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ABSTRACT 

The confinement of cerium oxide nanoparticles within hollow carbon nanostructures has been 

achieved and harnessed to control the oxidation of cyclohexene. Graphitised carbon nanofibres 

(GNF) have been used as the nanoscale tubular host and filled by sublimation of the Ce(tmhd)4 

complex (where tmhd = tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)) into the internal cavity, 

followed by a subsequent thermal decomposition to yield the hybrid nanostructure CeO2@GNF, 

where nanoparticles are preferentially immobilised at the internal graphitic step-edges of the GNF. 

Control over the size of the CeO2 nanoparticles has been demonstrated within the range c.a. 4 to 9 

nm by varying the mass ratio of the Ce(tmhd)4 precursor to GNF during the synthesis. CeO2@GNF 

were effective in promoting the allylic oxidation of cyclohexene, in high yield, with time-

dependent control of product selectivity, at a comparatively low loading of CeO2 of 0.13 mol%. 

Unlike many of the reports to date where ceria catalyses such organic transformations, we found 

the encapsulated CeO2 to play the key role of radical initiator due to the presence of Ce3+ included 

in the structure, with the nanotube acting as both a host, preserving the high performance of the 

CeO2 nanoparticles, anchored at the GNF step-edges, over multiple uses, and an electron reservoir, 

maintaining the balance of Ce3+ and Ce4+ centers. Spatial confinement effects ensure excellent 

stability and recyclability of CeO2@GNF nanoreactors. 
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INTRODUCTION 

Lanthanide compounds continue to attract significant attention owing to their unusual magnetic, 

redox and optical properties, different to d-block elements, which is attributed to the nature of the 

4f orbitals, buried deep inside the atom and thus shielded from the external environment by the 

overlying 5s and 5p orbitals. This contracted nature of the 4f orbitals gives lanthanides their unique 

physicochemical properties and underpins a wide range of applications in catalysis,1 magnetism2 

and pharmacology.3 Among these, catalysis alone represents nearly 75% of the total applications 

of the lanthanides. As a catalyst, cerium (Ce), unlike most of the other lanthanides,4 is utilised in 

the form of its oxide (CeO2), also known as ceria, with a wide range of ceria-based nanocatalysts, 

including spheres,5 rods,6 tubes,7 wires,8 shuttle-shaped9 and flower-like nanoparticles,8 reported 

over the last decade. The remarkable catalytic behaviour of ceria observed ubiquitously throughout 

these nanostructures is due to the interconversion between Ce4+ and Ce3+, controllable by the 

reaction conditions, with CeO2 and Ce2O3 observed under oxidising and reducing conditions, 

respectively. As a consequence of this interconversion, CeO2 can reversibly release oxygen from 

its structure at moderate temperatures (<600oC)10 leading to the formation of oxygen vacancies in 

the crystal lattice and simultaneous reduction of Ce4+ to Ce3+. This behaviour makes ceria 

extremely useful for oxygen storage and release applications,11 as well as in other important 

chemical reactions, such as the preparation of imines,12 the oxidation of CO to CO2
13

 and the 

hydrogenation of CO2 to methanol.14 However, a less explored and often disregarded application 

of ceria is its ability to initiate radical-mediated organic transformations, which often commence 

in the homolytic cleavage of organic peroxides by Ce3+
, as demonstrated in the oxidation of 

cyclohexene, 15 the products of which represent important intermediates in the chemical industry.16 

Akin to the structure-function relationships observed in ceria nanocatalysis, the shape and size of 
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ceria nanoparticles are expected to modulate its efficiency as an initiator; 17, 18 yet, further research 

is critically required to probe how the physical and chemical properties of CeO2 influence the 

yields and distribution of products of radical-based chemical reactions.  

Despite the breadth of ceria-based nanostructures synthesised to date, the controllable 

preparation of monodisperse ultra-small CeO2 nanoparticles remains a significant challenge. 

Moreover, preservation of their functional properties by preventing deactivation under harsh 

reaction conditions is essential for their further development. One recent approach to address the 

latter concerns the encapsulation of CeO2 nanoparticles in core-shell and yolk-shell structures, 

where CeO2 is protected by an outer shell, which was shown as an efficient way to stabilise CeO2 

nanoparticles and explore the effect of spatial confinement at the nanoscale.19,20 However, carbon 

nanotubes (CNTs) as a host matrix for the confinement of CeO2 nanoparticles have the potential 

to solve both of these challenges. Besides being a container with two dimensions on the nanoscale 

and thus the capacity to template the formation of particles with nanoscopic sizes, the remarkable 

mechanical (tensile strength much higher than that of steel), thermal (stable up to ca. 600oC in air 

and up to 2800oC in vacuum or inert atmosphere) and chemical stability of CNTs makes them an 

excellent candidate support material for nanoparticles under a wide variety of reaction 

conditions.21 In addition, the curvature of the CNT walls causes re-distribution of the π electron 

density of graphene layers from the concave inner to the convex outer surface resulting in an 

electron density gradient. As a consequence, encapsulated metal nanoparticles inside carbon 

nanotubes often exhibit properties distinct from those adsorbed on the CNT outside surface.22 

Therefore, the encapsulation of metal or metal oxide nanoparticles inside CNTs opens a pathway 

towards active nanoreactors with tuneable properties, such as those reported by our group23,24 and 

others previously.25,26  
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While several examples of the successful deposition of CeO2 nanoparticles onto the outer surface 

of carbon nanotubes (CeO2-CNT) have been reported and applied in catalysis,27,28 biosensing29,30 

and as a fuel additive,31 the preparation of ceria nanoparticles inside carbon nanotubes remains 

largely unexplored, with only one example to date reported for CeO2 nanoparticles inside carbon 

nanotubes of inner diameter 4-8 nm.32 Such narrow nanotubes serve as excellent model systems 

for catalyst supports, but their applications for preparative scale reactions are limited. In this study, 

we utilised graphitised carbon nanofibres (GNF) that have many of the attractive properties of 

carbon nanotubes, but with the added benefits of (i) large internal diameters (typically larger than 

60 nm) enabling the efficient mass transport of reactants and products to and from the internal 

cavity and (ii) corrugated internal surfaces resulting in the effective stabilisation of nanoparticles, 

as demonstrated in our previous studies (Figure 1).33-36 Herein, successfully prepared ceria 

nanoparticles within GNF (CeO2@GNF) were analysed by a variety of structural and chemical 

characterisation techniques, and applied in the preparative-scale reaction of cyclohexene 

oxidation, revealing key features of nanoscale confinement in carbon nanoreactors important for 

sustainable organic synthesis. 

Figure 1. (a) Low and high magnification (inset) high resolution transmission electron microscopy (HRTEM) images of empty 

hollow graphitised carbon nanofibres (GNF). As shown in both the electron micrographs in (a) and the schematic representation 
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in (b), GNF are topologically complex nanoscale structures comprising a series of stacked cups encased within concentric tubes. 

The internal diameters are much larger than the dimensions of simple molecular species (typically by more than an order of 

magnitude) and the termini are always open, thus facilitating highly efficient transport of molecules through the internal volume. 

Furthermore, the 3-4 nm high folds on the interior surfaces of GNF formed by rolled-up sheets of graphene provide exemplary 

anchoring points for guests, such as molecules and nanoparticles, as shown in (b), due to maximised van der Waals interactions. 

This creates localised nanoscale reaction environments, different to the bulk phase, which impart spatial restrictions and thus can 

significantly impact the yields and distributions of products afforded across a range of preparative chemical transformations, as 

demonstrated by us and others.37-48 

 

 

EXPERIMENTAL SECTION 

General 

All reagents and solvents were purchased from Sigma-Aldrich, including cyclohexene (>99%) and 

were used as received. Graphitised carbon nanofibres (GNF) and tetrakis(2,2,6,6-tetramethyl-3,5-

heptanedionato) cerium (IV) (99.9% Ce) were purchased from Pyrograf Products, USA and Strem 

Chemicals, USA, respectively. Graphite flakes (Code G/0900/60, Batch 043775) and activated 

carbon (Activated Charcoal, DARCO) were purchased from Fisher Scientific. All glassware was 

cleaned with a mixture of hydrochloric and nitric acid (3:1 v/v, “aqua regia”) and rinsed thoroughly 

with deionised water, cleaned with potassium hydroxide in isopropyl alcohol and finally rinsed 

thoroughly with deionised water before use. Prior to use, GNF was ball milled using a Retsch 

MM40 Ball Miller with 5 mL jars and 12 mm stainless steel balls at a frequency of 10 per second 

for 90 minutes.  

Preparation of CeO2 nanoparticles encapsulated within graphitised carbon nanofibres 

(CeO2@GNF) and deposited on graphite (CeO2@graphite) and activated carbon 

(CeO2@AC) 
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Graphitised carbon nanofibres (10 mg, PR19-XT-HHT, ball-milled) and Ce(tmhd)4 (1, 2 or 3 mg) 

were sealed in a Pyrex glass ampoule under vacuum (2.9 x 10-5 mbar) and heated at 150 oC in an 

oil bath for 72 hours to allow for sublimation of the cerium complex and diffusion inside the 

channels of GNF. After 72 hours, the ampoule was quickly cooled by placing into ice cold water 

for 10 minutes before opening. The obtained bulk solid was then placed in another Pyrex glass 

ampoule, evacuated at 1.6 x 10-2 mbar and backfilled with argon (this procedure was repeated three 

times to ensure removal of molecular oxygen and atmospheric moisture), and the ampoule was 

then sealed and heated at 600 oC for 2 hours to decompose the cerium complex to CeO2, followed 

by slow cooling for 8 hours to a final temperature of 20 oC to yield the resultant CeO2@GNF-X 

material (where X = 1, 2 or 3 corresponding to the mass of cerium complex used in the initial step). 

The CeO2@graphite and CeO2@AC nanocomposite was prepared using an analogous method with 

graphite powder or activated carbon (AC) and Ce(tmhd)4 in a mass ratio of 10:2 (mg), to serve as 

a reference for CeO2@GNF-2. 

Characterisation of CeO2@GNF, CeO2@graphite and CeO2@AC 

High resolution transmission electron microscopy (HRTEM) was performed using a JEOL 2100F 

transmission electron microscope (field emission electron gun source, information limit 0.19 nm). 

Energy dispersive X-ray (EDX) analysis was performed using an Oxford Instruments INCA 560 

X-ray microanalysis system. TEM samples were prepared by dispersing small quantities in 

methanol with bath sonication for 30 seconds to 1 minute, before drop-casting onto a copper TEM 

grid coated with a lacey carbon film (Agar Scientific UK) and drying in air. Particle size and d-

spacing were determined using Gatan Digital Micrograph software. Thermogravimetric analysis 

(TGA) of samples was carried out using a TA Q500 Thermogravimetric Analyser. All samples 

were deposited onto platinum pans and analysed in air at a heating rate of 10oC/min from 20 to 
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1000oC with an isotherm for 10 min at 1000oC, and airflow of 60mL/min. Raman spectroscopy 

was performed using a Horiba-Jobin-Yvon LabRAM HR spectrometer. Spectra were acquired 

using a 532 nm laser (at 0.3 mW power) and a 600 lines mm-1 rotatable diffraction grating, 

conferring a spectral resolution of better than 1.8 cm-1. Spectra were baseline corrected using a 

linear fitting model. The powder X-ray diffraction (PXRD) patterns were recorded using a 

PANalytical X’Pert Pro diffractometer equipped with a Cu K(α) radiation source (λ = 1.5432 Å, 

at 40kV and 40mA) in Bragg-Brentano geometry using a Si zero background holder. A few drops 

of isopropyl alcohol were added to all samples for good adhesion to the sample holder. The 

parameters for a typical measurement were as follows: start angle 5o, stop angle 120o, step size 

0.0525o, time/step 6080s, scan speed 0.002200/s. X-ray photoelectron spectroscopy (XPS) 

measurements were performed using a Kratos AXIS Ultra DLD instrument. The chamber pressure 

during the measurements was 5×10−9 Torr. Wide energy range survey scans were collected at a 

pass energy of 80 eV in hybrid slot lens mode and a step size of 0.5 eV over 20 min. The charge 

neutraliser filament was used to prevent the sample from charging over the irradiated area. The X-

ray source was a monochromated Al Kα emission, run at 10 mA and 12 kV (120 W). The energy 

range for each ‘pass energy’ (resolution) was calibrated using the Kratos Cu 2p3/2, Ag 3d5/2 and 

Au 4f7/2 three-point calibration method. The transmission function was calibrated using a clean 

gold sample method for all lens modes and the Kratos transmission generator software within 

Vision II. The data were processed with CASAXPS (Version 2.3.17). The high resolution data was 

charge corrected to the reference C 1s signal at 284.5 eV. 

Oxidation of cyclohexene 

The oxidation of cyclohexene with tert-butylhydroperoxide (TBHP, 70 wt% in H2O) was carried 

using either CeO2@GNF, CeO2@graphite or CeO2@AC in a two-necked glass round-bottom flask 
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equipped with a magnetic stirrer and a reflux condenser open to air. In a typical reaction, a mixture 

of cyclohexene (2.9 mmol), TBHP (5.8 mmol), CeO2@Y (10 mg, where Y = GNF, graphite or 

AC, containing 0.09-0.18 mol % CeO2) and 1,4-dichlorobenzene (1.4 mmol) as an internal 

standard were dispersed in acetonitrile (2.5 mL) and stirred at 80 oC. The progress of the reaction 

was followed using 1H NMR spectroscopy. To study the reaction kinetics, aliquots (0.01 mL) were 

taken from the reaction mixture at one hour intervals. Confirmation of the final products was 

determined using 1H NMR spectroscopy. For recycling studies, the catalyst was recovered by 

filtration, washed with methanol and dried overnight before repeating the procedure for oxidation 

of cyclohexene. The same reaction conditions mentioned above with freshly loaded reactants. The 

recycling reaction was conducted five times for CeO2@GNF. 

 

RESULTS AND DISCUSSION 

Growth of CeO2 nanoparticles inside GNF (CeO2@GNF) 

CeO2 nanoparticles encapsulated inside graphitised carbon nanofibres (CeO2@GNF) have been 

prepared by heating a volatile precursor deposited within GNF (Scheme 1). 
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Scheme 1. Schematic illustration depicting the preparation of CeO2 nanoparticles inside graphitised carbon nanofibres by 

initial sublimation under vacuum and subsequent thermal decomposition of the cerium complex, tetrakis(2,2,6,6-tetramethyl-3,5-

heptanedionato)cerium(IV) [Ce(tmhd)4] into cerium oxide, CO and CO2 in an inert atmosphere.  

 

Prior to filling, graphitised carbon nanofibres were ball milled to reduce their length from more 

than 10 µm to around 1.2 µm to reduce the possible impact of length-dependent transport resistance 

of reactant molecules from the bulk liquid-phase when later applied as a nanoreactor. The 

precursor Ce(tmhd)4 was mixed with milled GNF, sealed under vacuum in a glass ampoule and 

heated above its sublimation temperature to ensure the diffusion of Ce(tmhd)4 vapour into the 

channel of GNF, forming the [Ce(tmhd)4@GNF] composite. The ampoule was then rapidly cooled 

in a cold water reservoir to facilitate the condensation of the precursor molecules inside GNF.48 

The [Ce(tmhd)4@GNF] composite was subsequently heated under an argon atmosphere at a 

temperature above the decomposition point of the Ce(tmhd)4, in this case 600 oC, (Figure S1, SI) 

yielding CeO2 nanoparticles inside GNF. In order to study the effect of precursor concentration on 

the formation of CeO2 nanoparticles, three different amounts of the cerium complex (1, 2 and 3 

mg) have been used with a fixed mass of GNF (10 mg) under the same reaction conditions. 
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Figure 2. (a) TGA, (b) Raman spectroscopy, (c) PXRD and d) XPS analysis of the CeO2@GNF nanocomposites. A decrease 

in the GNF combustion temperature and increase in the residual mass of CeO2 obtained after GNF combustion observed in the 

thermograms (a) both correlate with the increasing amount of cerium complex used in the initial step. The Raman spectra (b) and 

PXRD patterns (c) of the CeO2@GNF nanocomposites both confirm the presence of both GNF and CeO2. Traces in (b) and (c) 

have been offset on the y-axis for visual clarity. The Raman spectra in (b) have been normalised to the intensity of the G-band. 

Annotated labels in (b) and (c) indicate Raman bands and diffraction planes corresponding to CeO2 (red) and GNF (black). The 

fitted peak envelope for Ce 3d (d) in the XP spectrum confirms the presence of Ce3+ which can act as an initiator in the reaction 

of cyclohexene and TBHP. 

 

To ascertain the loading of ceria in the CeO2@GNF nanocomposites and to study the resultant 

GNF thermal stability, thermogravimetric analysis was conducted (Figure 2a). For all three 

CeO2@GNF samples, a single weight loss, representing ~92-95% of the total weight and 
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corresponding to the combustion of GNF, was observed. The residual weight subsequent to GNF 

combustion (4.7, 5.9 and 7.7 %) is associated with CeO2 loading and correlates well with the initial 

amount of cerium precursor added to GNF (1, 2 and 3 mg, respectively). It is interesting to note 

that the GNF combustion temperature for CeO2@GNF is much lower (~625-675 oC) than that of 

empty GNF (~750 oC). This decreases with increasing CeO2 loading and indicates a catalytic effect 

of CeO2 on the oxidation of graphitic carbon in air.49,50 This observation supports the notion that 

CeO2 is an effective catalyst of oxidation due to the reversible loss of oxygen and interconversion 

of Ce4+ and Ce3+, thus facilitating the combustion of GNF at a lower temperature.31 TGA profiles 

also indicate a uniform one-step oxidation process, which is consistent with a homogeneous 

composition of the total CeO2@GNF sample, i.e. negating the independent formation of CeO2 and 

GNF in isolation. 

The Raman spectra of CeO2@GNF (Figure 2b) are dominated by two characteristic GNF bands: 

the G (graphitic) band – a carbon-carbon stretching vibration of E2g symmetry, typically observed 

in graphitic nanocarbons – at ~1580 cm-1 and the D (disorder) band – a ring-breathing mode of A1g 

symmetry, requiring a defect for its activation – at ~1340 cm-1.50 Interestingly, a small increase in 

the intensity ratio of the D and G bands (ID:IG) in the CeO2@GNF nanocomposites relative to GNF 

was observed, indicating a change in the structural ordering in the graphitic sidewalls of GNF, 

consistent with the shortening/opening and thermal treatments employed during the preparation of 

the nanoreactors.48 In addition, a very weak band at ~450 cm-1 is observed in some of the Raman 

spectra of CeO2@GNF, consistent with the vibration of the Ce-O bond,50 confirming the formation 

of CeO2. It is important to note that the observed low intensity of CeO2 vibrations is expected 

given the large number of graphitic layers comprising the GNF sidewalls that shield the confined 

CeO2 nanoparticles, indicating that most of the ceria nanoparticles are encapsulated inside GNF.  
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Like the Raman spectra, PXRD patterns of CeO2@GNF (Figure 2c) show strong evidence for 

the presence of GNF in the composite. The diffraction peaks of GNF at 2θ = 26.0, 42.4, 44.6, 54.4 

and 77.4o correspond to the (002), (100), (101), (104) and (110) planes of the graphitic lattice,51 

and remain unchanged in CeO2@GNF. In CeO2@GNF-1, no significant new peaks corresponding 

to CeO2 are observed, which can be attributed to a low amount or very small size of CeO2 

nanoparticles. However, for CeO2@GNF-3, which contains the highest amount of ceria, the PXRD 

pattern contains four new peaks at 2θ = 28.3, 32.8, 47.3 and 56.3o corresponding to the (111), 

(200), (220) and (311) crystal planes of CeO2 (JCPDS card no. 43-1002), which are less prominent, 

but still measurable, in CeO2@GNF-2. The PXRD patterns confirm the crystalline nature of CeO2, 

exhibiting a face centred cubic fluorite crystal lattice.29 For CeO2@GNF-3, the crystallite size of 

the CeO2 can be estimated from the full width half maximum (FWHM) of the (111) peak at 2θ = 

28.3o using the Scherrer equation52 as ~9 nm. Therefore, the fact that CeO2 peaks are more 

prominent in CeO2@GNF-3 is related to the highest content of ceria and thus the increase in the 

size of CeO2 nanoparticles, consistent with previous reports.53 

Although the TGA, Raman spectroscopy and PXRD results all suggest the formation of a 

nanocomposite of CeO2 and GNF, the location of CeO2, i.e. inside or outside GNF, could only be 

ascertained from transmission electron microscopy (TEM). Interestingly, TEM imaging reveals 

CeO2 nanoparticles are well dispersed inside the GNF in all samples (Figure 3). At the lowest 

amount of cerium precursor (1 mg in CeO2@GNF-1), effectively all CeO2 nanoparticles are 

observed to be embedded inside GNF (Figure 3a); however, at higher precursor loadings (3 mg 

in CeO2@GNF-3), a noticeable, but still minor, number of nanoparticles were found on the outer 

surface of GNF (Figure 3c and S2a and d, SI). This indicates that the best level of control over the 

location of nanoparticles is achieved with the smallest amount of the precursor complex. 
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Consistent with previous studies, CeO2 nanoparticles are found to be preferentially adsorbed at the 

internal step-edges of GNF (Figures 1, S2b and c, SI). Furthermore, mean diameters of ceria 

nanoparticles of 4.6±0.2, 6.2±0.6 and 8.5±0.3 nm were determined by TEM for CeO2@GNF-1, -

2 and -3, respectively (insets in Figures 3a-c), the latter of which matching well with the size 

estimated from PXRD, clearly showing the positive correlation between nanoparticle size and 

precursor concentration.54 High resolution TEM images (Figure 3e) of CeO2 nanoparticles show 

clear atomic fringes with interplanar d-spacings of 0.32 nm corresponding to the (111) planes of 

ceria, and EDX spectroscopy analysis identifies Ce and O in the correct stoichiometry for 

CeO2@GNF (Figure 3d). However, more detailed analysis by XPS (Figure 2d) indicates the 

existence of an oxygen-depleted surface containing both Ce4+ (78.8 at%) and Ce3+ (21.2 at%) based 

on deconvolution of the Ce 3d signal (Figure S3 and Tables S1-2, SI).55,56 The presence of Ce3+ is 

significant for our reaction, as Ce3+ is known to be key for initiation of radical-mediated organic 

transformations. 
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Figure 3. HRTEM analysis of CeO2 nanoparticles encapsulated inside GNF (CeO2@GNF). HRTEM images of CeO2@GNF-1, -

2 and -3 (a-c) and corresponding size distribution histograms of CeO2 nanoparticles (inset). The EDX spectrum of CeO2@GNF-3 

(d) confirms the elemental composition and stoichiometry of Ce and O in CeO2 (Ce:O is 0.5:1.0). HRTEM images of the CeO2 

nanoparticles encapsulated inside GNF (nanoparticle diameter indicated by the double-headed red arrow) showing d-spacing of 

0.32 nm (e). 

 

CeO2@GNF in the oxidation of cyclohexene  

The CeO2@GNF composites were tested as initiators in the oxidation of cyclohexene by tert-

butylhydroperoxide. This specific reaction was chosen as it is known to proceed through two 

different routes, either via allylic or olefinic oxidation, leading to the formation of five main 
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products57-60, with the ratio of these products influenced by the conditions of the reaction, including 

the oxidant, temperature, time, pressure and solvent.61,62 Under our experimental conditions of 80 

oC for 9 hours in acetonitrile, the control reaction (entry 1, Table 1) gave 18% conversion for 

cyclohexene with the formation of products via both allylic (2-cyclohexenylhydroperoxide (1)) 

and olefinic (cyclohexaneepoxide (4)) oxidation pathways in a 50:50 ratio of (1):(4) indicating low 

selectivity of this reaction. In the presence of empty GNF (entry 3, Table 1), the conversion 

increased to 45% with the formation of only allylic oxidation products (1), (2) and (3). The 

observed higher conversion is consistent with the known effect of decomposition of peroxy 

compounds, here TBHP, in the presence of graphitic carbon surfaces generating reactive oxygen 

species, i.e. hydroxyl radicals.63,64 The key effect of the presence of ceria in CeO2@GNF, as 

compared to empty GNF, is a significant increase of conversion (up to 94%) with 2-cyclohexenone 

(2) and 2-cyclohexenyl hydroperoxide (1) as major products observed for CeO2@GNF-2 (entry 5, 

Table 1 and Figure 4a). Comparison of the CeO2@GNF nanoreactors with different loadings of 

ceria (CeO2@GNF-X where X=1,2,3) did not reveal significant differences in terms of 

cyclohexene conversion (Figure S5 and Table S3, SI). Interestingly, we noted a clear dependence 

on the specific distribution of products as a function of reaction time using CeO2@GNF-2 (Figure 

4c). At 7 hours, the yield of (1) is maximal at 89% selectivity (entry 4, Table 1), at a high 

conversion of 88%. As the reaction proceeds, (1) is consumed to produce both (2) and (3), with a 

conversion of 100% and moderate selectivity of 56% for (2) observed at 24 hours (entry 6, Table 

1). This indicates that the preferred product ((1) or (2)) can in principle be obtained in high yield 

and moderate-to-good selectivity simply by stopping the reaction at a user-specified time point. 
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Table 1. The effects of CeO2 loading, particle size, reaction time and location in GNF and on graphite and activated carbon on the 

conversion of cyclohexene and distribution of the afforded products: 2-cyclohexenyl hydroperoxide (1), 2-cyclohexenone (2), 2-

cyclohexenol (3), cyclohexane epoxide (4) and 1,2-cyclohexanediol (5). 

 

Entry Species a CeO2 loading / % 

b 

Particle size nm c Reaction time 

/h 

Conversion / % d Selectivity / % 

(1):(2):(3):(4):(5) d 

 

1 None - - 9 18 50:0:0:50:0  

2 e    9 0 0:0:0:0:0  

3 GNF - - 9 44             60:22:18:0:0  

4 CeO2@GNF-2 5.9 6.2±0.6 7 88 89:11:0:0:0  

5    9 94 66:34:0:0:0  

6    24 100 28:56:16:0:0  

7 CeO2@graphite 3.7 6.7±1.8 9 30 93:7:0:0:0  

8 CeO2@AC  4.8 4.5±0.8 9 41 84:12:4:0:0  

a Reaction conditions: cyclohexene (2.9 mmol), TBHP oxidant (5.8 mmol), 1,4-dichlorobenzene internal standard (1.44 mmol), acetonitrile (2.5 mL), 

80 oC. b Determined by TGA. c Determined by TEM. d Determined by 1H NMR spectroscopy. e Under anaerobic conditions. 
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Figure 4. The conversion of cyclohexene obtained using CeO2@GNF (here CeO2@GNF-2) relative to control experiments as a 

function of time (a) and repeat use (b). The dotted horizontal line in (b) represents the conversion obtained in control experiments 

as reference. The change in selectivity for the products 2-cyclohexenyl hydroperoxide (1) and 2-cyclohexenone (2) with time (c), 

demonstrating the user-specificity of product selection using CeO2@GNF. A proposed pathway for the oxidation of cyclohexene 

by ceria in CeO2@GNF; Ce3+ reacting with the peroxide reagent triggers a flux of radicals initiating a cycle of reactions with O2 

biradical leading to compound (1) which subsequently transforms to (2) (d). 

 

It is important to note that the lack of products from the olefinic oxidation pathway differs 

significantly from previous reports on the oxidation of cyclohexene with TBHP using CeO2 

nanoparticles, where a mixture of (2), (3) and (4) were identified as major products (Table S4, 

SI).65 In addition, Voort et al.66 reported the formation of both (4) and (1) as products of 

cyclohexene oxidation by TBHP, suggesting the reaction proceeds through both allylic and olefinic 
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oxidation pathways. Moreover, it should be highlighted that our nanoreactors CeO2@GNF have 

very small ceria loadings (0.13 mol%) (Table S4, SI) compared to previous reports (by more than 

two orders of magnitudes in some instances),  with up to 95 wt% of CeO2 in CeO2/VO2 – more a 

stoichiometric reactant than a catalyst – required to bring about effective oxidation.65  

In order to study the stability, and thus recyclability, of CeO2@GNF, we have evaluated the 

cyclohexene conversion using CeO2@GNF over five uses. After each use, the catalyst was filtered 

and washed repeatedly with methanol and kept overnight at 65oC in air. The conversion of 

cyclohexene was found to subtly increase from the first to the third use, with a very small decrease 

observed thereafter (Figure 4b). The increase in conversion after the first use can be attributed to 

the cleaning of the nanoparticle surface under the reaction conditions.67 TGA profiles of fresh and 

recycled CeO2@GNF (Figure S4, SI) shows no significant loss of CeO2 content even after five 

uses, indicating good stability of CeO2@GNF to leaching.  

The enhanced cyclohexene conversion observed with CeO2@GNF, and its associated stability 

towards repeat use, can be attributed to the effects of spatial confinement of CeO2 inside GNF. 

This has been shown to lead to: (i) well dispersed CeO2 nanoparticles of very small diameter (3-8 

nm), protected at the graphitic step-edges from deactivation mechanisms, yet providing a large 

surface area for the adsorption of reactant molecules; (ii) increased local concentration of reactants 

inside nanoreactors promoting the effective interaction between reactant molecules and CeO2, thus 

improving conversion and (iii) easy diffusion of reactant and product molecules to and from the 

nanoreactor, while maintaining strong local interactions with the CeO2 nanoparticles at the GNF 

step-edges. These effects are consistent with the spatial confinement observed for other 

nanoparticles inside carbon nanoreactors, including GNF, that often result in highly selective 

organic transformations use-to-use.25,26  
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The importance of confinement 

To validate the importance of step‐edges and nanoscale confinement inside GNF on the 

functional properties of ceria, CeO2 nanoparticles were separately deposited onto activated carbon 

(AC) and graphite flakes (Figure S6, SI). AC and graphite both provide anchoring sites for 

nanoparticles, akin to GNF, but no spatial restrictions as inside the GNF cavity. TEM analysis 

(Figure S6c-g, SI) indicates that ceria nanoparticles on AC and graphite are uniformly distributed 

on both carbons and are qualitatively similar in size to those observed in CeO2@GNF. A 

preference for cubic morphology was noted for CeO2 on graphite. Interestingly, TGA (Figure 

S6a,b) shows clear differences in the combustion temperature of the carbon supports after 

deposition of ceria: a significant reduction (by more than 200 oC) was observed for AC; only a 

minimal difference was recorded using graphite. This suggests a higher intimacy of contact 

between CeO2 and AC, like that observed using GNF, relative to graphite where contact is poorer. 

However, 1H NMR spectroscopy analysis indicates lower conversion in the oxidation of 

cyclohexene using both CeO2@AC and CeO2@graphite relative to CeO2@GNF (entries 7, 8 and 

5, respectively, Table 1). Moreover, whilst cyclohexene conversion is largely retained after the 

first use of CeO2@AC, this drops significantly when using CeO2@graphite (Figure 3b) indicating 

low stability, and thus recyclability, of ceria on this carbon support. Thus, whilst we cannot rule 

out additional factors that may contribute to the observed reactivity and stability of CeO2@GNF, 

these observations suggest the importance of nanoscale confinement inside GNF nanoreactors, 

providing a new way to enhance cyclohexene conversion, use-to-use, whilst simultaneously 

improving the selectivity for allylic oxidation at very low loadings.  
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Mechanistic considerations 

Based on our results and previous literature concerning the TBHP-mediated oxidation in the 

presence of CeO2 and transition metals68-70, a plausible mechanism for the oxidation of 

cyclohexene can be proposed (Figure 4d). Since no epoxide is detected during the reaction, the 

formation of products through the selective oxidation of the allylic carbon centre by free radicals 

appears the most viable option. Our XPS measurement demonstrated that ~20% of cerium cations 

in CeO2@GNF are in oxidation state Ce3+. The redox reaction of Ce3+ centres with t-BuOOH 

yields t-BuO. radicals, similar to the process described for other nanoscale materials.71-73 The free 

radical t-BuO. extracts the allylic hydrogen from cyclohexene to form the cyclohexenyl radical, 

which becomes trapped by atmospheric O2 to form 2-cyclohexenyl peroxide radical.74,75 The 

critical role of atmospheric oxygen was ascertained in control experiments, under anaerobic 

conditions, where negligible conversion was observed (entry 2, Table 1). The 2-cyclohexenyl 

peroxide radical subsequently abstracts hydrogen from the allylic CH2 of another molecule of 

cyclohexene to form 2-cyclohexenyl hydroperoxide (1),76,77 the existence of which is confirmed 

by 1H NMR spectroscopy. This homolytic abstraction of hydrogen is also energetically favourable: 

the bond energies of RO-H and the allylic C-H bond are 90 and 85 kcal mol-1, respectively.78 In 

effect, ceria nanoparticles act as an initiator of the free-radical allylic oxidation cycle which then 

continues producing (1) which in turn forms (2). The low amount of HO. radicals in this process 

explain the low yield of product (3), only observed after extensive heating, which forms without 

ceria in GNF on shorter timescales.  
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Analysis of CeO2@GNF after the reaction offers additional mechanistic insights. XPS shows no 

significant changes in the ratio between Ce4+ (78.1%) and Ce3+ (21.9%), but a shift of ca. 1 eV 

towards higher binding energy in all Ce 3d components. The shift is likely to be associated with 

the presence of hydroxyl groups on ceria after the reaction (bi-product of peroxide decomposition; 

Figure 3d), which corroborates with a large increase of the O 1s peak at ca. 532 eV associated to 

hydroxyl groups (Figure S3d, SI). This suggests that GNF acts as an electron reservoir 

compensating for the loss of electrons in ceria, as observed previously for other metal compounds 

inside carbon nanotubes,79,80 effectively restoring the Ce4+/Ce3+ balance.  

 

CONCLUSIONS 

A method for the preparation of very small CeO2 nanoparticles encapsulated inside graphitised 

carbon nanofibres by gas phase thermal decomposition of cerium complex [Ce(tmhd)4] has been 

developed. The average size of CeO2 nanoparticles inside GNF can be tuned from ~4 to 9 nm by 

adjusting the ratio of the precursor complex to GNF. CeO2 nanoparticles deposited at the graphitic 

step-edges of GNF promote cyclohexene oxidation, demonstrating a significantly improved 

conversion and exclusive selectivity towards allylic oxidation products as compared to previously 

reported ceria nanomaterials. Analysis of the product distribution with and without CeO2 in GNF 

suggests that the allylic pathway of the reaction is dictated by the carbon nanoreactor itself while 

the presence of cerium oxide enhances the efficiency of the nanoreactor CeO2@GNF leading to 

higher conversion, playing the essential role of initiator in the production of cyclohexenyl 

hydroperoxide. Furthermore, comparison of CeO2@GNF nanoreactors with different sizes of ceria 

nanoparticles demonstrated that ~6 nm nanoparticles are most active and deliver the highest yield 
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of 2-cyclohexenone. Investigations of the oxidation reactions with nanoparticles not confined to 

nanoscale volumes highlight the ability of the GNF to enhance cyclohexene conversion, whilst 

simultaneously improving the selectivity for the allylic oxidation at low loadings, and maintaining 

the balance of oxidation states in ceria by effectively acting as a reservoir of electrons. Importantly, 

these nanoreactors CeO2@GNF could also be easily separated from the reaction mixture and 

reused, largely retaining their performance over at least five uses. This factor makes these 

nanoreactors a suitable candidate for the sustainable use of lanthanide-based materials in 

preparative organic synthesis. 
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