2.28) by the construction given in
[LV12, Proposition 10.3.2]. Because BnaEndB ∈ CoOpconil

C is semi-cofree, this mor-
phism is fully determined by projecting onto cogenerators

(
β : BP α̂ �� BnaEndA

� �� BnaEndB
pr

�� EndB[1]
)

∈ [
BP, EndB[1]]0

,

(2.30)

which equivalently defines a degree 1 element β ∈ [BP, EndB]1 that satisfies β 1BP = 0
and, as a consequence of the Rosetta Stone, the Maurer–Cartan equation (2.16). This
defines the transferred P∞-algebra structure on B ∈ ChC .

Let us illustrate how the map β in (2.30) can be computed by using an example.
Recall that an element in BP is a (C-colored rooted) tree whose vertices are ordered and
decorated by elements in P[1]. The following picture gives an example

t (μ1, μ2, μ3, μ4) =

μ1

μ2 μ3

μ4

, (2.31)

where for notational convenience we suppress the C-colors. (Recall that each μi has
a tuple (c1, . . . , cn) of input colors and an output color c. For each tree the colors on
the edges have to match.) The map α̂ in (2.30) assigns to such tree the same tree, but
now decorated by the elements γA(μi ) in EndA[1] that are obtained by applying the left
P-action γA : P → EndA, i.e.

α̂
(
t (μ1, μ2, μ3, μ4)

) =

γA(μ1)

γA(μ2) γA(μ3)

γA(μ4)

. (2.32)
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The transferred P∞-algebra structure β in (2.30) assigns to this tree the element in
EndB[1] that is obtained by composing the tree

β(μ1, μ2, μ3, μ4) := β
(
t (μ1, μ2, μ3, μ4)

) =

γA(μ1)

γA(μ2) γA(μ3)

γA(μ4)

p

h h

h

i
i

i

i

i
i

i

(2.33a)

that is formed by decorating the edges of (2.32) with the data of the homotopy retract
(2.28). (Note that incoming edges are decorated by i , the outgoing edge by p and internal
edges by h.) Written in a more standard notation, the result of this composition reads as

β(μ1, μ2, μ3, μ4) = p γA(μ1)
(
hγA(μ2) ⊗ id

) (
id⊗3 ⊗ hγA(μ3)

) (
id⊗4 ⊗ hγA(μ4)

)
i⊗7,

(2.33b)

where it is important to note that the order in which the terms are composed is dictated
by the ordering of vertices of the tree t (μ1, μ2, μ3, μ4).

Given any C-colored object A ∈ ChC , we can take object-wise cohomology and
define a new object HA = {HA(c) ∈ Ch}c∈C ∈ ChC that has a trivial differential
dHA = 0. Since we are working over a field K of characteristic 0, there exists a strong
deformation retract

HA A
i

p
h (2.34a)

in the category ChC , i.e.

∂i = 0, ∂p = 0, p i = id, ∂h = i p − id, h i = 0, p h = 0, h2 = 0 .

(2.34b)

The following result is an immediate consequence of the Homotopy Transfer Theorem
2.7.

Corollary 2.8. Let P = (P, γ,1, ε) ∈ Opaug
C be an augmented operad. Any P∞-

algebra structure on A ∈ ChC can be transferred along the strong deformation retract
(2.32) into a P∞-algebra structure on the cohomology HA ∈ ChC . The latter is called
a minimal model for the given P∞-algebra A. Minimal models are unique up to ∞-
isomorphism.

We conclude this section with a basic observation that will be useful in the main
part of our paper. For this we consider the special case of an augmented operad P =
(P, γ,1, ε) ∈ Opaug

C that is concentrated in cohomological degree zero, i.e. all cochain
complexes of operationsP(c

c
) ∈ Ch are concentrated in degree 0 and hence, in particular,

have a trivial differential dP = 0. Furthermore, let A ∈ ChC be endowed with a strict
P∞-algebra structure γA : P → EndA. We define a SymSeqC -morphism

γHA : P −→ EndHA (2.35a)
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by using the transferred P∞-algebra structure (2.31) on HA and the decomposition
P = P ⊕ I◦ that is obtained from the projector 1P εP : P → P determined by the
augmentation and unit of P . Explicitly, we set

γHA(1P ) := 1EndHA , γHA(μ) := β(μ) = pc γA(μ)

n⊗

i=1

ici =: pc γA(μ) ic,

(2.35b)

for all μ ∈ P( c
(c1,...,cn)

) = P(c
c
)
.

Proposition 2.9. Let P ∈ Opaug
C be an augmented operad concentrated in degree 0 and

(A, γA : P → EndA) ∈ AlgP∞ a strict P∞-algebra. Then the map (2.35) is an OpC-
morphism, i.e. the cohomologyHA ∈ ChC carries as part of its transferredP∞-algebra
structure a strict P∞-algebra structure γHA : P → EndHA.

Proof. The only slightly non-trivial step is to show that γHA preserves operadic compo-
sitions. For this it is sufficient to consider composable non-identity operations μ ∈ P(c

c
)

and μi ∈ P(ci
ci

)
, for i = 1, . . . , n, and compute

γEndHA

(
γHA(μ),

(
γHA(μ1), . . . , γHA(μn)

)) = γHA(μ)
(
γHA(μ1) ⊗ · · · ⊗ γHA(μn)

)

= pc γA(μ)
(
ic1 pc1 γA(μ1) ⊗ · · · ⊗ icn pcn γA(μn)

)
i(c1,...,cn) . (2.36)

It is important to observe that all maps in this expression are cochain maps, i.e. they are
annihilated by the differential ∂ . (For this our assumption that P has a trivial differential
dP = 0 is crucial, because otherwise ∂γA(μ) = γA(dPμ) �= 0 could be non-trivial.)
We can now iteratively insert ici pci = id + ∂hci and find that, as a consequence of the
previous observation, the terms with ∂hci vanish. Hence, we obtain

γEndHA

(
γHA(μ),

(
γHA(μ1), . . . , γHA(μn)

)) = pc γA(μ)
(
γA(μ1) ⊗ · · · ⊗ γA(μn)

)
i(c1,...,cn)

= pc γA

(
γP

(
μ, (μ1, . . . , μn)

))
i(c1,...,cn) = γHA

(
γP

(
μ, (μ1, . . . , μn)

))
, (2.37)

where in the second step we used that γA is a P-algebra structure. ��

2.7. Universal first-order Massey product. It is important to emphasize that the strict
P∞-algebra structure γHA : P → EndHA on the cohomology HA from (2.35) does
in general not capture the whole P∞-algebra structure of the minimal model. There
often exist higher structures, called Massey products, that are related to the values of the
transferred P∞-algebra structure (2.31) on trees that have multiple vertices. Note that,
for a tree t (μ1, . . . , μn) ∈ BP with n vertices, such higher structures take the form of
degree 1 − n elements β(μ1, . . . , μn) ∈ EndHA in the endomorphism operad of HA
when P is concentrated in degree zero.

The description and interpretation of these higher structures is rather subtle because
the individual components β(μ1, . . . , μn) ∈ EndHA are not invariants of the P∞-
algebra (A, γA : P → EndA) ∈ AlgP∞ . In particular, they transform non-trivially
under ∞-isomorphisms when changing the strong deformation retract (2.32) used in
the minimal model construction from Corollary 2.8, which involves mixing different
components among each other. This issue has been overcome by Dimitrova [Dim12].
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She has constructed from the transferred P∞-algebra structure β a cohomology class[
β(2)

] ∈ H1
�

(
HA, γHA

)
in operadic Gamma-cohomology of the underlying strict P∞-

algebra (HA, γHA) ∈ AlgP∞ from (2.35) that is an invariant of (A, γA). In particular, this
cohomology class is independent of the choice of strong deformation retract used in the
minimal model construction. More recently [Mur23a,Mur23b], Muro has established
a relationship between this cohomology class and the ordinary concept of first-order
Massey products, thereby coining and justifying the terminology universal first-order
Massey product for Dimitrova’s cohomology class

[
β(2)

] ∈ H1
�

(
HA, γHA

)
. A higher-

order generalization is given by the successive obstruction classes in [Dim12, Theorem
4.6], see also [FM23].

Let us briefly recall how Dimitrova’s class is computed from the transferred P∞-
algebra structure β on a minimal model HA. We will focus mainly on computational
aspects, since these will be relevant for our work, and refer the reader to [Dim12] for
more details. A model for the operadic Gamma-cohomology of the strict P∞-algebra
(HA, γHA) ∈ AlgP∞ underlying the minimal model (2.35) is given by the cochain
complex

�(HA, γHA) := RDer(HA) := Der
(
QHA,HA

) ∈ Ch (2.38)

that is obtained from the derived functor of derivations. A concrete model for the cofibrant
resolution QHA ∼−→ HA in AlgP∞ can be obtained by using the bar-cobar adjunction
� j : CoAlgBP � AlgP∞ : B j for (co)operad (co)algebras that is associated with
the canonical twisting morphism j : BP → �BP = P∞, see [LV12, Section 11].
Explicitly, this cofibrant resolution is given by the counit � jB jHA ∼−→ HA of this
adjunction. Using that, by definition, the functors � j = P∞ ◦ j (−) and B j = BP ◦ j (−)

assign semi-(co)free (co)algebras, one finds that

�(HA, γHA) = Der
(
� jB jHA,HA

) ∼=
([
BP, EndHA

]
, ∂�

)
∈ Ch (2.39)

for a suitable differential ∂� that is constructed out of the differential dBP on the bar
construction, the twisting morphism j : BP → �BP = P∞ and the strict P∞-algebra
structure γHA : P → EndHA on HA. The details are spelled out in [Dim12, Section 4.1].

From the transferredP∞-algebra structure β ∈ [
BP, EndHA

]1 on the minimal model,
we define a 1-cochain β(2) ∈ �1(HA, γHA) in this complex by defining for each tree
t (μ1, . . . , μn) ∈ BP with n ≥ 0 vertices

β(2)(μ1, . . . , μn) :=
{

β(μ1, μ2), for n = 2,

0, for n �= 2.
(2.40)

Since this cochain is only non-trivial on trees with 2 vertices, one finds from the explicit
form of ∂� that the cocycle condition ∂�β(2) = 0 is only non-trivial on trees with 3
vertices. There exist two different types of such 3-vertex trees, given by

t (μ1, μ2, μ3) =

μ1

μ2

μ3

(2.41a)
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and

t (μ1, μ21, μ22) =
μ1

μ21 μ22

. (2.41b)

Evaluating the cocycle condition ∂�β(2) = 0 on these two types of trees gives the
identities

0 = β(2)
(
μ1, γ(1)(μ2, μ3)

) − β(2)
(
γ(1)(μ1, μ2), μ3

)

+ γHA(μ1) β(2)(μ2, μ3) − β(2)(μ1, μ2) γHA(μ3) (2.42a)

and

0 = β(2)
(
γ(1)(μ1, μ22), μ21

) − β(2)
(
γ(1)(μ1, μ21), μ22

)

+ β(2)(μ1, μ22) γHA(μ21) − β(2)(μ1, μ21) γHA(μ22), (2.42b)

which hold true as a consequence of the Maurer–Cartan equation (2.16) for the trans-
ferred P∞-algebra structure β. (Recall that γ(1) denotes the infinitesimal composition
of the operad P . Graphically, this corresponds to composing two vertices in the trees
(2.41) along a common edge.)

Definition 2.10. The universal first-order Massey product of a strictP∞-algebra (A, γA :
P → EndA) ∈ AlgP∞ is defined as the cohomology class

[
β(2)

] ∈ H1
�

(
HA, γHA

)
(2.43)

in operadic Gamma-cohomology (2.39) that is defined by the 1-cocycle (2.40) associated
with any choice of minimal model (HA, β) ∈ AlgP∞ . This cohomology class is an
invariant of (A, γA) ∈ AlgP , in particular it does not depend on the choice of minimal
model that is used to compute it, see [Dim12, Theorem 4.2].

As usual, two 1-cocycles β(2), β ′(2) ∈ �1
(
HA, γHA

)
represent the same cohomology

class
[
β(2)

] = [
β ′(2)

] ∈ H1
�

(
HA, γHA

)
if and only if they differ by a coboundary, i.e.

β ′(2) = β(2) + ∂�χ (2.44)

for some χ ∈ �0
(
HA, γHA

)
. Requiring that both representatives β(2) and β ′(2) vanish

as in (2.40) on all trees with n �= 2 vertices constrains χ to be of the form

χ(μ1, . . . , μn) =
{

χ(μ1), for n = 1,

0, for n �= 1.
(2.45)

Evaluating both sides of (2.44) on a tree t (μ1, . . . , μn) with n vertices then vanishes for
n �= 2, and for n = 2 it gives the explicit transformation formula

β ′(2)(μ1, μ2) = β(2)(μ1, μ2) − χ
(
γ(1)(μ1, μ2)

)
+ χ(μ1) γHA(μ2) + γHA(μ1) χ(μ2)

(2.46)

for the representing cocycles of the universal first-order Massey product. As a side-
remark, we would like to note that this transformation formula can also be interpreted
in terms of gauge transformations of Maurer–Cartan elements as introduced e.g. in
[DSV22].
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3. Application to Prefactorization Algebras

3.1. Prefactorization operad and algebras. We will briefly recall the definition of a
prefactorization algebra on a smooth m-dimensional manifold M . More details can
be found in the textbooks of Costello and Gwilliam [CG17,CG21]. Let us start by
introducing some relevant terminology. An open subset D ⊆ M is called a disk if
it is diffeomorphic D ∼= R

m to the m-dimensional Cartesian space. We denote by
DiskM = {

D ⊆ M
}

the set of all disks in M .

Definition 3.1. The prefactorization operad PM = (PM , γ,1) ∈ OpDiskM
on a smooth

m-dimensional manifold M is the (DiskM -colored dg-)operad that is defined as follows:
The underlying symmetric sequence PM ∈ SymSeqDiskM

is given object-wise by

PM

(D
D
) :=

{
K

[
ιDD

] ∈ Ch, if Di ⊆ D ∀i and Di ∩ Dj = ∅ ∀i �= j,

0 ∈ Ch, else,
(3.1)

for all tuples (D, D) = ((D1, . . . , Dn), D) of disks, where K
[
ιDD

]
denotes the cochain

complex (with trivial differential) spanned by a degree 0 element ιDD , together with

the permutation action PM

(D
D
) → PM

( D
Dσ

)
, ιDD 
→ ιDDσ . The operadic composition

γ : PM ◦ PM → PM is given by

γ
(
ιDD,

(
ι
D1
D1

, . . . , ι
Dn
Dn

))
:= ιD(D1,...,Dn)

, (3.2)

and the operadic unit 1 : I◦ → PM sends 1 ∈ I◦
(
D
D

)
to ιDD ∈ PM

(
D
D

)
.

The prefactorization operad is canonically augmented via the augmentation map

ε : PM −→ I◦, ιDD 
−→
{

1, if D = D,

0, else .
(3.3)

The corresponding augmentation ideal PM = ker(ε) is then given by all non-identity
operations ιDD , for D �= D. Since the prefactorization operad PM = (PM , γ,1, ε) ∈
Opaug

DiskM
is an augmented operad, the homological techniques from Sect. 2 apply to this

example.

Definition 3.2. A prefactorization algebra F on a smooth m-manifold M is an algebra
over the prefactorization operad PM = (PM , γ,1, ε) ∈ Opaug

DiskM
. More explicitly, a

prefactorization algebra F ∈ AlgPM
consists of the following data:

(i) For each disk D ⊆ M , a cochain complex F(D) ∈ Ch.
(ii) For each tuple (D, D) = ((D1, . . . , Dn), D) of disks in M , such that Di ⊆ D, for

all i = 1, . . . , n, and Di ∩ Dj = ∅, for all i �= j , a cochain map

F
(
ιDD

) :
n⊗

i=1

F(Di ) −→ F(D). (3.4)

This includes a cochain map F
(
ιD
∅

) : K → F(D) for the empty tuple ∅ = () and
each D.
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These data have to satisfy the following axioms:

(1) Preservation of compositions:

n⊗

i=1

ni⊗

j=1
F(Di j )

F
(
ιD
(D1,...,Dn )

)
���

���
���

���

⊗
i F

(
ι
Di
Di

)

��
n⊗

i=1
F(Di )

F
(
ιDD

)
����
��
��
��
�

F(D)

(3.5a)

(2) Preservation of identities:

F
(
ιDD

) = idF(D) : F(D) −→ F(D) (3.5b)

(3) Equivariance under permutation actions:

n⊗

i=1
F(Di )

F
(
ιDD

)
���

��
��

��
��

τσ ��
n⊗

i=1
F(Dσ(i))

F
(
ιDDσ

)
		��
��
��
��
��

F(D)

(3.5c)

with the permutation τσ acting by the symmetric braiding (2.2).

Remark 3.3. We have already highlighted in the second paragraph of the introduction
that our prefactorization operad from Definition 3.1 agrees with the operad used in
the context of factorization homology, see e.g. [LurHA, Definition 5.4.5.6 and Remark
5.4.5.7] and [AF15, Definition 2.9]. (To avoid confusion, let us reemphasize that Ayala
and Francis consider the symmetric monoidal envelope P⊗

M of the operad PM , which
is the origin of their multidisks.) Costello and Gwilliam [CG17,CG21] consider also
alternative (inequivalent) variants of prefactorization operads whose objects are not only
disks D ⊆ M , but also multidisks D1 � · · · � Dn ⊆ M or even general open subsets
U ⊆ M . Allowing for multidisks as part of the objects has the advantage that (the
non-unital version of) the resulting operad admits a very simple quadratic presentation
that can be shown to be Koszul [IR23], while it is presently not known if the operad
from Definition 3.1 is Koszul.1 A disadvantage of such operads including multidisks is
that they describe more operations than those one is interested in. This has led Costello
and Gwilliam to introduce a multiplicativity property [CG17, Definition 6.1.3] which
demands that the structure map

F
(
ι
D1�D2
(D1,D2)

) : F(D1) ⊗ F(D2)
∼−→ F(D1 � D2) (3.6)

is a quasi-isomorphism for every pair of disjoint disks D1, D2 ⊆ M . It is not clear to us
how this multiplicativity property interacts with the Koszul property from [IR23].

1 Koszulness is a property that a dg-operad may or may not have. If an operad P is Koszul, then there exists
an alternative cofibrant resolution that is considerably smaller than the bar-cobar resolution from (2.10). This
leads to a simplified description ofP∞-algebras, their ∞-morphisms, homotopy transfer and minimal models.
Hence, the advantage of Koszul operads is that their homological algebra is practically better manageable.
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We will later consider a special class of prefactorization algebras that correspond to
topological quantum field theories. The precise definition is as follows.

Definition 3.4. A prefactorization algebra F ∈ AlgPM
is called locally constant if it

assigns to every disk inclusion D ⊆ D′ a quasi-isomorphism of cochain complexes
F(ιD

′
D ) : F(D)

∼−→ F(D′).

3.2. Minimalmodel anduniversal first-orderMassey product. Since the prefactorization
operad PM = (PM , γ,1, ε) ∈ Opaug

DiskM
is canonically augmented, the construction

of minimal models from Corollary 2.8 can be applied to any (not necessarily locally
constant) prefactorization algebra F. Let us briefly specialize the relevant constructions
from Sect. 2 to this specific case. To compute a minimal model for F, we have to choose
a strong deformation retract

HF F
i

p
h (3.7)

in the category ChDiskM to the cohomology HF = {
HF(D) ∈ Ch : D ⊆ M

} ∈
ChDiskM , which we regard as a family of cochain complexes with trivial differentials
dHF(D) = 0. Applying Corollary 2.8 to the strong deformation retract (3.7) yields a
transferred (PM )∞-algebra structure β : BPM → EndHF on the cohomology HF ∈
ChDiskM . This means that associated to each DiskM -colored rooted tree, whose vertices
are ordered and decorated by elements in PM [1], we have an element in EndHF, i.e. an
operation on HF whose arity and colors matches that of the tree. To illustrate this better,
let us spell out a simple example in full detail, following the presentation in (2.31): To
the tree

t
(
ιD(D1,D2)

, ι
D1
(D11,D12,D13)

) =
ιD
(D1,D2)

ι
D1
(D11,D12,D13)

(3.8a)

is associated the degree [1 − (number of vertices)] = −1 linear map

β
(
ιD(D1,D2), ι

D1
(D11,D12,D13)

) : HF(D11) ⊗ HF(D12) ⊗ HF(D13) ⊗ HF(D2) −→ HF(D)

(3.8b)

that is given by the composite

β
(
ιD(D1,D2)

, ι
D1
(D11,D12,D13)

) =
pD F

(
ιD(D1,D2)

) (
hD1F

(
ι
D1
(D11,D12,D13)

) ⊗ idF(D2)

) (
iD11 ⊗ iD12 ⊗ iD13 ⊗ iD2

)
.

(3.8c)

Recall that by Proposition 2.9 the minimal model
(
HF, β

)
has an underlying strict

(PM )∞-algebra structure that is given by evaluating β on trees with a single vertex.
(This does not include the higher structure given by the Massey products, which we
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will spell out below.) In the present context, this means that the cohomology HF is a
prefactorization algebra with respect to the structure maps

HF
(
ιDD

) := β
(
ιDD

) = pD F
(
ιDD

)
iD : HF(D) −→ HF(D), (3.9)

where we introduce the convenient abbreviations HF(D) := ⊗n
i=1 HF(Di ) and iD :=⊗n

i=1 iDi .
On top of this strict prefactorization algebraHF there are potentially non-trivial higher

structures given by the Massey products. The universal first-order Massey product from
Definition 2.10 is described by the cohomology class

[
β(2)

] ∈ H1
�(HF) defined by a

certain 1-cocycle β(2) ∈ �1(HF) that is non-trivial only on trees with n = 2 vertices. In
the present case of prefactorization algebras, these trees take the form

t
(
ιDD, ι

Di
Di

) =
ιDD

ι
Di
Di

(3.10)

and the non-vanishing components of the 1-cocycle reads as

β(2)
(
ιDD, ι

Di
Di

) = β
(
ιDD, ι

Di
Di

) = pD F
(
ιDD

)
hDi F

(
ι
Di
Di

)
i(D1,...,Di ,...,Dn), (3.11)

where here and below we use a condensed notation suppressing all tensor products with
identity morphisms. As illustrated in (2.46), different representatives (that vanish on all
trees with n �= 2 vertices) of the cohomology class

[
β(2)

] ∈ H1
�(HF) are related by the

transformation formula

β ′(2)
(
ιDD, ι

Di
Di

) = β(2)
(
ιDD, ι

Di
Di

) − χ
(
ιD(D1,...,Di ,...,Dn)

)
+ χ

(
ιDD

)
HF(ι

Di
Di

)
+ HF

(
ιDD

)
χ

(
ι
Di
Di

)
,

(3.12)

where χ ∈ �0(HF) is any 0-cochain that vanishes on all trees with n �= 1 vertices.
In our present high level of generality, it is difficult (if not impossible) to make any

non-trivial statements about the universal first-order Massey product associated with a
prefactorization algebra F. The defining cohomology class

[
β(2)

] ∈ H1
�(HF) can (in

principle) be determined for any example of F by choosing a strong deformation retract
(3.7) and using the formula in (3.11). The general theory from Sect. 2 implies that the
result will be an invariant ofF, in particular it will not depend on any of the choices made.
Of course, it will strongly depend on specific details of the prefactorization algebra F
whether or not the class

[
β(2)

] ∈ H1
�(HF) is trivial.

3.3. Locally constant prefactorization algebras on R
m. Some non-trivial statements

about the minimal model and universal first-order Massey product can be made for
locally constant prefactorization algebras on the Cartesian space R

m . The aim of this
subsection is to explore some general consequences arising from local constancy, which
will become useful in our study of explicit examples in Sects. 4 and 5 below. Throughout
this subsection, we fix any locally constant prefactorization algebra F ∈ AlgPRm on the
m-dimensional Cartesian space R

m . We also choose an orientation of R
m .
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As a simple first observation, we note that the transferred (strict) prefactorization
algebra HF in (3.9) is locally constant as a consequence of local constancy of F. More
explicitly, given any disk inclusion D ⊂ D′, the cochain map F

(
ιD

′
D

) : F(D)
∼−→ F(D′)

is a quasi-isomorphism, and hence by definition the induced map on cohomology

HF
(
ιD

′
D

) : HF(D)
∼=−→ HF(D′), (3.13)

given by (3.9), is an isomorphism. Thus HF is locally constant even in the stricter
sense given by replacing in Definition 3.4 the concept of quasi-isomorphisms by actual
isomorphisms.

Using the isomorphisms (3.13), we can canonically identify HF
(
ιR

m

D

) : HF(D)
∼=−→

HF(Rm) the object HF(D) ∈ Ch, for any disk D ⊆ R
m , with the object HF(Rm) ∈ Ch

that is assigned to the whole Cartesian space R
m . Considering the commutative diagram

HF(Rm)⊗n
μD

�� HF(Rm)

HF(D)

∼=⊗
i HF(ιR

m
Di

)





HF(ιDD)

��

HF(ιR
m

D )
��������������
HF(D)

∼= HF(ιR
m

D )




(3.14)

allows us to regard the structure maps ofHF from (3.9) equivalently as operations μD on
HF(Rm)whose arity is given by the length of the tuple of disks D = (D1, . . . , Dn). Using
the composition property (3.5a) of a prefactorization algebra, one directly checks from
the defining diagram (3.14) that μD = μD̃ for every pair of tuples D = (D1, . . . , Dn)

and D̃ = (D̃1, . . . , D̃n) of mutually disjoint disks such that D̃i ⊆ Di , for all i =
1, . . . , n. As a consequence, we find that two operations μD and μD′ coincide whenever
the tuples of mutually disjoint disks D = (D1, . . . , Dn) and D′ = (D′

1, . . . , D
′
n) can be

connected by a finite chain of zig-zags

D D0
�� �� D1 · · ·�� �� DN−1 DN

�� �� D′

(3.15)

of families of single-disk inclusions. The existence of such zig-zags depends on the
dimension m of the Cartesian space R

m :

• On the 1-dimensional Cartesian space R
1, given two n-tuples D and D′ of mutually

disjoint disks (i.e. intervals), there exist unique permutations σ, σ ′ ∈ �n such that the
permuted tuples Dσ and D′σ ′ are ordered with respect to the choice of orientation
of R

1, i.e. Dσ(1) < Dσ(2) < · · · < Dσ(n) and D′
σ ′(1)

< D′
σ ′(2)

< · · · < D′
σ ′(n)

. The
tuples D and D′ can be connected by a chain of zig-zags (3.15) if and only if σ = σ ′.

• On the (m ≥ 2)-dimensional Cartesian space R
m , any two n-tuples D and D′ of

mutually disjoint disks can be connected by a chain of zig-zags (3.15).

These observations allow us to identify the algebraic structure that is determined by
the transferred structure maps in (3.9) and (3.14).

Proposition 3.5. We have:

(1) In m = 1 dimension, the structure maps μD =: μσ in (3.14) depend only on the
permutation σ ∈ �n that orders Dσ = (Dσ(1), . . . , Dσ(n)) along the orientation.
The resulting family of operations {μσ : σ ∈ �n, n ≥ 0} defines the structure of
an associative and unital algebra on HF(R1).
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(2) In m ≥ 2 dimensions, the structure maps μD =: μn in (3.14) depend only on the
length of the tuple of disks D = (D1, . . . , Dn). The resulting family of operations
{μn : n ≥ 0} defines the structure of an associative, unital and commutative algebra
on HF(Rm).

Proof. The associative and unital algebra axioms for {μσ : σ ∈ �n, n ≥ 0} fol-
low directly from the prefactorization algebra axioms in Definition 3.2, and so do the
associative, unital and commutative algebra axioms for {μn : n ≥ 0}. ��

In order to make some non-trivial statements about the universal first-order Massey
product of a locally constant prefactorization algebra F ∈ AlgPRm , we leverage the fact
that HF is strictly locally constant (3.13) in order to improve the general choice (3.7) of
a strong deformation retract. (Recall that changing the strong deformation retract does
not change the cohomology class

[
β(2)

] ∈ H1
�(HF) that defines the universal Massey

product.)

Lemma 3.6. Given any strong deformation retract (3.7) for a locally constant prefac-
torization algebra F on M = R

m, then the components

ĩD := iD HF
(
ιR

m

D

)−1
, (3.16a)

p̃D := pRm F
(
ιR

m

D

)
, (3.16b)

h̃D := hD − iD HF
(
ιR

m

D

)−1
pRm F

(
ιR

m

D

)
hD, (3.16c)

for all disks D ∈ DiskRm , define a strong deformation retract

HF(Rm) F
ĩ

p̃
h̃ (3.16d)

to the constant object HF(Rm) := {
HF(Rm) ∈ Ch : D ∈ DiskRm

} ∈ ChDiskRm .

Proof. It is a straightforward algebraic check to show that the strong deformation re-
tract properties (2.34b) for (̃i, p̃, h̃) are inherited from the strong deformation retract
properties of (i, p, h). ��

Using the improved strong deformation retract (3.16) results in various simplifications
in the computation of a minimal model for F, and hence the universal Massey product.
Before explaining these simplifications, let us note that the associated underlying strict
(PRm )∞ -algebra structure reads as

β̃
(
ιDD

) = p̃D F
(
ιDD

)
ĩD = pRm F

(
ιR

m

D

)
iD

( n⊗

i=1

HF
(
ιR

m

Di

)−1
)

= μD, (3.17)

i.e. it agrees precisely with the cohomology operations from (3.14). For the 1-cocycle
representing the universal first-order Massey product of F, we find

β̃(2)
(
ιDD, ι

Di
Di

) = p̃D F
(
ιDD

)
h̃Di F

(
ι
Di
Di

)
ĩ(D1,...,Di ,...,Dn)

= pRm F
(
ιR

m

D

)
hDi F

(
ι
Di
Di

)
ĩ(D1,...,Di ,...,Dn)

− pRm F
(
ιR

m

D

)
iDi HF

(
ιR

m

Di

)−1
pRm F

(
ιR

m

Di

)
hDi F

(
ι
Di
Di

)
ĩ(D1,...,Di ,...,Dn)



Universal First-order Massey Page 23 of 47   206 

= β̂(2)
(
ιR

m

D , ι
Di
Di

) − μD β̂(2)
(
ιR

m

Di
, ι

Di
Di

)
, (3.18)

where β̂(2) is defined from the 1-cocycle β(2) associated with the original strong defor-
mation retract (3.11) by the commutative diagram

HF(Rm)⊗(n+ni−1)
β̂(2)

(
ιDD,ι

Di
Di

)

�� HF(Rm)

HF
(
D1, . . . , Di , . . . , Dn

)

∼=HF(ιR
m

D1
)⊗···⊗

ni⊗

j=1

(
HF(ιR

m
Di j

)
)
⊗···⊗HF(ιR

m
Dn

)





β(2)
(
ιDD ,ι

Di
Di

) �� HF(D)

∼= HF(ιR
m

D )





(3.19)

Note that these are the same canonical identifications that we have used for defining the
cohomology operations μD in (3.14).

Proposition 3.7. The 1-cocycle β̃(2) ∈ �1
(
HF

)
in (3.18) that is associated with the

improved strong deformation retract (3.16) has the following properties:

(1) It is constant in the outgoing disk, i.e.

β̃(2)
(
ιDD, ι

Di
Di

) = β̃(2)
(
ιR

m

D , ι
Di
Di

)
, (3.20)

for all D ∈ DiskRm .
(2) It vanishes

β̃(2)
(
ιD

′
D , ιDD

) = 0 (3.21)

on all trees of the form

t
(
ιD

′
D , ιDD

) =
ιD

′
D

ιDD

. (3.22)

(3) Its value β̃(2)
(
ιDD, ι

Di
Di

)
on any 2-vertex tree is determined by a linear combination

of its values β̃(2)
(
ιD(D1,D2), ι

D1
D1

)
on trees of the form

t
(
ιD(D1,D2)

, ι
D1
D1

) =
ιD(D1,D2)

ι
D1
D1

, (3.23)

where D1 = (D11, . . . , D1n1) is a tuple of arbitrary length n1 ≥ 0.
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Proof. Item (1) is a direct consequence of the explicit formula (3.18), which is manifestly
independent of the disk D. Item (2) is proven by a short calculation using the same
formula

β̃(2)
(
ιD

′
D , ιDD

) = β̂(2)
(
ιR

m

D , ιDD
) − μD β̂(2)

(
ιR

m

D , ιDD
) = 0, (3.24)

where in the last step we used that μD = id as a consequence of Proposition 3.5.
To prove item (3), let us first observe that, as a consequence of item (2), the 1-cocycle

β̃(2) can only be non-vanishing on trees (3.10) with at least one free edge at the top vertex.
So the statement we have to prove is that its value on any such tree can be determined
as a linear combination of its values on trees of the form (3.23). Note that the latter have
precisely one free edge at the top vertex that moreover points to the right. The proof is
slightly different in dimensionsm = 1 andm ≥ 2, so we will treat these cases separately.
I tem (3) in dimension m ≥ 2 : Using permutation actions, it suffices to consider trees
of the form

t
(
ιD(D1,...,Dn)

, ι
D1
D1

) =
ιD(D1,...,Dn)

ι
D1
D1

, (3.25)

where the bottom vertex connects to the left disk D1. Choosing any disk D′ ⊆ R
m such

that
⋃n−1

i=1 Di ⊂ D′ ⊂ D \Dn , we can factorize at the top vertex and obtain the 3-vertex
tree

t
(
ιD(D′,Dn)

, ιD
′

(D1,...,Dn−1)
, ι

D1
D1

)
. (3.26)

Applying the cocycle condition (2.42a) for β̃(2) to this tree gives the identity

β̃(2)
(
ιD(D1,...,Dn )

, ι
D1
D1

) = β̃(2)
(
ιD(D′,Dn )

, ιD
′

(D1,...,Dn−1)

)

+ μ(D′,Dn) β̃(2)
(
ιD

′
(D1,...,Dn−1), ι

D1
D1

)

− β̃(2)
(
ιD(D′,Dn)

, ιD
′

(D1,...,Dn−1)

)
μD1 (3.27)

that expresses the value of β̃(2) on the tree (3.25) as a linear combination of its values
on trees whose top vertex has arity n − 1 or 2. Applying this procedure iteratively allow
us to reduce the arity of the top vertex to 2, which completes the proof.
I tem (3) in dimension m = 1 : Using permutation actions, it suffices to consider trees
(3.10) for which the (n+ni −1)-tuple (D1, . . . , Di , . . . , Dn) is either ordered or reverse-
ordered with respect to the orientation of R

1. Choosing any disk (i.e. interval) D′ ⊆ R
1

such that
⋃n

j=i D j ⊂ D′ ⊂ D\⋃i−1
j=1 Dj , we can factorize at the top vertex and obtain

the 3-vertex tree

t
(
ιD(D1,...,Di−1,D′), ι

D′
(Di ,...,Dn)

, ι
Di
Di

)
. (3.28)

Applying the cocycle condition (2.42a) for β̃(2) to this tree gives the identity
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β̃(2)
(
ιD(D1,...,Dn)

, ι
Di
Di

)

= β̃(2)
(
ιD(D1,...,Di−1,D′), ι

D′
(Di ,...,Dn)

)
+ μ(D1,...,Di−1,D′) β̃(2)

(
ιD

′
(Di ,...,Dn)

, ι
Di
Di

)

− β̃(2)
(
ιD(D1,...,Di−1,D′), ι

D′
(Di ,...,Dn)

)
μDi

(3.29)

that expresses the value of β̃(2) on the tree (3.10) as a linear combination of its values on
trees whose top vertex has free edges only to the left or to the right. If the free edges are
to the left, we use again permutation actions to reverse the order and bring all the free
edges to the right. Using now the same argument as in dimension m ≥ 2, we can reduce
iteratively the arity of the top vertex to arrive at arity 2, which completes the proof. ��
Remark 3.8. The relevance of this proposition is that it allows us to simplify the compu-
tation of the universal first-order Massey product

[
β̃(2)

] ∈ H1
�

(
HF

)
by working with the

improved strong deformation retract (3.16). Item (2) states that the value of the repre-
sentative 1-cocycle β̃(2) is zero on all trees of the form (3.22), hence one does not have
to consider these trees. Item (3) shows that all operations β̃(2)

(
ιDD, ι

Di
Di

)
can be expressed

using trees of the form (3.23), i.e. with a single free edge on the top vertex that points to
the right, so any explicit computation should start with understanding the values of β̃(2)

on such trees. In the case one finds that these values are all zero, then item (3) implies that
the cohomology class

[
β̃(2)

] = 0 vanishes, i.e. the universal first-order Massey product
is trivial. It is important to stress that the opposite conclusion is in general not true: If the
value of β̃(2) is non-zero on some of the trees (3.23), it still can happen that

[
β̃(2)

] = 0
if there exists a coboundary ∂�χ that transforms these components to zero via (3.12). In
order to preserve the constancy property in item (1), the 0-cochain χ ∈ �0

(
HF

)
must

satisfy the condition

χ
(
ιR

m

(D1,...,Di ,...,Dn)

) − χ
(
ιD(D1,...,Di ,...,Dn)

) = χ
(
ιR

m

D

)
μDi

− χ
(
ιDD

)
μDi

, (3.30)

for all trees (3.10), and to preserve the vanishing property in item (2), it must satisfy

χ
(
ιD

′
D

) − χ
(
ιDD

) = χ
(
ιD

′
D

)
μD, (3.31)

for all trees of the form (3.22). Using the identity (3.31) twice, with D′ = R
m and then

also with D replaced by (D1, . . . , Di , . . . , Dn) one obtains that (3.31) implies (3.30).

3.4. A simple binary invariant in m = 2 dimensions. In this subsection we consider a
locally constant prefactorization algebra F ∈ AlgP

R2
on the 2-dimensional Cartesian

space R
2. We construct a binary invariant L ∈ [

HF(R2)⊗2,HF(R2)
]−1 of F which,

when non-trivial L �= 0, implies non-triviality of the universal first-order Massey product[
β̃(2)

] �= 0. We will show that the invariant L has pleasant algebraic properties, namely
that it defines a degree −1 Poisson bracket (i.e. a P2-algebra structure) on the associative,
unital and commutative algebra HF(R2) from Proposition 3.5.

Remark 3.9. We believe, but do not know how to prove, that our invariant L captures in
dimension m = 2 the higher algebraic structure that is expected by the following more
abstract reasoning: By a result of Lurie [LurHA, Theorem 5.4.5.9], see also [AF15]
and [CFM21], it is known that locally constant prefactorization algebras on R

m are
equivalent to Em-algebras. Furthermore, the Em-operads are formal in dimension m ≥
2 by [Tam03,FW20], hence Em-algebras can be described equivalently in terms of
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HEm � Pm-algebras for m ≥ 2. The degree −1 Poisson bracket that we find should be
related to this P2-algebra structure. We also expect that there exists a generalization of
our invariant to m ≥ 3 dimensions which detects the degree 1 − m Poisson bracket of
the Pm-operad. However, as seen by a simple degree count, this requires working with
the more involved higher-order Massey products [Dim12,FM23], which lies beyond the
scope of our paper. We hope to come back to this issue in a future work.

To define the invariant L ∈ [
HF(R2)⊗2,HF(R2)

]−1, let us consider any configura-
tion of disks D1, D2, Du, Dd , D̃ ∈ DiskR2 in some D ∈ DiskR2 , with the property that
D1 � D2 ⊂ Du , D1 � D2 ⊂ Dd , Du ∩ D̃ = Dd ∩ D̃ = ∅ and Du ∪ Dd forming an
annulus around D̃, as depicted in the following picture:

Du

Dd

D̃D1 D2 (3.32)

To this choice we assign the linear combination

L := β̃(2)
(
ιD
(Du ,D̃)

, ι
Du
D1

) − β̃(2)
(
ιD
(Du ,D̃)

, ι
Du
D2

)
+ β̃(2)

(
ιD
(Dd ,D̃)

, ι
Dd
D2

) − β̃(2)
(
ιD
(Dd ,D̃)

, ι
Dd
D1

)

(3.33)

of degree −1 linear maps HF(R2)⊗2 → HF(R2). Informally, one should think of L as
being defined by moving the disk D1 clockwise once around D̃.

Proposition 3.10. L is invariant under the transformations β̃(2) → β̃(2) + ∂�χ , for all
0-cochains χ ∈ �0(HF) that satisfy the conditions in Remark 3.8. Hence, L depends
only on the cohomology class

[
β̃(2)

] ∈ H1
�(HF) and it can be computed using any

representative 1-cocycle that satisfies the properties from Proposition 3.7. Furthermore,
if L �= 0 is non-trivial, then the cohomology class

[
β̃(2)

] �= 0 is non-trivial too.

Proof. We have to show that

∂�χ
(
ιD
(Du ,D̃)

, ι
Du
D1

) − ∂�χ
(
ιD
(Du ,D̃)

, ι
Du
D2

)
+ ∂�χ

(
ιD
(Dd ,D̃)

, ι
Dd
D2

) − ∂�χ
(
ιD
(Dd ,D̃)

, ι
Dd
D1

) = 0

(3.34)

for every 0-cochain χ ∈ �0(HF) that satisfies the conditions in Remark 3.8. Using the
explicit formula for ∂�χ from (3.12), this simplifies to

μ2

((
χ(ι

Du
D1

) − χ(ι
Du
D2

) + χ(ι
Dd
D2

) − χ(ι
Dd
D1

)
)

⊗ id
)

= 0, (3.35)

where μ2 denotes the binary commutative multiplication from Proposition 3.5. The latter
holds true by using the conditions (3.31) on χ for the inclusions Du ⊂ D and Dd ⊂ D.

To prove the last claim, note that
[
β̃(2)

] = 0 implies β̃(2) = ∂�χ , hence L = 0 by
(3.34). ��
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Lemma 3.11. L is independent of the choice of disk configuration as in (3.32).

Proof. It suffices to show that L does not change when replacing any of the individual
disks D1, D2, Du, Dd , D̃, D by a bigger one such that the resulting disk configuration
is still of the form (3.32). Independence of the choice of big disk D ⊆ R

2 is a direct
consequence of Proposition 3.7 (1). Next, let us consider D1 ⊂ D′

1 ⊂ Du ∩ Dd . The
difference L ′ − L of (3.33) evaluated for the two different disk configurations then reads
as

L ′ − L = β̃(2)
(
ιD
(Du ,D̃)

, ι
Du
D′

1

) − β̃(2)
(
ιD
(Dd ,D̃)

, ι
Dd
D′

1

) − β̃(2)
(
ιD
(Du ,D̃)

, ι
Du
D1

)
+ β̃(2)

(
ιD
(Dd ,D̃)

, ι
Dd
D1

)

= −β̃(2)
(
ιD
(D′

1,D̃)
, ι

D′
1

D1

)
+ β̃(2)

(
ιD
(D′

1,D̃)
, ι

D′
1

D1

) = 0, (3.36)

where in the second step we used the cocycle conditions (2.42a) for the trees t
(
ιD
(Du ,D̃)

, ι
Du
D′

1
,

ι
D′

1
D1

)
and t

(
ιD
(Dd ,D̃)

, ι
Dd
D′

1
, ι

D′
1

D1

)
. Independence under the replacements D2 ⊂ D′

2 ⊂ Du ∩
Dd , Du ⊂ D′

u ⊂ D\D̃ and Dd ⊂ D′
d ⊂ D\D̃ is shown similarly. For D̃ ⊂ D̃′ ⊂

D\(Du ∪ Dd), instead of (2.42a) one uses the cocycle conditions (2.42b). ��
Theorem 3.12. Themap L : HF(R2)⊗HF(R2) → HF(R2) defines a degree−1Poisson
bracket (i.e. a P2-algebra structure) on the associative, unital and commutative algebra
HF(R2) from Proposition 3.5. Explicitly, it satisfies:

(1) Symmetry:2

L τ = L , (3.37)

where τ denotes the symmetric braiding (2.2).
(2) Derivation property:

L (id ⊗ μ2) = μ2 (L ⊗ id) + μ2 (id ⊗ L) (τ ⊗ id) . (3.38)

(3) Jacobi identity:

L (id ⊗ L) + L (id ⊗ L) τ(123) + L (id ⊗ L) τ(132) = 0, (3.39)

where τ(123) and τ(132) denote the actions of the cyclic permutations (123) and (132)

in �3, respectively, on HF(R2)⊗3 via the symmetric braiding (2.2).

Proof. Item (1) can be proven by considering the following configuration of disks

Du

Dd

D̃u

D̃d

D1 D2D̃1 D̃2 (3.40)

2 Recall that oddly shifted Poisson brackets are symmetric and not antisymmetric, see e.g. [FW20].



  206 Page 28 of 47 S. Bruinsma, A. Schenkel, B. Vicedo

and suitably combining the cocycle conditions (2.42b) for the trees

t
(
ιD
(Du ,D̃d )

, ι
Du
Di

, ι
D̃d

D̃ j

)
and t

(
ιD
(Dd ,D̃u)

, ι
Dd
Di

, ι
D̃u

D̃ j

)
, (3.41)

for all combinations of i, j ∈ {1, 2}. To arrive at the result L τ = L , one also has to use
that L is insensitive to the choice of disk configuration and that the invariant (3.33) is
trivial whenever D̃ lies outside of the annulus formed by Du ∪ Dd . Both of these claims
are a consequence of Lemma 3.11 and its proof.

To prove item (2), we use the following configuration of disks

D̃

Du

Dd

DmD1 D2

D̃1

D̃2

(3.42)

and the fact that L is insensitive to the choice of disk configuration by Lemma 3.11.
To evaluate the term L (id ⊗ μ2) on the left-hand side of (3.38), we use a suitable
combination of the cocycle conditions (2.42b) for the trees

t
(
ιD
(Du ,D̃)

, ι
Du
Di

, ιD̃
(D̃1,D̃2)

)
and t

(
ιD
(Dd ,D̃)

, ι
Dd
Di

, ιD̃
(D̃1,D̃2)

)
, (3.43)

with i ∈ {1, 2}. For the first term μ2 (L ⊗ id) on the right-hand side of (3.38), we use
instead a suitable combination of the cocycle conditions (2.42a) for the trees

t
(
ιD
(D̂u ,D̃2)

, ι
D̂u

(Du ,D̃1)
, ι

Du
Di

)
and t

(
ιD
(D̂u ,D̃2)

, ι
D̂u

(Dm ,D̃1)
, ι

Dm
Di

)
, (3.44)

where D̂u ⊂ R
2 is a disk such that Du, Dm ⊂ D̂u and D̂u ∩ D̃2 = ∅, as in the following

picture:

D̂u

Du

DmD1 D2

D̃1

D̃2

(3.45)
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Similarly, to compute the second term μ2 (id ⊗ L)(τ ⊗ id) on the right-hand side of
(3.38), we use a suitable combination of the cocycle conditions (2.42a) for the trees

t
(
ιD
(D̃1,D̂d )

, ι
D̂d

(Dm ,D̃2)
, ι

Dm
Di

)
and t

(
ιD
(D̃1,D̂d )

, ι
D̂d

(Dd ,D̃2)
, ι

Dd
Di

)
, (3.46)

where D̂d ⊂ R
2 is a disk such that Dm, Dd ⊂ D̂d and D̂d ∩ D̃1 = ∅, as in the following

picture:

D̂d

Dd

DmD1 D2

D̃1

D̃2 (3.47)

Combining all the above, the identity (3.38) follows immediately.
Finally, in order to prove item (3), it will be convenient to consider a configuration

of input disks D1, D2, D′
1, D

′
2, D̃1, D̃2 ⊂ R

2 which is symmetric under rotation by
π/3. We will also need four types of disks D̃u, D′

m, Dd , Dp ⊂ R
2, as depicted in the

following picture:

D̃u

D′
m

Dd

Dp

D2

D̃1D′
2

D1

D̃2 D′
1

(3.48)

together with their rotations by 2π/3, which we call Du, D̃m, D′
d , D

′
p ⊂ R

2, and their
rotations by −2π/3, which we call D′

u, Dm, D̃d , D̃p ⊂ R
2. We require the pairwise

disjointness conditions

D′
m ∩ D̃u = ∅, D′

m ∩ Dd = ∅, D̃u ∩ Dd = ∅, (3.49a)

D′
m ∩ Du = ∅, D′

m ∩ Dp = ∅, D̃u ∩ Dp = ∅, (3.49b)
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suggested by the picture (3.48) (note that Du is the rotation of D̃u by 2π/3), and similarly
for the rotations of these disks by ±2π/3.

Since L is insensitive to the choice of disk configuration by Lemma 3.11, the first
term on the left-hand side of (3.39) can be expressed using the following configuration
of disks:

D′
d

D′
m

Du

Dd

D2

D̃1D′
2

D1

D̃2 D′
1

(3.50)

Explicitly,

L (id ⊗ L) =
2∑

i, j,k=1

∑

α∈{u,d}
β∈{m,d}

−(−1)i+ j+k+|α|+|β| β̃(2)
(
ιD
Dα,D̂

, ι
Dα

Di

)
β̃(2)

(
ιD̂
D′

β ,D̃k
, ι

D′
β

D′
j

)
,

(3.51)

where D̂ ⊂ R
2 is a disk such that D′

d ∪ D′
m ⊂ D̂, D̂ ∩ Du = ∅ and D̂ ∩ Dd = ∅, and

we define |u| := 0, |m| := 0 and |d| := 1. Note that the sum over k = 2 is not a part
of the usual expression of L (id ⊗ L), but it is zero by Lemma 3.11 with an argument
similar to the one used in the proof of item (1).

We now use a suitable combination of the Maurer–Cartan equation (2.16) evaluated
on the 4-vertex trees

t
(
ιD
(Dα,D̂)

, ι
Dα

Di
, ιD̂

(D′
β ,D̃k )

, ι
D′

β

D′
j

)
, (3.52)

with α ∈ {u, d}, β ∈ {m, d} and i, j, k ∈ {1, 2}. We then find that

L (id ⊗ L) =
2∑

i, j,k=1

∑

α∈{u,d}
β∈{m,d}

−(−1)i+ j+k+|α|+|β| β̃
(
ιD
(Dα,D′

β ,D̃k )
, ι

Dα

Di
, ι

D′
β

D′
j

)
. (3.53)

The other two terms L (id⊗L)τ(123) and L (id⊗L)τ(132) on the left-hand side of (3.39) are
given by similar expressions involving the disks D′

u, D
′
d , D̃m, D̃d and D̃u, D̃d , Dm, Dd ,
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respectively. To this expression of the left-hand side of (3.39) we now apply the Maurer–
Cartan equation (2.16) evaluated on the 4-vertex trees

t
(
ιD
(Du ,D′

α,D̃m )
, ι

Du
Di

, ι
D′

α

D′
j
, ι

D̃m

D̃k

)
, t

(
ιD
(Dα,D′

m ,D̃u)
, ι

Dα

Di
, ι

D′
m

D′
j
, ι

D̃u

D̃k

)
,

t
(
ιD
(Dm ,D′

u ,D̃α)
, ι

Dm
Di

, ι
D′
u

D′
j
, ι

D̃α

D̃k

)
and t

(
ιD
(Dα,D′

α,D̃α)
, ι

Dα

Di
, ι

D′
α

D′
j
, ι

D̃α

D̃k

)
, (3.54)

with i, j, k ∈ {1, 2}, first with α = d and then with α = p. One then finds that

L(id ⊗ L) + L(id ⊗ L)τ(123) + L(id ⊗ L)τ(132) = K + K τ(123) + K τ(132). (3.55)

Here, K is the same expression as on the right-hand side of (3.53), but with the disks Dd
and D′

d replaced by Dp and D′
p, respectively, i.e. with the disks in picture (3.50) used

in the expression (3.53) for L(id ⊗ L) replaced by the disks in the following picture:

D′
p

D′
m

DuDp

D2

D̃1D′
2

D1

D̃2 D′
1

(3.56)

Explicitly, we set

K :=
2∑

i, j,k=1

∑

α∈{u,p}
β∈{m,p}

−(−1)i+ j+k+|α|+|β| β̃
(
ιD
(Dα,D′

β ,D̃k )
, ι

Dα

Di
, ι

D′
β

D′
j

)
, (3.57)

where as before we have |u| = 0, |m| = 0 and we now also set |p| := 1. The terms
K τ(123) and K τ(132) on the right-hand side of (3.55) are given by similar expressions to
(3.57) involving the disks D′

u, D
′
p, D̃m, D̃p and D̃u, D̃p, Dm, Dp, respectively.

The result now follows by noting that K = 0. Indeed, by the same argument as
in the proof of Lemma 3.11, one shows that K is independent of the choice of disk
configurations as in (3.56). Hence, the terms in the sum in (3.57) with k = 1 vanish
by deforming D′

p into D′
m and the terms in the sum in (3.57) with k = 2 vanish by

deforming Dp into Du . ��
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4. Factorization Envelopes

Throughout this section, we fix the field K to be either the real numbers R or the complex
numbers C. Let us recall from [CG17, Chapter 3.6] that associated with any local dg-Lie
algebra is a (pre)factorization algebra, called its factorization envelope, that is formed by
taking Chevalley–Eilenberg chains. In this section we study the case of gR

m := g⊗�•
Rm ,

where g is any finite-dimensional Lie algebra over K and �•
Rm is the sheaf of de Rham

complexes on R
m . The associated factorization envelope is then given by

UgR
m := CE•

(
gR

m ) :=
(

Sym
(
gR

m

c [1]), ddR[1] + dCE

)
∈ AlgPRm , (4.1)

where gR
m

c [1] := g ⊗ �•
Rm ,c[1] denotes the cosheaf of (1-shifted) compactly supported

sections and the Chevalley–Eilenberg differential dCE will be described explicitly in
(4.13) below. This prefactorization algebra is locally constant.

4.1. Strong deformation retract. Recall that the input for our constructions in Sect. 3 is
a strong deformation retract (3.7) between the DiskRm -colored object F ∈ ChDiskRm and
its cohomology HF ∈ ChDiskRm . To construct such datum for the factorization envelope
F = UgR

m
, we shall start from a strong deformation retract between the compactly

supported de Rham complexes �•
Rm ,c ∈ ChDiskRm and their cohomologies H�•

Rm ,c.
Since H�•

c(D) ∼= K[−m], for every disk D ∈ DiskRm , this is equivalent to a strong
deformation retract between �•

Rm ,c ∈ ChDiskRm and the constant DiskRm -colored object

K[−m] := {K[−m] ∈ Ch : D ∈ DiskRm } ∈ ChDiskRm .
We require a sufficiently explicit model for this strong deformation retract, which we

will build in Lemma 4.1 by making the following choices: For each disk D ∈ DiskRm ,
we choose a representative ωD ∈ �m

c (D) of the non-trivial cohomology class 1 ∈ K ∼=
Hm�•

c(D), i.e.
∫
D ωD = 1, which defines a decomposition

�m
c (D) = K ωD ⊕ ddR�m−1

c (D). (4.2a)

For each r ∈ {1, . . . ,m−1}, we choose a complement Kr (D) of ddR�r−1
c (D) ⊂ �r

c(D),
which defines decompositions

�r
c(D) = Kr (D) ⊕ ddR�r−1

c (D), (4.2b)

for r ∈ {1, . . . ,m − 1}. Finally, we set K 0(D) := �0
c(D). Comparing with (4.2a), it is

convenient to denote Km(D) := K ωD . Since Hr−1�•
c(D) = 0, for all r ∈ {1, . . . ,m},

it follows that the differential defines an isomorphism ddR : Kr−1(D)
∼=−→ ddR�r−1

c (D).
We denote its inverse by

hrD : ddR�r−1
c (D)

∼=−→ Kr−1(D). (4.3)

Extending by zero to the complements Kr (D) in (4.2), we obtain from this a family
of linear maps hrD : �r

c(D) → Kr−1(D) ⊂ �r−1
c (D), for r ∈ {1, . . . ,m}. It will be

convenient to denote by h0
D : �0

c(D) → 0 the zero map.
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Lemma 4.1. For each disk D ∈ DiskRm , let us define

pD(ω) :=
∫

D
ω, iD(k) := k ωD, hD(ω) := −hrD(ω), (4.4)

for all ω ∈ �r
c(D) with r ∈ {0, . . . ,m} and k ∈ K[−m]. This defines a strong deforma-

tion retract

K[−m] �•
Rm ,c

i

p
h (4.5)

in the category ChDiskRm .

Proof. From the decompositions (4.2) and the definition of hrD : �r
c(D) → Kr−1(D),

it follows that

ω = ωD

∫

D
ω + ddRh

m
D(ω), (4.6a)

for every ω ∈ �m
c (D), and

ω = hr+1
D (ddRω) + ddRh

r
D(ω), (4.6b)

for every ω ∈ �r
c(D) with r ∈ {0, . . . ,m − 1}. For r = 0 this reads ω = h1

D(ddRω).
The identity ∂hD = iD pD − id from (2.34b) then follows from (4.6), noting the minus
sign in the definition of hD . All other identities in (2.34b) immediately follow from the
definitions.

Remark 4.2. In dimension m = 1, we have an explicit formula for h1
D , which is the only

non-trivial component of the homotopy hD in this case. This formula is given by

h1
D(ω) =

∫ (

ω − ωD

∫

D
ω

)

, (4.7)

for all ω ∈ �1
c(D), where

∫ : �1
c(D) → �0(D) denotes the following indefinite

integral: Writing the disk (i.e. interval) as D = (a, b) ⊆ R, we define
( ∫

ω
)
(x) := ∫ x

a ω

for all x ∈ D. Note that if
∫
D ω = 0,

∫
ω ∈ �0(D) has compact support. So h1

D(ω) is
compactly supported.

Applying the tensor product g⊗ (−) : Ch → Ch with the Lie algebra g and the shift
functor [1] : Ch → Ch, V 
→ V [1] to (4.5), we obtain a strong deformation retract

g[1 − m] gR
m

c [1]
i[1]

p[1]
h[1] , (4.8)

where gR
m

c := g ⊗ �•
Rm ,c ∈ ChDiskRm and g[1 − m] ∈ ChDiskRm denotes the constant

DiskRm -colored object given by g[1 − m] ∼= g ⊗ K[1 − m] on all D ∈ DiskRm . The
components pD[1], iD[1] and hD[1] of the maps in (4.8) are given explicitly by

pD[1](X ⊗ ω
) = X

∫

D
ω, iD[1](X) = X ⊗ ωD, hD[1](X ⊗ ω

) = X ⊗ hrD(ω),

(4.9)
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for all ω ∈ �r
c(D) with r ∈ {0, . . . ,m} and X ∈ g, where the sign change in the

expression for hD[1] compared to (4.4) comes from the fact that hD has degree −1
whereas pD and iD both have degree 0. Applying the symmetric algebra functor Sym :
Ch → Ch to (4.8), we obtain a strong deformation retract

Sym
(
g[1 − m]) Sym

(
gR

m

c [1])
i

p
h (4.10)

in ChDiskRm , where by abuse of notation we denote the maps simply by p, i and h. Their
components are defined in Sym-degree n ∈ Z≥0 by

pnD := pD[1]⊗n, inD := iD[1]⊗n, (4.11a)

and the symmetrization

hnD := 1

n!
n∑

j=1

∑

σ∈�n

τσ

(
id⊗( j−1) ⊗ hD[1] ⊗ (

iD[1] pD[1])⊗(n− j)
)

τσ−1 , (4.11b)

where τσ denotes the action of the permutation σ ∈ �n via the symmetric braiding (2.2).
The differential on Sym

(
gR

m

c [1]) is ddR[1], i.e. the differential on gR
m

c [1] extended by
the Leibniz rule.

The factorization envelope UgR
m ∈ AlgPRm is constructed by deforming the dif-

ferential ddR[1] of Sym
(
gR

m

c [1]) along the Chevalley–Eilenberg differential dCE. The
latter is defined as follows: For every disk D ∈ DiskRm , the unshifted cochain com-
plex gR

m

c (D) = g ⊗ �•
c(D) ∈ Ch can be endowed with a dg-Lie algebra structure

[−,−] : gR
m

c (D) ⊗ gR
m

c (D) → gR
m

c (D) by setting [X ⊗ ω,Y ⊗ η] := [X,Y] ⊗ ω ∧ η,
for all X,Y ∈ g and ω, η ∈ �•

c(D). This induces a degree 1 map

dCE : Sym
(
gR

m

c [1]) −→ Sym
(
gR

m

c [1]) (4.12)

in ChDiskRm , whose component at D ∈ DiskRm is given by

dCE

( n∏

a=1

(
Xa ⊗ ωa

)
)

:=
n∑

i, j=1
i< j

(−1)
n←
i, j (−1)|ωi |dR

([Xi ,X j ] ⊗ ωi ∧ ω j
) n∏

a=1
a �=i, j

(
Xa ⊗ ωa

)
,

(4.13)

for all Xa ∈ g and ωa ∈ �•
c(D) with a ∈ {1, . . . , n}. The products in Sym(gR

m

c [1]) are
ordered from left to right and (−1)

n←
i, j denotes the Koszul sign that arises from bring-

ing Xi ⊗ ωi and X j ⊗ ω j to the front of the product. This map satisfies ddR[1] dCE +
dCE ddR[1] = 0 and dCE

2 = 0, hence it defines a perturbation of the DiskRm -colored
object Sym

(
gR

m

c [1]) ∈ ChDiskRm . The underlying DiskRm -colored object of the factor-
ization envelope is then defined as

UgR
m :=

(
Sym

(
gR

m

c [1]), ddR[1] + dCE

)
∈ ChDiskRm . (4.14)
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Remark 4.3. A trivial yet important observation is that the only non-trivial contributions
to (4.13) come from pairs of factors Xi ⊗ωi and X j ⊗ω j for which the de Rham degrees
satisfy |ωi |dR + |ω j |dR ≤ m.

Note that the perturbation dCE is small since it lowers the Sym-degree by one and the
latter is bounded from below by 0. Hence, we can apply the homological perturbation
lemma [Cra04] and obtain

Proposition 4.4. There exists a perturbed strong deformation retract

Sym
(
g[1 − m]) UgR

mi

p̂
ĥ (4.15)

in the category ChDiskRm with i given by (4.10) and the components of p̂ and ĥ at any
D ∈ DiskRm given in terms of those of p and h in (4.10) by

p̂D :=
∑

j≥0

pD (dCE hD) j , ĥD :=
∑

j≥0

hD (dCE hD) j . (4.16)

Proof. This follows immediately by applying the homological perturbation lemma
[Cra04] to the strong deformation retract (4.10) and the small perturbation dCE. The
reason why i does not get deformed is as follows: For any disk D ∈ DiskRm , the image
of inD lies in the subcomplex Symn

(
g⊗ �m

c (D)[1]) of Symn
(
gR

m

c (D)[1]) that is gener-
ated by top forms. Hence, dCE iD = 0 by Remark 4.3, which implies that îD = iD . By
the same argument, one sees that the (trivial) differential on Sym(g[1 − m]) is also not
deformed.

��

4.2. Underlying strict prefactorization algebra structure. The prefactorization algebra
structure of the factorization envelope UgR

m ∈ AlgPRm can be described as follows.

First, we note that Sym
(
gR

m

c [1]) ∈ AlgPRm carries a canonical prefactorization algebra

structure that is defined from the pre-cosheaf structure of gR
m

c [1], i.e. extension by zero of
compactly supported differential forms, and the commutative product of the symmetric
algebra. The Chevalley–Eilenberg differential (4.13) is a degree 1 derivation of this
PRm -algebra structure, i.e.

(dCE)D Sym
(
gR

m

c [1])(ιDD
) = Sym

(
gR

m

c [1])(ιDD
) n∑

i=1

(dCE)Di
, (4.17)

for all operations ιDD in the operad PRm . Hence, we obtain an induced PRm -algebra

structure on the deformation UgR
m = (

Sym(gR
m

c [1]), ddR[1] + dCE
) ∈ AlgPRm . As

discussed in Sect. 3.2, this PRm -algebra structure transfers along the strong deformation
retract (4.15) to a (PRm )∞-algebra structure on the cohomology HUgR

m = Sym(g[1 −
m]) ∈ ChDiskRm , which is called a minimal model for UgR

m ∈ AlgPRm . The aim of this
subsection is to compute the underlying strict (PRm )∞-algebra structure of this minimal
model, or equivalently the structure maps from Proposition 3.5. The presence or absence
of higher structures in the minimal model will be studied in the next subsection.
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To match our notation for the perturbed strong deformation retract (4.15), we will
denote the structure maps from Proposition 3.5 by μ̂D : Sym(g[1−m])⊗n → Sym(g[1−
m]). Explicitly, they are given by

μ̂D = p̂Rm UgR
m (

ιR
m

D

)
iD =

∑

j≥0

pRm (dCE hRm ) j UgR
m (

ιR
m

D

)
iD, (4.18)

where we recall that D = (D1, . . . , Dn) is a tuple of mutually disjoint disks. Note
that there is a stark difference between the cases of dimension m = 1 and m ≥ 2,
stemming from the trivial observation made in Remark 4.3. Indeed, since the image of
UgR

m (
ιR

m

D

)
iD consists of products of top forms in Sym(gR

m

c [1](Rm)) and since hRm

only lowers the total degree of these forms by 1, we find the following two cases:

Dimension m = 1: All terms in the sum over j ≥ 0 in (4.18) can, in principle,
contribute. This implies that the structure map μ̂D is a deformation of the standard
n-ary commutative product on Sym(g[1 − m]). (The latter agrees with the j = 0
term in (4.18).)
Dimension m ≥ 2: Only the j = 0 term in (4.18) can be non-trivial. This implies
that the structure map μ̂D is simply the standard n-ary commutative product on
Sym(g[1 − m]).
As a consequence of this observation, we can restrict our attention in the remainder

of this subsection to the case of dimension m = 1. Since by Proposition 3.5 the structure
maps (4.18) define an associative and unital algebra structure on Sym(g), it suffices to
determine the binary multiplication

� := μ̂(D,D′) : Sym(g) ⊗ Sym(g) −→ Sym(g), (4.19)

for any pair of disjoint intervals D, D′ ∈ DiskR with D to the left of D′ in R, i.e. D < D′.
(Note that the unit μ̂∅ = 1 ∈ Sym(g) is the standard one since the homotopy in (4.18)
acts trivially in Sym-degree 0.) To describe the multiplication (4.19) on arbitrary elements
of Sym(g), it suffices to compute the product Xn � Y ∈ Sym(g) for arbitrary X,Y ∈ g
and n ∈ Z≥1. Indeed, the product of Y with an arbitrary monomial

∏n
i=1 Xi ∈ Sym(g)

of degree n is obtained from this by polarization

( n∏

i=1

Xi

)

� Y = 1

n!
∂n

∂t1 · · · ∂tn
∣
∣
∣
∣
t1,...,tn=0

[( n∑

i=1

ti Xi

)n

� Y
]

∈ Sym(g), (4.20)

where ti ∈ K are parameters for i ∈ {1, . . . , n}, and the product
( ∏n

i=1 Xi
)
�
( ∏m

k=1 Yk
)

of two arbitrary monomials is obtained by induction on m using the associativity of
(4.19). Explicitly, it follows from (4.18) that we can write

( ∏m−1
k=1 Yk

)
�Ym = ∏m

k=1 Yk+
A for some A ∈ Sym≤m−1(g) of Sym-degree at most m − 1 (the first term

∏m
k=1 Yk

corresponds to the j = 0 term in the sum in (4.18) and A corresponds to all other terms
j > 0). We then have

( n∏

i=1

Xi

)

�

( m∏

k=1

Yk

)

=
(( n∏

i=1

Xi

)

�

( m−1∏

k=1

Yk

))

� Ym −
( n∏

i=1

Xi

)

� A, (4.21)

where both terms on the right-hand side involve �-products in which the second factor
has Sym-degree at most m − 1.
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We will now compute Xn � Y ∈ Sym(g) explicitly. First, let us note that

i(D,D′)(X
n ⊗ Y) = (X ⊗ ωD)n ⊗ (Y ⊗ ωD′) ∈ UgR(D) ⊗ UgR(D′) . (4.22)

Applying the cochain map UgR
(
ιR
(D,D′)

)
we obtain (X ⊗ ωD)n (Y ⊗ ωD′) ∈ UgR(R),

and hence

Xn � Y =
∑

j≥0

pR

(
dCE hR

) j (
(X ⊗ ωD)n (Y ⊗ ωD′)

) ∈ Sym(g) . (4.23)

To determine the latter sum, we can make a computationally important simplification
by using the freedom to choose our strong deformation retract in Lemma 4.1 to satisfy
ωR = ωD0 for some fixed D0 ∈ DiskR. Using independence of the structure maps under
the choice of tuples of intervals with fixed ordering along R (see Proposition 3.5), we
can then take without loss of generality D = D0 and D′ any interval to the right of D0.
With this simplification, we obtain the following result.

Lemma 4.5. For any X,Y ∈ g and j ∈ {0, . . . , n}, we have
(
dCE hR

) j (
(X ⊗ ωD)n (Y ⊗ ωD′)

) = (X ⊗ ωD)n− j ( ad j
X(Y) ⊗ η

(n)

j

)
, (4.24)

where adX(Y) := [X,Y] denotes the adjoint action and η
(n)

j ∈ �1
c(R) is defined recur-

sively by η
(n)

0 = ωD′ and

η
(n)

j+1 = −(n − j) ωD

∫ (

η
(n)

j − ωD

∫

R

η
(n)

j

)

, (4.25)

for j ∈ {0, . . . , n − 1}.
Proof. We will show that, for any j ∈ {0, . . . , n − 1} and η

(n)

j ∈ �1
c(R), we have

dCE hR

(
(X ⊗ ωD)n− j ( ad j

X(Y) ⊗ η
(n)

j

)) = (X ⊗ ωD)n− j−1 (
ad j+1

X (Y) ⊗ η
(n)

j+1

)
,

(4.26)

with η
(n)

j+1 ∈ �1
c(R) given by (4.25). The desired identity (4.24) then follows by induction

with the choice η
(n)

0 = ωD′ .

Using the explicit expression for hn− j+1
R

given in (4.11), we find that

hn− j+1
R

(
(X ⊗ ωD)n− j ( ad j

X(Y) ⊗ η
(n)

j

))

= (X ⊗ ωD)n− j
(

ad j
X(Y) ⊗

∫ (

η
(n)

j − ωD

∫

R

η
(n)

j

))

. (4.27)

In this calculation it is crucial to use the specific choice ωR = ωD for the strong
deformation retract, which in particular implies that iR pR acts as the identity onX⊗ωD .
Furthermore, if the factor hR[1] in hn− j+1

R
from (4.11) acts on any of the n− j factors

X ⊗ ωD , then the corresponding term in the sum vanishes by virtue of the choice ωR =
ωD . Hence, hR[1] must act on the last factor ad j

X(Y) ⊗ η
(n)

j , and it can be computed by
using the explicit expression for hR[1] in dimension m = 1 given in Remark 4.2. The
result now follows by applying dCE given in (4.13). ��
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Applying pn− j+1
R

to both sides of the identity (4.24), we obtain

pR (dCE hR) j
(
(X ⊗ ωD)n (Y ⊗ ωD′)

) = Xn− j ad j
X(Y)

∫

R

η
(n)

j , (4.28)

so it remains to solve the recurrence relation (4.25) for η
(n)

j ∈ �1
c(R) and compute its

integral over R. The result is given by the following lemma.

Lemma 4.6. For all j ∈ {0, . . . , n}, we have
∫

R

η
(n)

j = (−1) j
(
n

j

)

Bj , (4.29)

where B j are the Bernoulli numbers with sign convention B1 = − 1
2 .

Proof. First, we observe that the nth iterated integral of ωD is given by
∫

R
ωD

∫
ωD · · ·

∫
ωD = 1

n! and that ωD
∫

ωD′ = 0 since D is to the left of D′. This allows us to use the
recurrence relation (4.25) to express

∫
R

η
(n)

j for any j ∈ {1, . . . , n} in terms of all the

previous
∫

R
η

(n)
r for r = 0, . . . , j − 1 as follows

−(−1) j
1

(n
j

)

∫

R

η
(n)

j = 1

j + 1

j−1∑

r=0

(
j + 1

r

)

(−1)r
1

(n
r

)

∫

R

η
(n)
r . (4.30)

The statement now follows from the fact that the Bernoulli numbers satisfy the same
recurrence relation, namely, for all j > 0,

j∑

r=0

(
j + 1

r

)

Br = 0 ⇐⇒ −Bj = 1

j + 1

j−1∑

r=0

(
j + 1

r

)

Br , (4.31)

and the same initial condition B0 = 1 = ∫
R

ωD′ = ∫
R

η
(n)

0 . ��
From the results above, we can deduce that (4.23) is given explicitly by

Xn � Y =
n∑

j=0

(−1) j
(
n

j

)

Bj Xn− j ad j
X(Y) . (4.32)

This identity characterizes the Gutt star-product [Gut83] on Sym(g), see e.g. [ESW17,
Proposition 2.7], hence the associative and unital product (4.19) on Sym(g) coincides
with the Gutt star-product. Summing up, we have shown the following result, which was
observed before in [CG17, Proposition 3.4.1] by using different techniques.

Proposition 4.7. The PR-algebra structure on the factorization envelope UgR ∈ AlgPR

transfers along the strong deformation retract (4.15) to the associative and unital algebra
structure on Sym(g) that is given by the Gutt star-product. The latter is isomorphic to
the universal enveloping algebra Ug.
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4.3. Universal first-order Massey product. On top of the underlying strict (PRm )∞-
algebra structure on the cohomology HUgR

m
that we have described in Sect. 4.2, there

may exist additional higher structures in the sense of Sects. 2.6 and 2.7. The first instance
of such higher structures is given by the universal first-order Massey product, which in the
context of locally constant prefactorization algebras was described in Sect. 3.3. The aim
of this subsection is to compute and interpret the universal first-order Massey products
for the factorization envelopes UgR

m ∈ AlgPRm on R
m .

Following the approach in Sect. 3.3, we can use local constancy of the factorization
envelope UgR

m
to improve the strong deformation retract (4.15) as in Lemma 3.6. Then

the 1-cocycle representing the universal first-order Massey product (3.18) becomes

β̃(2)
(
ιDD, ι

Di
Di

) = β̂(2)
(
ιR

m

D , ι
Di
Di

) − μ̂D β̂(2)
(
ιR

m

Di
, ι

Di
Di

)
, (4.33)

where μ̂D denotes the structure maps from Sect. 4.2 and β̂(2) is defined by the commu-
tative diagram (3.19) in terms of the 1-cocycle β(2) associated with the original strong
deformation retract (4.15). In our present example, the identification between β(2) and
β̂(2) is trivial because HUgR

m
(ιD

′
D ) = id, for all D ⊂ D′, hence we obtain the explicit

expression

β̂(2)
(
ιR

m

D , ι
Di
Di

) = p̂Rm UgR
m(

ιR
m

D

)
ĥDi Ug

R
m(

ι
Di
Di

)
i(D1,...,Di ,...,Dn) . (4.34)

We observe that the behavior of this 1-cocycle depends strongly on the dimension m.

Dimensionm = 1: The cohomologyHUgR ∼= Sym(g) is concentrated in cohomolog-
ical degree 0, hence the degree −1 operations β̂(2)

(
ιR

m

D , ι
Di
Di

) : Sym(g)⊗(n+ni−1) →
Sym(g) all vanish on degree grounds. More generally, by the same reason, the trans-
ferred (PRm )∞-algebra structure β on HUgR

m
vanishes on all trees with more than

one vertex. This implies that the factorization envelope UgR ∈ AlgPR
in m = 1 di-

mensions is formal, i.e. it is ∞-quasi-isomorphic to its cohomologyHUgR ∼= Sym(g)
endowed with the strict prefactorization algebra structure. By a similar argument, an
analogous result is found in [IR23, Section 5.3].
Dimension m ≥ 3: Using the concrete expression for the strong deformation retract
(4.15), we can write (4.34) more explicitly as

β̂(2)
(
ιR

m

D , ι
Di
Di

) =
∑

j,k≥0

pRm (dCE hRm ) jUgR
m(

ιR
m

D

)
hDi (dCE hDi )

k UgR
m(

ι
Di
Di

)
i(D1,...,Di ,...,Dn) .

(4.35)

As a consequence of Remark 4.3, one would need at least m ≥ 3 homotopies h
preceding any dCE to obtain a non-trivial contribution to the sum. This is obviously
impossible, which implies that all β̂(2)

(
ιR

m

D , ι
Di
Di

) = 0 vanish in dimension m ≥ 3,

and consequently all β̃(2)
(
ιDD, ι

Di
Di

) = 0 in (4.33) vanish as well. This implies that the

factorization envelope UgR
m ∈ AlgPRm in m ≥ 3 dimensions has a trivial universal

first-order Massey product [β̃(2)] = 0, but it still may have non-trivial higher-order
Massey products in the sense of [Dim12,FM23]. See also the related discussion in
Remark 3.9.
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As a consequence of this observation, we restrict our attention in the remainder of
this subsection to the case of dimension m = 2. Our goal is to show that the cohomology
class

[
β̃(2)

] ∈ H1
�(HUgR

2
) is non-trivial, which implies that the cohomology HUgR

2 ∼=
Sym(g[−1]) carries, on top of its commutative algebra structure from Sect. 4.2, non-
trivial higher structures. To show non-triviality of

[
β̃(2)

]
, we will study the simpler

L-invariant from Sect. 3.4, which is available in our present case of m = 2 dimensions.
We start by computing explicitly the value of the improved 1-cocycle β̃(2) in (4.33)

on trees of the form (3.23), and use this result to argue that the L-invariant (3.33) and
hence the cohomology class

[
β̃(2)

] �= 0 is non-trivial. For our argument it suffices to
focus on trees with only two free edges

t
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) =
ιD
(D′

1,D2)

ι
D′

1
D1

, (4.36)

for all D1, D′
1, D2, D ∈ DiskR2 such that D1 ⊂ D′

1, D2 ∩ D′
1 = ∅ and D′

1 � D2 ⊂ D.
The values of the 1-cocycle (4.33) on such trees are degree −1 binary operations

β̃(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) : Sym(g[−1]) ⊗ Sym(g[−1]) −→ Sym(g[−1]) (4.37)

on Sym(g[−1]) ∈ Ch, which we will compute in Lemma 4.8 below.
In order to ease the notation in what follows, we will always suppress the extension

maps UgR
2(
ιD

′
D

)
for all disk inclusion D ⊂ D′, which is justified since they are simply

extension by zero of compactly supported forms from D to D′. Then the first term on
the right-hand side of (4.33) explicitly reads

β̂(2)
(
ιR

2

(D′
1,D2)

, ι
D′

1
D1

) = p̂R2 UgR
2(
ιR

2

(D′
1,D2)

)
ĥD′

1
i(D1,D2)

=
∑

j,k≥0

pR2 (dCE hR2) j UgR
2(
ιR

2

(D′
1,D2)

)
hD′

1
(dCE hD′

1
)k i(D1,D2) .

(4.38)

It follows from Remark 4.3 that the only non-vanishing term in the sum is given by
k = 0 and j = 1, hence the above reduces to

β̂(2)
(
ιR

2

(D′
1,D2)

, ι
D′

1
D1

) = pR2 dCE hR2 UgR
2(
ιR

2

(D′
1,D2)

)
hD′

1
i(D1,D2) . (4.39)

Similarly, for the β̂(2) factor in the second term on the right-hand side of (4.33), we have

β̂(2)
(
ιR

2

D′
1
, ι

D′
1

D1

) = p̂R2 ĥD′
1
iD1 = pR2 dCE hR2 hD′

1
iD1 . (4.40)

Using also the result from Sect. 4.2 that μ̂(D′
1,D2) = μ2 is the standard commutative

binary multiplication of the symmetric algebra, we can put the above together and find
that the value of the 1-cocycle (4.33) on the trees (4.36) can be written explicitly as
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β̃(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) = p
R2 dCE h

R2 Ug
R

2(
ιR

2

(D′
1,D2)

)
hD′

1
i(D1,D2) − μ2 p

R2 dCE h
R2 hD′

1
iD1 .

(4.41)

Our first result is the following

Lemma 4.8. For every pair of elements A, B ∈ Sym(g[−1]), we have that

β̃(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
(A ⊗ B) = ϕ0

(
ιD
(D′

1,D2)
, ι

D′
1

D1

) {A, B}(−1), (4.42)

where

{−,−}(−1) : Sym(g[−1]) ⊗ Sym(g[−1]) −→ Sym(g[−1]) (4.43)

denotes the degree −1 Poisson bracket (i.e. P2-algebra structure) that is defined on the
generators by
{X,Y}(−1) := [X,Y], for all X,Y ∈ g[−1], and the numerical prefactor is given explic-
itly by

ϕ0
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) := 1

2

∫

R2

(
h1

R2

(
h2
D′

1
(ωD1)

) ∧ (ωD2 + ω
R2 ) + h2

R2 (ωD2 ) ∧ h2
D′

1
(ωD1)

)
.

(4.44)

Proof. To simplify notation, we will denote in this proof the given tree by

t = t
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
. By linearity, it suffices to consider the case where A = ∏n

a=1 Xa ∈
Symn(g[−1]) and B = ∏r

b=1 Yb ∈ Symr (g[−1]) are two arbitrary monomials in
Sym(g[−1]). The result follows from a direct computation of the evaluation of (4.41) on
A⊗ B. This computation is straightforward but rather lengthy, so we will only highlight
the key points. Evaluating the first term on the right-hand side of (4.41) on A ⊗ B, we
find

pR2 dCE hR2 UgR
2(

ιR
2

(D′
1,D2)

)
hD′

1
i(D1,D2)(A ⊗ B)

= −ψ(t)
n∑

i, j=1
i< j

(−1)i+ j [Xi ,X j ]
n∏

a=1
a �=i, j

Xa

r∏

b=1

Yb

− ϕ0(t)
n∑

i=1

r∑

j=1

(−1)n+i+ j [Xi ,Y j ]
n∏

a=1
a �=i

Xa

r∏

b=1
b �= j

Yb, (4.45)

where ϕ0(t) ∈ K is defined as in the statement of the lemma and ψ(t) ∈ K is given by
the integral

ψ(t) := 1

2

∫

R2

(
h1

R2

(
h2
D′

1
(ωD1)

) ∧ (ωD1 +ωD′
1
+2ωR2)+h2

R2(ωD1 + ωD′
1
) ∧ h2

D′
1
(ωD1)

)
.

(4.46)
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On the other hand, evaluating the second term on the right-hand side of (4.41) on A⊗ B,
we find

μ2 pR2 dCE hR2 hD′
1
iD1(A ⊗ B) = −ψ(t)

n∑

i, j=1
i< j

(−1)i+ j [Xi ,X j ]
n∏

a=1
a �=i, j

Xa

r∏

b=1

Yb .

(4.47)

This coincides with the first term on the right-hand side of (4.45) and therefore they
cancel in the expression for β̃(2)(t)(A ⊗ B). The latter then reads as

β̃(2)(t)(A ⊗ B) = − ϕ0(t)
n∑

i=1

r∑

j=1

(−1)n+i+ j [Xi ,Y j ]
n∏

a=1
a �=i

Xa

r∏

b=1
b �= j

Yb

= ϕ0(t) {A, B}(−1), (4.48)

where in the last equality we have used the definition of the degree −1 Poisson bracket
(4.43) and its biderivation property. ��

In the next proposition, we obtain a simpler expression for (4.42) by exploiting the
freedom to add a suitable coboundary term to β̃(2).

Proposition 4.9. There exists a 0-cochain χ ∈ �0
(
Sym(g[−1])), satisfying the condi-

tions from Remark 3.8, such that β̃ ′(2) := β̃(2) + ∂�χ takes the values

β̃ ′(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
(A ⊗ B) = ϕ

(
ιD
(D′

1,D2)
, ι

D′
1

D1

) {A, B}(−1), (4.49)

for all trees t
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
and all A, B ∈ Sym(g[−1]), where the numerical prefactor

is now given by the simpler integral

ϕ
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) :=
∫

R2
h1

R2

(
h2
D′

1
(ωD1)

) ∧ ωD2 . (4.50)

Proof. Recalling the explicit form (3.12) of the transformation formula β̃ ′(2) = β̃(2) +
∂�χ , we find for our trees

β̃ ′(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) = β̃(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

) − χ
(
ιD(D1,D2)

)
+ χ

(
ιD
(D′

1,D2)

)
+ μ2 χ

(
ι
D′

1
D1

)
.

(4.51)

We define the 0-cochain χ on trees with one and two free edges by

χ
(
ιD̃D

)
(A) = 0, χ

(
ιD̃(D,D′)

)
(A ⊗ B) := 1

2

∫

R2
h2

R2(ωD′) ∧ h2
R2(ωD) {A, B}(−1),

(4.52)

for all A, B ∈ Sym(g[−1]), and by zero on all other trees. Note that this satisfies the
conditions (3.31) from Remark 3.8. Then the last term in (4.51) vanishes and evaluation
on A ⊗ B gives

β̃ ′(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
(A ⊗ B)
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=
(

ϕ0
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
+

1

2

∫

R2
h2

R2(ωD2) ∧ (− h2
R2(ωD1) + h2

R2(ωD′
1
)
)
)

{A, B}(−1)

= 1

2

∫

R2

(
h1

R2

(
h2
D′

1
(ωD1)

) ∧ (ωD2 + ωR2) +

h2
R2(ωD2) ∧ (

h2
D′

1
(ωD1) − h2

R2(ωD1) + h2
R2(ωD′

1
)
)) {A, B}(−1) . (4.53)

Now using the identities (4.6), we have

h2
D′

1
(ωD1) = h2

R2

(
ddRh

2
D′

1
(ωD1)

)
+ ddRh

1
R2

(
h2
D′

1
(ωD1)

)

= h2
R2(ωD1) − h2

R2(ωD′
1
) + ddRh

1
R2

(
h2
D′

1
(ωD1)

)
, (4.54)

where in the second line we have used
∫
D′

1
ωD1 = 1. The result now follows us-

ing this identity in the last line above, then using Stokes’ theorem and the fact that
ddRh2

R2(ωD2) = ωD2 − ωR2 , which follows again by (4.6a). ��

Theorem 4.10. The L-invariant (3.33) for the factorization envelope UgR
2 ∈ AlgP

R2

on R
2 coincides with the degree −1 Poisson bracket from (4.43), i.e.

L = {−,−}(−1) . (4.55)

It follows that the cohomology class
[
β̃(2)

] ∈ H1
�

(
Sym(g[−1])) defining the universal

first-order Massey product is non-trivial for UgR
2 ∈ AlgP

R2
.

Proof. Using Proposition 3.10, we can equivalently consider the simpler transformed
1-cocycle β̃ ′(2) from Proposition 4.9. Inserting this into the definition of L from (3.33),
we find

L(A ⊗ B)=
∫

R2

(
h1

R2

(
h2
Du

(ωD1 − ωD2)
)−h1

R2

(
h2
Dd

(ωD1 − ωD2)
)) ∧ ωD̃ {A, B}(−1) .

(4.56)

Since
∫
Du

(ωD1 − ωD2) = 0, we have ωD1 − ωD2 = ddRβu for βu = h2
Du

(ωD1 −
ωD2) ∈ �1

c(Du) and ωD1 − ωD2 = ddRβd for βd = h2
Dd

(ωD1 − ωD2) ∈ �1
c(Dd)

by identity (4.6a). Similarly, because ddR(βu − βd) = 0 we have βu − βd = ddRg
for g = h1

R2(βu − βd) ∈ �0
c(D) by (4.6b), noting that because ddRg = 0 outside of

Du ∪ Dd , g ∈ �0
c(D̂) for any disk D̂ containing Du and Dd . So

L(A ⊗ B) =
∫

R2
h1

R2(βu − βd) ∧ ωD̃ {A, B}(−1) =
∫

R2
g ∧ ωD̃ {A, B}(−1) .

(4.57)

Now, since ddRg|D̃ = (βu −βd)|D̃ = 0, it follows that the restriction g|D̃ is constant
and we claim that g|D̃ = 1. Indeed, g can be constructed explicitly as the line integral
g(p) = ∫

γp
(βu − βd) along any path γp from a fixed base point p0 �∈ D to p ∈ D. The

definition is independent of the choice of path by Stokes’ theorem since ddR(βu −βd) =
0. Now let p ∈ D̃ and pick any path γp ∈ R

2\Dd . Then g(p) = ∫
γp

βu . Let γ ′
p ∈ R

2\Du
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be another path such that γp − γ ′
p forms a cycle bounding a region R ⊃ D1 with

R ∩ D2 = ∅. Then
∫
γ ′
p
βu = 0 and so

g(p) =
∫

γp

βu −
∫

γ ′
p

βu =
∫

∂R
βu =

∫

R
ddRβu =

∫

R
(ωD1 − ωD2) =

∫

R
ωD1 = 1

(4.58)

as claimed, where in the third equality we used Stokes’ theorem. So we have

L(A ⊗ B) =
∫

R2
g ∧ ωD̃ {A, B}(−1) = {A, B}(−1) (4.59)

because
∫

R2 ωD̃ = 1 by assumption. ��

5. Linear Chern–Simons Theory

Throughout this section, we fix the field K to be either the real numbers R or the complex
numbers C. Recall from [CG17, Chapter 4.5] that the prefactorization algebra describing
linear Chern–Simons theory (i.e. with structure group R) on an oriented 3-manifold M
is given by

FCS :=
(

Sym
(
�•

M,c[2]), ddR[2] + 
BV

)
∈ AlgPM

, (5.1)

where �•
M,c is the cosheaf of compactly supported differential forms on M and 
BV is

the BV Laplacian. The latter is the second-order differential operator on Sym
(
�•

M,c[2])
defined by


BV

( n∏

a=1

αa

)

:=
n∑

i, j=1
i< j

(−1)
n←
i, j

(∫

M
αi ∧ α j

) n∏

a=1
a �=i, j

αa, (5.2)

for all αa ∈ �•
M,c[2] with a ∈ {1, . . . , n}, where (−1)

n←
i, j is the Koszul sign arising from

bringing αi and α j to the front of the product. This prefactorization algebra is locally
constant.

The aim of this section is to describe the universal first-order Massey product of
the prefactorization algebra FCS. By the same argument as around (4.35), one easily
sees that the associated cohomology class

[
β̃(2)

] = 0 is trivial for linear Chern–Simons
theory on the 3-dimensional Cartesian space M = R

3. This is compatible with the more
abstract point of view explained in Remark 3.9: Since FCS on R

3 is equivalent to an E3-
algebra, one does not expect a non-trivial first-order Massey product. In order to observe
a non-trivial cohomology class

[
β̃(2)

] �= 0, we will consider the compactification of
linear Chern–Simons theory on the 3-manifold M = R

2 × S
1, with S

1 denoting the
circle, which we regard as a 2-dimensional prefactorization algebra on the R

2-factor.
This example can be treated with similar methods as in Sect. 4, hence we can be relatively
brief in presenting the results.

As a first step, we observe that the compactified prefactorization algebra FCS on
R

2 × S
1 can be replaced by a weakly equivalent model that is more suitable for the
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computations in this section. For every 2-dimensional disk D ∈ DiskR2 , we have by
Künneth’s theorem a quasi-isomorphism

�•
c(D) ⊗ �•(S1)

∼−→ �•
c(D × S

1) . (5.3)

This family of quasi-isomorphisms is natural in D, hence we can consider instead of the
compactification of (5.1) on R

2 × S
1 the weakly equivalent prefactorization algebra

FS
1

CS :=
(

Sym
(
�•

R2,c[2] ⊗ �•(S1)
)
, dR

2

dR[2] + dS
1

dR + 
BV

)
∈ AlgP

R2
, (5.4)

where now �•
R2,c

denotes the cosheaf of compactly supported differential forms on the

2-dimensional Cartesian space R
2. Using the strong deformation retract from Lemma

4.1, we can define a strong deformation retract

�•(S1) ∼= K ⊗ �•(S1) �•
R2,c

[2] ⊗ �•(S1)
i[2]⊗id

p[2]⊗id
h[2]⊗id . (5.5)

To pass to the cohomology H•
dR(S1) ∼= K⊕K[−1] of �•(S1), we further use the strong

deformation retract

H•
dR(S1) �•(S1)

iS
1

pS
1 hS

1
(5.6)

that is obtained by choosing the standard metric g = dt ⊗ dt on S
1 and using Hodge

theory. Combining the strong deformation retracts (5.5) and (5.6), lifting along Sym and
applying as in Proposition 4.4 the homological perturbation lemma, we obtain the strong
deformation retract

Sym
(
H•

dR(S1)
)

FS
1

CS

i

p̂
ĥ (5.7)

which we use to determine a minimal model and the universal first-order Massey product
for FS

1

CS.
Similarly to Sect. 4.2, one finds that the underlying strict (PR2)∞-algebra structure

on Sym
(
H•

dR(S1)
)

that is obtained via homotopy transfer along the strong deformation
retract (5.7) is given by the standard associative, unital and commutative algebra structure
on the symmetric algebra. The non-formality of FS

1

CS ∈ AlgP
R2

is established again by
explicitly computing the L-invariant from Sect. 3.4.

Theorem 5.1. The L-invariant (3.33) for the prefactorization algebra FS
1

CS ∈ AlgP
R2

of

compactified linear Chern–Simons theory on R
2 ×S

1 is given by the degree −1 Poisson
bracket

L = {−,−}(−1) : Sym
(
H•

dR(S1)
) ⊗ Sym

(
H•

dR(S1)
) −→ Sym

(
H•

dR(S1)
)

(5.8)

that is defined on the generators [1], [dt] ∈ Sym
(
H•

dR(S1)
)
by

{[1], [1]}
(−1)

= 0 = {[dt], [dt]}
(−1)

,
{[1], [dt]}

(−1)
= 1 = {[dt], [1]}

(−1)
.

(5.9)
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It follows that the cohomology class
[
β̃(2)

] ∈ H1
�

(
Sym

(
H•

dR(S1)
))
defining the universal

first-order Massey product is non-trivial for FS
1

CS ∈ AlgP
R2
.

Proof. The proof follows the same steps as the proof of Theorem 4.10 in Sect. 4.3. As in
Lemma 4.8, we find that for any A, B ∈ Sym

(
H•

dR(S1)
)

the universal first-order Massey
product is

β̃(2)
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
(A ⊗ B) = ϕ0

(
ιD
(D′

1,D2)
, ι

D′
1

D1

) {A, B}(−1), (5.10)

where {A, B}(−1) is the bracket determined by (5.9) and ϕ0
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
is the prefactor

given by (4.44). The reason that this is the same prefactor as in Lemma 4.8 is that both the
strong deformation retract (4.8) and the strong deformation retract (5.5) are constructed
using the strong deformation retract for de Rham forms found in Lemma 4.1.

As in Proposition 4.9 one then finds that after a gauge transformation χ (the nonzero
part of which is given by (4.52), where {A, B}(−1) now is the bracket determined by

(5.9)) the prefactor becomes ϕ
(
ιD
(D′

1,D2)
, ι

D′
1

D1

)
, which is defined in (4.50). Finally, as in

the proof of Theorem 4.10 one finds that the prefactor of L is 1, proving the Theorem. ��
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