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Abstract 

[FeFe]-hydrogenases are the enzymes responsible for high yield H2 production during dark 

fermentation in bio-hydrogen production plants. The culturable bacterial population present in 

a pilot-scale plant efficiently producing H2 from waste materials was isolated, classified and 

identified by means of 16S rDNA gene analysis. The culturable part of the mixed population 

consists of nine bacterial species that include non-hydrogen producers (Lactobacillus, 

Enterococcus and Staphylococcus) and several Clostridium that are directly responsible for H2 

production. 

An extensive analysis of the expression of [FeFe]-hydrogenases in the three best producer 

strains was achieved by RT-PCR, covering the complete set of known genes for each species. 

This revealed that during H2 production there are several different [FeFe]-hydrogenases 

simultaneously expressed, with genes belonging to the same phylogenetic and structural 

classification sharing similar transcriptional profiles. 
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1. Introduction 

The characterisation of bacterial consortia involved in H2 production in pilot-scale and 

operative plants with dark fermentation is of applicative and theoretical importance. In fact, 

dark fermentation is recognised as a feasible method for sustainable hydrogen production 

combined to treatment and valorisation of waste biomasses [1, 2].  

A crucial point for a biotechnological approach is that of devising methods to optimise and 

stabilise the microbial consortia that ensure high productivity [2, 3], as well as elucidating the 

biochemical pathways that can be tuned or controlled for the hydrogen production purpose. A 

particular interest concerning the precise mode and timing of hydrogen production is relevant 

for bio-hytane production, a very promising fuel that can be obtained in two-phase dark 

fermentation plants by suitably combining bio-hydrogen and bio-methane streams [4]. 

The characterisation of the bacterial populations, including both hydrogen producers and non 

producers, provides information that can support the improvement of hydrogen production. In 

fact, hydrogen producers can have very different metabolic strategies resulting in variable 

yields of hydrogen. The study of the consortia still lacks some crucial points, such as a 

complete listing and characterisation of the diversity of genes -and proteins- that in hydrogen 

producers are the first responsible for high hydrogen productivity, namely hydrogenases. In 

this respect, there are recent works on the non-hydrogen producers [2,5-8], while concerning 

hydrogenases diversity in strains found in dark fermentation plants the available papers focus  

only on few genes and proteins. In particular the diversity of [FeFe]-hydrogenases has not yet 

been fully investigated in the perspective of achieving optimised performances in dark 

fermentation plants. Thus, the study of new [FeFe]-hydrogenases, their time and mode of 

expression, leads to a better knowledge of the mechanisms of catalysis for improved 

biotechnological applications [9-15]. 
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[FeFe]-hydrogenases are the best performing hydrogen producing biocatalysts [16-21], with 

turnover frequency of up to 104 s-1. These enzymes have a modular structure: in addition to 

the catalytically active domain (named H-domain), several other accessory domains may be 

present [17, 22]. Moreover, the functional enzymes can be monomeric, dimeric, trimeric or 

tetrameric, having the various domains on the same polypeptide chain or separated over one 

or more subunits. The detailed analysis of the sequences of [FeFe]-hydrogenases allows the 

definition of different groups and subgroups on the basis of the phylogenesis and domains 

composition [23]. 

The main feature common to all known [FeFe]-hydrogenases is the highly conserved part of 

the H-domain surrounding the active site. This region is characterised by three signature 

sequences containing the four cysteines that coordinate the active site and are named motifs 

L1 (TSCCPxW), L2 (MPCxxKxxE) and L3 (ExMACxxGCxxG) [23]. 

The detailed analysis of the [FeFe]-hydrogenases observed into the genus Clostridium 

revealed a very large number of enzymes with an exceptional diversity [23, 24]. Even within 

the same strain up to 8 genes encoding for different [FeFe]-hydrogenases can be detected, all 

belonging to different groups, thus suggesting different roles, interactions with several 

physiological redox partners and a complex regulation of the biological function of each 

enzyme. 

So far, the high diversity of [FeFe]-hydrogenases has been studied both in natural 

environments [25-27] and several pilot scale plants for H2 production [28-30]. 

Here the [FeFe]-hydrogenases diversity is investigated in the bacteria isolated from a pilot 

scale plant for H2 production fed with waste materials that was previously described [31]. The 

high efficiency observed suggested the involvement of highly efficient H2 producing 

microorganisms and highly efficient hydrogenases.  
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With the aim of characterising the vital form of the bacterial species present in the plant, the 

culturable part of the population present at the time of highest percentage in hydrogen 

produced was isolated, giving specific, although partial, insights into the composition of the 

consortium responsible for the wastes degradation and H2 production. Extensive RT-PCR 

analysis of the [FeFe]-hydrogenases expressed by the isolated hydrogen-producing strains is 

presented. 

The novelty of this work is that RT-PCR was performed covering the complete set of known 

[FeFe]-hydrogenase genes as available in databases and classified in recently published 

literature [21, 23, 24], while several previous studies in various microorganisms have focused 

on a single [FeFe]-hydrogenase gene only [29, 32-38]. 
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2. Materials and Methods 

2.1. Pilot-scale plant set-up and operation 

Dark anaerobic fermentation was carried out in a continuous stirred tank reactor (CSTR) of 35 

litres, equipped with pH, oxidation/reduction potential and temperature control system. The 

temperature control was done through the inlet of hot water in the heating jacket; to avoid 

stratification, the pilot reactor was provided with an external recirculating system through a 

peristaltic pump.  

The substrate used for the fermentative process was a mixture composed of 80% of fruits and 

vegetables wastes and 20% of manure (20 mg/mL total suspended solids-2% total suspended 

solids), supplemented with a micronutrient medium previously described [31]. 

The inoculum used (10%v/v) was a digested sludge coming from the municipal wastewater 

treatment plant of Torino, chemically pretreated with HCl for 24 hours at pH 3 to inhibit the 

methane forming bacteria and enrich the H2 producing flora [39-41]. 

The operating volume was 25 litres, nitrogen gas was injected till no oxygen was detected to 

create adequate anaerobic conditions, pressure inside the reactor was set at values around 20-

30 mbar. The experiment was carried out at pH 5-6 and temperature between 25 and 30°C. 

The volume of gas produced was measured through a drum-type gasmeter (Dr.-Ing. Ritter 

Apparatebau GmbH & co.) whereas the gas composition (H2 and CO2 mainly) was 

determined by using a micro gas chromatograph (Varian, CP4900).  

2.2. Isolation of culturable bacteria 

Bacteria were isolated from a sample of the digestate present in the plant during its operation. 

Un-treated samples were diluted and directly plated on the rich non selective “Clostridial 

nutrient” medium (Sigma-Aldrich) agar plates. Alternatively, to select for spore-forming 

microorganisms, the sample was heat-treated at 80°C for 10 minutes prior to dilution. Plates 



 7 

were incubated under anaerobic conditions into “Anaerogen” bags (Oxoid) at 37°C over 

night. 

Forty single and isolated colonies with different morphology were randomly selected and pure 

cultures were obtained by an additional passage on plate. 

Morphological characterisation was obtained using Gram staining. Discrimination between 

obligate and facultative anaerobes was obtained detecting the growth on plates incubated 

under anaerobic or aerobic conditions. 

2.3. 16S rDNA amplification, RFLP analysis and sequencing 

Genomic DNA was extracted from colonies of each isolate by rapid freeze-thawing in sterile 

water [42]. 16S rDNA gene was amplified from genomic DNA by PCR using the proof-

reading polymerase “KOD Hot Start DNA polymerase” (Merck Millipore) and the two 

universal primers 27F (5’-AGAGTTTGATYMTGGCTCAG) and 1492R (5’-

TACGGYTACCTTGTTACGACT) [42]. 

Restriction fragment length polymorphism (RFLP) analysis was performed using the four 

restriction endonucleases  AluI, HaeIII, HhaI and TaqI (Thermo Scientific) that were 

previously reported to have a high discriminatory power [43]. The amplified 16S rDNA 

fragment was digested following the manufacturer’s instructions. DNA fragments were 

separated by electrophoresis on 1.5% w/v agarose gels in 1x TAE stained with SYBR® Safe 

(Invitrogen) using “PerfectSize DNA Molecular Weight 100 bp XL Ladder” (5Prime) as a 

reference. 

After classification, two isolates per each group were identified by sequencing the entire PCR 

fragment from an external company (Eurofins MWG Operon, Germany). The sequences were 

compared with the NCBI database using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Exact matches were found for each sequence with 100% identity. 

2.4. Quantification of H2 production yield of the strains 
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Pure cultures of each species were grown in sealed glass vials under an anaerobic argon 

atmosphere at 37°C with shaking. The vial contained a medium that was previously reported 

[42] containing 100 mM potassium phosphate, 17 g/L tryptone, 3 g/L peptone papaic digest of 

soybean, 10 g/L glucose, initial pH 7.0. 

The gas phase was sampled with a SampleLock Gastight syringe (Hamilton) and analysed by 

gas chromatography, at least in three replicates. The gas chromatographer (Agilent 

Technologies 7890A) was equipped with purged packed inlet, Molesieve 5A column (30 m, 

ID 0.53 mm, film 25 mm) and thermal conductivity detector; argon was used as carrier gas. 

2.5. RT-PCR 

Samples were taken from the pure cultures at the time points shown in Figure 4. Total RNA 

was extracted and purified using the kit “Total RNA isolation NucleoSpin® RNA II” 

(Macherey-Nagel). Since genomic DNA contamination was often observed, the total RNA 

was also subjected to an additional DNAse I treatment (Sigma-Aldrich). 

Reverse transcription of total RNA into cDNA was achieved with random hexamers using 

“Maxima H Minus First Strand cDNA Synthesis Kit” (Thermo Scientific) after normalisation 

of the concentration. 

Specific primers were designed for each target gene using the tool “eprimer3” 

(http://emboss.bioinformatics.nl/cgi-bin/emboss/eprimer3) and the genome sequences 

deposited in the NCBI database: Clostridium beijerinckii (NC_009617.1), Clostridium 

butyricum (PRJNA54843) and Clostridium perfringens (NC_008261.1). Specificity was 

tested by checking the sequence of each primer against the sequence of the other [FeFe]-

hydrogenase genes; moreover the PCR products have been sequenced showing the specific 

amplification of the target gene only. 
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Detection of each transcript was obtained by PCR using “KOD Hot Start DNA polymerase” 

and the following conditions: 95°C for 2 minutes, 38 cycles of 95°C for 20 seconds, 53°C for 

10 seconds, 70°C for 14 seconds. 

During RT-PCR, opportune controls were always performed as follows: genomic DNA 

(positive control), no template (NTC) and no reverse transcriptase (RT-). The 16S rDNA gene 

was also included in the RT-PCR analysis to validate the quality of the cDNA and to be used 

as a reference for the semi-quantitative estimate of the other transcripts. 
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3. Results 

 

3.1. Hydrogen production via dark anaerobic fermentation in a CSTR reactor. 

The pilot scale plant for H2 production from waste materials, designed and built within the 

“BioEnergy Lab” of the “Environment Park” in Torino, Italy, has already been described [31]. 

This plant showed to be efficient in the production of H2 from a number of different wastes; 

the biogas recovered could be directly used to generate electricity [31]. 

For the present study the plant was fed with a mixture of vegetable wastes from food markets 

supplemented with 20% manure. The inoculum was composed of sludge from a wastewater 

treatment plant that was pre-treated with HCl to inhibit the methanogenic microorganisms. 

After a lag time of 30h and a batch phase of 60h, the plant was operated with a hydraulic 

retention time (HRT) of 30h. The production of hydrogen and CO2 was followed as a function 

of time. Hydrogen percentage ranged between 20 and 50%, with a maximum value of 54-55% 

(Figure 1). This value is interestingly higher in comparison to previously published 

percentages, typically in the range 20-40% [44, 45]. 

The average hydrogen production rate was 0.9 L/h with a maximum yield of 72.6 mLH2/g 

volatile suspended solids and a productivity of 0.72 (LH2) (L culture)-1 day-1. No methane 

production was observed, demonstrating that acid pre-treatment of inoculum is an effective 

method to avoid methanogenesis during fermentation. 

A sample of the digestate was taken (Figure 1) at the maximum hydrogen production 

percentage (54% of hydrogen, 46% of carbon dioxide) with a close-to-average hydrogen 

production rate (0.9 L/h) for the isolation of the culturable bacteria. 
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Figure 1 - Amount and rate of hydrogen production in the pilot plant. The left vertical axis is 

referred to the gas production rate; the right axis is referred to the percentage of hydrogen on 

total gas produced (the main other gas is represented by CO2). The dashed vertical line 

indicates the time when the sampling of the digestate was performed for studies of microbial 

flora isolation. (1 column fitting). 

 

3.2. Isolation and characterisation of the culturable bacterial population. 

All the isolates were classified on the basis of cell morphology after Gram staining and the 

ability to grow also in the presence of oxygen, thus discriminating the obligate from the 

facultative anaerobes (Table 1). 

Subsequently, the isolates were classified in more details on a molecular basis, by means of 

16S rDNA gene restriction fragment length polymorphism (RFLP) analysis which allowed 

the subdivision of all the isolated strains into 9 different groups (Figure 2). 

Each group was then identified by sequencing the entire 16S rDNA gene amplicon and 

searching against the NCBI database; exact matches were found per each sequence with 100% 

identity. The 9 groups were identified as 9 different bacteria (Table 1) and resulted to be four 

species of the genus Clostridium, three species of the genus Enterococcus, one species of the 

genus Lactobacillus and one species of the genus Staphylococcus. 

The ability to produce H2 was assayed to investigate the direct involvement in H2 production 

of each species (Table 1). This showed that only the four species of the genus Clostridium are 
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able to produce H2. Among them, the bacterium showing the highest hydrogen production 

yield is C. beijerinckii SM10, followed by C. butyricum SM32, C. perfringens SM09 and C. 

bifermentans SM11. 

 

ID Species Strain Cell morphology Spores Anaerobe mL H2 / g glucose 
1 Clostridium beijerinckii SM10 bacilli, Gram + - Obligate 247.2 ± 9.6 
2 Clostridium butyricum SM32 bacilli, Gram + + Obligate 136.3 ± 4.6 
3 Clostridium perfringens SM09 bacilli, Gram + - Obligate 130.6 ± 3.0 
4 Clostridium bifermentans SM11 bacilli, Gram + + Obligate 97.1 ± 9.2 
5 Lactobacillus plantarum SM21 bacilli, Gram + - Facultative 0 
6 Enterococcus sp. SM01 cocci, Gram + - Obligate 0 
7 Enterococcus devriesei SM03 cocci, Gram + - Obligate 0 
8 Enterococcus sp. SM08 cocci, Gram + - Facultative 0 
9 Staphylococcus hominis SM17 cocci, Gram + - Facultative 0 

 

Table 1 - Summary of the culturable strains identified in the pilot plant. Each species was 

identified by 16S rDNA gene sequencing. Cell morphology and the presence of spores were 

determined by Gram staining of the isolated strains. The ability to grow in the presence of 

oxygen allowed discrimination between obligate and facultative anaerobes. The ability of 

each species to produce H2 was determined. Strains 1 to 4 were isolated from heat-treated 

samples, while strains 5 to 9 were isolated from un-treated samples. 
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Figure 2 - 16S rDNA gene RFLP analysis summary of the nine strains isolated from the pilot 

plant. The 16S rDNA gene was amplified by PCR and digested with the following restriction 

endonucleases: AluI (cuts AGCT), HaeIII (cuts GGCC), HhaI (cuts GCGC) and TaqI (cuts 

TCGA). (1.5 column fitting). 

 

3.3. [FeFe]-hydrogenase genes expression during H2 production. 

Fermentative hydrogen production in the genus Clostridium requires the catalytic activity of 

hydrogenases, redox enzymes that use protons as the final electron acceptors in the cellular 

energy metabolism [23, 46]. Analysis of the known Clostridium species genomes revealed 

that each species does not posses a single gene encoding for this enzyme but many genes, 

usually between 2 and 8, encoding for different hydrogenases [23, 24]. Most of the genes are 

annotated to encode for [FeFe]-hydrogenases, usually involved in H2 evolution, and only few 

of them encode for [NiFe]-hydrogenases, usually involved in H2 uptake. Thus, the genome 

sequence analysis revealed a complex framework with many genes and enzymes potentially 

involved in H2 production that so far is supported by very few experimental data concerning 

the physiological role of the various hydrogenases. 

The genomes of the three species with the highest hydrogen production yield isolated here 

have been previously sequenced: C. beijerinckii NCIMB 8052, C. butyricum 5521 and C. 

perfringens ATCC 13124. Altogether, they have annotation of 14 genes encoding for different 

[FeFe]-hydrogenases (Figure 3) that belong to different modular structure and phylogenetic 

classification [23, 24]. Most genes encode for monomeric enzymes, while only three of them 

encode for heterotrimeric enzymes. All the gene products are predicted to be cytoplasmic, 

with the exception of that belonging to cluster A3 (structure TR(M2)). It has to be noted that 

only C. beijerinckii has also a gene annotated to encode for a [NiFe]-hydrogenase. 



 14

Interestingly, most of these genes or enzymes have never been studied into details before. C. 

butyricum and C. perfringens have a gene encoding for an [FeFe]-hydrogenase of the M3 

structure; enzymes from this group (CpI and CaHydA) are known to be directly involved in 

H2 production and they have been previously characterised in details in C. pasteurianum [47-

50] and C. acetobutylicum [20, 33, 51, 52] respectively. On the contrary, C. beijerinckii lacks 

enzymes of this well known type. 

In order to study the transcriptional levels of each of these genes in hydrogen production in 

the three strains isolated here, their expression at mRNA level was studied by RT-PCR during 

the growth of pure cultures. 

Interestingly, H2 evolution occurs mainly during the exponential growth phase in C. 

beijerinckii SM10 and C. butyricum SM32, while it is mainly observed during the late 

exponential and stationary phase in C. perfringens SM09 (Figure 4), thus suggesting 

important differences in the role of H2 production in the metabolism. On the basis of the 

relationship between growth and H2 production, time points were selected for the study of 

[FeFe]-hydrogenase expression. 

Specific primer couples targeting each gene were designed (Table 2) on the basis of the 

sequenced genomes and tested with the genomic DNA of C. beijerinckii SM10, C. butyricum 

SM32 and C. perfringens SM09. PCR fragments with the expected length could be amplified; 

DNA sequencing of the PCR product demonstrated the specificity and efficiency of the 

amplification and also the presence of each gene in the genome of the strains isolated from the 

plant (data not shown). 

RT-PCR (Figure 3) showed that transcripts of all the [FeFe]-hydrogenases analysed could be 

detected. Moreover, the transcriptional profiles were interesting: most genes were 

constitutively expressed and only few of them showed a modulation. 
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Figure 3 - [FeFe]-hydrogenase genes expression in C. beijerinckii SM10, C. butyricum SM32 

and C. perfringens SM09. The expression was studied by RT-PCR, using the 16S gene as a 



 16

reference. The modular structure classification and the domains composition refer to the 

enzyme in accordance with the classification proposed before [23]. (2 column fitting). 

 

 

 

Figure 4 - Hydrogen production by pure cultures of Clostridium beijerinckii SM10, C. 

butyricum SM32 and C. perfringens SM09. The growth was monitored by measuring the 

OD600 (black line). The cumulative H2 production (grey line) was monitored by gas 

chromatography. The time points selected for the study of [FeFe]-hydrogenase genes 

expression are marked by dotted lines. (2 column fitting). 

 

Gene Forward Reverse Length 
Cbei_1773 GTATTGGATGCGGAGCTTGT TCCTGGTTCAAAGCCAAAAG 260 bp 
Cbei_0327 TCATGTCCAACAGGTGCATT CCGCCTGAGATCTTTACTGG 770 bp 
Cbei_1901 CGGTTTCACCTATGGTTGCT TCGGCTGATTCCTTACCTTG 484 bp 
Cbei_4110 CAGCGGAACTATGTGCAATG CCGCACCAGCTATACATCCT 381 bp 
Cbei_3796 AGCCAGTGTTTGCAGCTTTT TGCAGCTTCCATTACACCAC 683 bp 
Cbei_4000 GGCAGCAGCTCTTTTTGGTA TTTATGCACCCTCCGTTACA 279 bp 
CBY_3049 TCACCAATGGTTGCTACAGG ACCTATTGCAAACCCCCTTC 246 bp 
CBY_2300 ATGGGTTAGGCAAGCAGAAA GCTGGATCTGCCTTCTCATC 312 bp 
CBY_2047 CCAGCAGTAAGGGTTGCACT CCAAACATTTCCATTGGTGA 401 bp 
CBY_2676 CCTATGTGGGTTGGCATGTT TAAGGGTTTTTGGACCACCA 514 bp 
CPF_2655 AAGGCAAGAGCTCACAAACC TAATGCATCAACTGGGCAAG 281 bp 
CPF_1076 GAGTCCAGCTTCAGCCTTTG CTCTCCTTCTGCCCCATGTA 331 bp 
CPF_0270 TCTTGCTGTTGCCCTATGTG CCTCCAACACATCCCATACC 500 bp 
CPF_2900 ATTCAATGTGGAGCCTGTGT CTTTGCAAGCCATTCCTTCT 769 bp 

 

Table 2 – List of the primers designed for RT-PCR with the size of the amplified fragment. 
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4. Discussion 

The culturable part of the bacterial population present in a bio-hydrogen pilot-scale plant at 

the maximum H2 production percentage was characterised, revealing the presence of 

microorganisms belonging to the genera Clostridium, Lactobacillus, Enterococcus and 

Staphylococcus. 

The involvement of Clostridium species in H2 production is well known and they are reported 

to be able to use several waste matrices [1, 53]. Various strains of C. beijerinckii were isolated 

from several sources but, interestingly, the hydrogen production yield of the strain isolated 

here is higher than those previously reported [54-56]. Moreover C. beijerinckii is one of the 

major producers of butanol, an important solvent that can be used as biofuel [57], thus 

suggesting another possibility to recover simultaneously different valuable products from 

wastes. 

In the culturable part of the bacterial population, the presence of several species that are not 

directly involved in H2 production reveals that a complex consortium of microorganisms with 

different roles was spontaneously selected in the pilot plant, giving place to efficient matrix 

degradation and H2 production. 

Lactobacillus plantarum has been found in a wide range of natural and artificial fermentation 

processes, in particular in plant-derived matrices [58]. It is a very versatile microorganism that 

produces large amount of lactic acid and causes acidification of the fermentation medium 

[59], thus favouring the hydrogen producing microorganisms versus the methanogenic ones. 

Also Enterococcus species are found in fermentation processes, including food products, and 

have a metabolism that results in lactic acid production and acidification [60]. Interestingly, a 

consortium for hydrogen production between C. butyricum and Enterococcus saccharolyticus 

was previously reported [61]. 
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It is also interesting to consider that Lactobacillus plantarum produces various bacteriocins 

that can inhibit the growth of several microorganisms, including Clostridium, Enterococcus 

and Staphylococcus species; importantly, many strain-to-strain differences have been reported 

[59, 62-64]. Also various Enterococcus species are reported to produce bacteriocins [60, 65]. 

In this case, the coexistence of Lactobacillus plantarum and Enterococcus species with 

various Clostridium species suggests that the strains isolated here interact favourably between 

them and, conversely, that the bacteriocins potentially produced by L. plantarum [59, 62] and 

Enterococcus sp. [60] might act to select the specific strains within the consortium. 

The involvement of [FeFe]-hydrogenase in hydrogen production in Clostridium is known 

[23], but the specific investigation of the role of different [FeFe]-hydrogenases has never been 

performed before. Here, the study of the expression at the mRNA level by RT-PCR was 

performed on pure cultures of the isolated C. beijerinckii SM10, C. butyricum SM32 and C. 

perfringens SM09 during the growth, showing that all the known genes (6, 4 and 4, 

respectively) are expressed. The constitutive expression of [FeFe]-hydrogenase genes at the 

mRNA level is not simple to interpret, especially for the time points were the amount of 

accumulated H2 does not change, suggesting a post-transcriptional down-regulation of the 

functionality or an equilibrium between H2 evolution and uptake. 

C. beijerinckii SM10 shows the most complex behaviour, with two genes constitutively 

expressed in all the four time points: Cbei_0327 (M3a’ structure) and Cbei_4110 (TR(M3) 

structure). 

Interestingly, the other four genes of C. beijerinckii are variants of the M2 modular structure 

(M2a, M2b, M2c and TR(M2)) and they share a common behaviour in terms of transcripts: 

they are all down-regulated during the stationary phase. 
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Cbei_4110 was previously reported to be expressed in C. beijerinckii RZF-1108 [38] but 

surprisingly, in a recent genome-wide transcriptional analysis of C. beijerinckii NCIMB 8052, 

there is no mention of any hydrogenase genes expression levels [66]. 

C. butyricum SM32 has three genes constitutively expressed: CBY_2300 (M3 structure), 

CBY_3049 (M3a’ structure) and CBY_2047 (TR(M3) structure), while CBY_2676 (M2a 

structure) is gradually down regulated. 

CBY_2300 belongs to the M3 structure (group A2) and the encoded protein has high 

sequence similarity with the well characterised CpI and CaHydA (67.5% and 66.2% identity, 

respectively); CBY_2300 expression was previously reported both in experiments with pure 

[36] and mixed [29, 34] cultures. Moreover, CBY_2300 has already been demonstrated to 

encode for a functional [FeFe]-hydrogenase enzyme that can be heterologously expressed 

both in E. coli and C. acetobutylicum [37]. 

Cbei_4110 and CBY_2047 share a common transcriptional regulation and a high sequence 

identity (63.8%). The enzymes encoded by these genes are considered to include also other 

two subunits found in the same operon [23], resulting to be similar to the so-called 

heterotrimeric bifurcating hydrogenases, recently identified in other anaerobic species [67-

69]. These enzymes can synergistically couple the oxidation of NADH with the oxidation of 

ferredoxin, yielding H2 as a final product, and allowing a fine tuning of the electron fluxes 

within the cell [67]; nevertheless, it must be noticed that bifurcating [FeFe]-hydrogenases 

were also reported to be able to catalyse the inverse reaction of H2 uptake coupled to 

ferredoxin and NADH reduction [68]. Thus the exact physiological role of Cbei_4110 and 

CBY_2047 remains to be experimentally demonstrated. 

Despite the different kinetics of H2 production, C. perfringens SM09 genes are similar to 

those of C. butyricum SM32 in terms of classification and they share a similar transcriptional 
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profile: CPF_2655 (M3 structure), CPF_2900 (M3a structure) and CPF_1076 (M2d structure) 

are constitutively expressed, while CPF_0270 (M2a structure) is gradually down regulated. 

Like CBY_2300, also CPF_2655 belongs to the M3 structure (group A2) and the encoded 

protein has high sequence similarity with the well characterised CpI and CaHydA (68.8% and 

68.7% identity, respectively). The enzyme was never studied, but the gene was characterised 

into details: it is always expressed during the growth on glucose, in accordance with the 

results presented here, and found into two different transcripts [32]. Moreover, the disruption 

of CPF_2655 abolishes H2 productivity in C. perfringens str. 13, demonstrating its direct 

involvement in H2 production [32]. 

It is to be noticed that genes belonging to the same modular structure and same phylogenetic 

group share similar transcriptional levels even in different microorganisms, such as 

Cbei_4110 and CBY_2047 (TR(M3) structure); CBY_2300 and CPF_2655 (M3 structure); 

Cbei_0327, CBY_3029 and CPF_2900 (M3a and M3a’ structures); Cbei_1901, CBY_2676 

and CPF_0270 (M2a structure). 

 

5. Conclusions 

The culturable part of the bacterial population present in a bio-hydrogen pilot-scale plant at 

the maximum H2 production percentage was isolated and characterised, revealing that a 

complex consortium of bacteria belonging to the genera Clostridium, Lactobacillus, 

Enterococcus and Staphylococcus was spontaneously selected within the plant, participating 

to efficient matrix degradation and H2 production. 

The characterisation of the isolated Clostridium strains and the simultaneous study of the 

expression of all the [FeFe]-hydrogenase genes for each strain, as presented here, brings a 

novel contribution to the field and gives the first insights on the complex metabolic network 

of the [FeFe]-hydrogenase function. 
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