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Abstract 1 

The expression of recombinant [FeFe]-hydrogenases is an important step for the production of 2 

large amount of these enzymes for their exploitation in biotechnology and for the 3 

characterisation of the protein-metal cofactor interactions. The correct assembly of the 4 

organometallic catalytic site, named H-cluster, requires a dedicated set of maturases that must 5 

be co-expressed in the microbial hosts or used for in vitro assembly of the active enzymes. In 6 

this work, the effect of the post-induction temperature on the recombinant expression of 7 

CaHydA [FeFe]-hydrogenase in E. coli is investigated. The results show a peculiar behaviour: 8 

the enzyme expression is maximum at lower temperatures (20°C), while the specific activity 9 

of the purified CaHydA is higher at higher temperature (30°C), as a consequence of improved 10 

protein folding and active site incorporation. 11 

 12 

Keywords 13 
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 15 

50-75 words statement 16 

Post-induction temperature severely influences the recombinant expression in E. coli of the 17 

[FeFe]-hydrogenase CaHydA, a metalloenzyme hosting the peculiar catalytic centre H-18 

cluster. The best protein yield is observed at lower temperature (20°C), while the best specific 19 

activity is obtained at higher temperature (30°C), which is atypical in comparison to the usual 20 

trend for recombinant holo-enzymes.21 
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Introduction 1 

[FeFe]-hydrogenases are the enzymes that reversibly catalyse the production of molecular 2 

hydrogen, following the reaction 2H+ + 2e- ⇄ H2 [1]. They are widely distributed among 3 

prokaryotes and eukaryotes and are essential in the energy metabolism of such organisms, 4 

being usually involved in the dissipation of excess of reducing equivalents in the cell. A 5 

significant biotechnological interest has been directed to their exploitation in new, clean and 6 

efficient industrial processes for the production of H2, to be used as a valuable fuel and 7 

industrial intermediate [2-7]. 8 

The production of [FeFe]-hydrogenases by recombinant techniques has become relevant for 9 

several reasons. First of all, the recombinant techniques allow the manipulation of the protein: 10 

1) by inserting tag sequences that facilitate purification [8-10], which is highly desirable given 11 

the need to work under anaerobic conditions; 2) by inserting single mutations for the study of 12 

target residues [11-14]; 3) by generating random mutations for the study of complex features 13 

[15-19]. Moreover, recombinant expression usually grants the availability of large amount of 14 

enzyme that are required for the characterisation [9,20-24] and for the development of 15 

possible future applications [5,6,25]. Recombinant expression has also paved the way to study 16 

the mechanisms of the insertion of the catalytic centre H-cluster in the enzyme [FeFe]-17 

hydrogenases, the so-called maturation [8,21,26-29]. 18 

The recombinant systems that have been developed so far are either cell-hosted or cell-free. 19 

The systems that are cell-hosted are carried out in three different hosts: Escherichia coli 20 

[8,10,20], Clostridium acetobutylicum [9,30] and Shewanella oneidensis [31]. The cell-free 21 

systems are based on the in vitro insertion of the H-cluster into an apo-[FeFe]-hydrogenase: in 22 

some cases the maturases are added [32-35], while in others the H-cluster is inserted as a 23 

chemically synthesised complex [36,37]. 24 



 4 

Given the simplicity and the technological availability of all the components, the expression 1 

system for E. coli has been widely developed and used. In previous reports, the effect of 2 

several parameters has been optimised, but the temperature was never analysed in details, as 3 

most authors carried out the experiments at room temperature [8,10,20]. 4 

In this work, we report on the effect of the post-induction temperature on the recombinant 5 

expression of Clostridium acetobutylicum CaHydA [FeFe]-hydrogenase in E. coli with a C-6 

terminal Strep-tagII. 7 

 8 

 9 

Results and Discussion 10 

The effect of the post-induction temperature was assayed by SDS-PAGE (Fig. 1A) that allows 11 

to observe the levels of expression of the maturases CaHydF and CaHydG, as well as western 12 

blot stain against Strep-TagII (Fig. 1B) that specifically discriminates the level of CaHydA. 13 

From the functional point of view, the total H2 evolution activity was assayed on whole cells 14 

by gas chromatography (Fig. 1C). 15 

These results (Fig. 1A, 1B and 1C) clearly show that the amount of the maturases, the amount 16 

of CaHydA and the total hydrogenase activity in whole cells reach a maximum at 20°C, 17 

suggesting this temperature as the best condition. 18 

To confirm the results observed in whole cells, the enzyme was anaerobically purified by 19 

Strep-tagII affinity chromatography and the yield of pure protein and specific hydrogenase 20 

activity were measured as previously described [18]. 21 

The characterisation of the purified enzyme showed that lowering the temperature results in a 22 

significant increase of the pure protein yield, similarly to the observation in whole cells, but 23 

also a relevant decrease in specific activity (Fig. 1D). The fact that in whole cells the total 24 

activity reached a maximum at 20°C is reasonably given by the combination of a very large 25 
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amount of protein with low activity; on the contrary, at 30°C the amount of protein is much 1 

lower, but the specific activity is higher, reaching 1880±108 µmol H2/min/mg protein.  2 

Also, it is important to consider that the purified enzyme obtained by expression at 20°C 3 

formed aggregates when the concentration was increased, while the enzyme expressed either 4 

at 25°C or 30°C was readily soluble and could be concentrated by ultra-filtration up to the 5 

millimolar range. 6 

The increase in specific activity and solubility at higher expression temperature is probably a 7 

result of improved protein folding, iron sulphur clusters incorporation and maturation (i.e. 8 

incorporation of the H-cluster catalytic centre). Even if the amount of the maturases CaHydF 9 

and CaHydG is lower at 30°C, this might represent the best molar ratios between the proteins, 10 

leading to optimal kinetics of the process of the metal centre assembly, and availability of the 11 

cellular substrates, such as iron and tyrosine, resulting in a high proportion of holo-CaHydA. 12 

Lowering the post-induction temperature is a common procedure in recombinant expression 13 

of proteins in E. coli, as it usually leads to slower kinetics hence avoiding the formation of 14 

inclusion bodies and improving recovery of the target protein [38,39]. Indeed in our case this 15 

effect was observed: the protein amount was larger at lower temperatures, but it did not 16 

correlate with specific activity, as this is the result of a more complex process, as discussed 17 

above. Another possible tuning effect of the temperature might involve endogenous E. coli 18 

scaffold proteins for iron-sulfur cluster biosynthesis, which must be recruited for hydrogenase 19 

assembly, either affecting the H-cluster or the other FeS clusters inserted in this enzyme 20 

[40,41]. For example, it was shown that the scaffold protein IscU from Escherichia coli has a 21 

tight temperature control with a narrow range of activity [42]. 22 

The protocol described here, with the expression at 30°C, resulted in the highest specific 23 

activity reported so far for the recombinant CaHydA. The H2 evolution rate of 1880±108 24 

µmol H2/min/mg protein, assayed by gas chromatography with 10 mM reduced methyl 25 



 6 

viologen as artificial electron donor, is in line with the specific activity of other recombinant 1 

[FeFe]-hydrogenases (Table I) and in the same order of magnitude of other native [FeFe]-2 

hydrogenases from Clostridia [43-45]. 3 

These results may be very useful in the future to standardise the process and to simplify 4 

comparison between different enzyme preparations from different laboratories. Also, the 5 

effect of the temperature on specific activity of purified enzymes can contribute to explain the 6 

apparent incongruences previously reported in recent mutagenesis studies [11-14,18]. 7 

In conclusion, the results presented here show that the post-induction temperature has a 8 

relevant effect on the pure protein yield of CaHydA [FeFe]-hydrogenase and on the specific 9 

activity of a properly assembled H-cluster in the purified enzyme, with reverse 10 

proportionality. The maximum specific activity was observed when the post-induction 11 

temperature was 30°C. Despite the lower yield of pure protein, it is clear that the solubility 12 

and the higher specific activity, given by a higher proportion of holo-enzyme, are important 13 

factors for the characterisation of [FeFe]-hydrogenases and for their effective exploitation in 14 

future applications in biotechnology. 15 

 16 

 17 

Materials and methods 18 

Recombinant expression 19 

The plasmids pCaE2 and pCaFG encoding for CaHydA and the maturases CaHydE, CaHydF 20 

and CaHydG [8] were co-transformed into E. coli Rosetta2(DE3). As previously described 21 

[10], bacteria were aerobically grown in baffled flasks (VWR) at 37°C in terrific broth (12 22 

g/L tryptone, 24 g/L yeast extract, 4 mL/L glycerol, 2.2 g/L KH2PO4, 9.4 g/L K2HPO4) 23 

supplemented with 200 µg/mL carbenicillin, 50 µg/mL streptomycin, 34 µg/mL 24 

chloramphenicol and 2 mM ammonium ferric citrate.  When the OD600 reached ~0.4, the 25 
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culture was supplemented with 2 mM cysteine, 25 mM fumarate, 0.5% w/v glucose and 1 

induced with 1.5 mM IPTG. 2 

Immediately after induction, the culture was split in sterile glass vials (100 mL each), sealed 3 

and purged with pure argon to remove trace oxygen, allowing the expression of the active 4 

enzymes. The vials were then incubated 22 hours at different temperatures ranging from 4°C 5 

to 37°C. 6 

 7 

Protein expression analysis 8 

Total cell lisates were separated by SDS-PAGE on 10% polyacrylamide gels and stained with 9 

Coomassie R350 (GE Healthcare). Western blot against Strep-TagII was performed on PVDF 10 

membranes (GE Healthcare) with the Strep-Tactin HRP conjugate (IBA) and stained with 11 

3,3’-diaminobenzidine (Sigma-Aldrich). 12 

 13 

Enzyme purification 14 

All the manipulations were carried out under strict anaerobic conditions in a glove box (Plas 15 

Labs) under a hydrogen-nitrogen atmosphere. All solutions were equilibrated with the glove 16 

box atmosphere and supplemented with 2-20 mM sodium dithionite before use. 17 

CaHydA was purified by affinity chromatography by Strep-Tactin Superflow high capacity 18 

cartridges (IBA, Goettingen, Germany) as previously described [18]. 19 

Purified protein yield was determined with the Bradford assay using bovine serum albumin as 20 

standard (Sigma-Aldrich). 21 

 22 

Activity assays 23 

Hydrogenase activity (H2 evolution) was determined at 37°C as previously described [18]. 24 

Briefly, reactions were set up in anaerobic 100 mM TrisHCl, 150 mM NaCl, pH 8.0 with 10 25 



 8 

mM methyl viologen and 20 mM sodium dithionite. For the determination of the whole cells 1 

activity 0.1% v/v Triton X-100 was also added and the reaction was started by the addition of 2 

the culture. For the determination of the specific activity, the reactions were started by the 3 

addition of the purified enzyme. 4 

H2 evolution was quantified by gas chromatography, using an Agilent Technologies 7890A 5 

instrument equipped with purged packed inlet, Molesieve 5A column (30 m, ID 0.53 mm, 6 

film 25 mm) and thermal conductivity detector; argon was used as carrier gas. 7 

 8 

 9 

Acknowledgements 10 

This work was supported by “RICERCA LOCALE” 2012 and 2013 from the University of 11 

Torino and, partially, by project HyStrEM (E.U. Structural Funds N.1083/2006 F.E.S.R. 12 

2007-2013). The authors declare no conflicts of interest. 13 

14 



 9 

References. 1 

[1] Vignais PM, Billoud P (2007) Occurrence, classification, and biological function of 2 

hydrogenases: an overview. Chem Rev 107:4206-4272. 3 

[2] Levin DB, Pitt L, LoveM (2004) Biohydrogen production: prospects and limitations to 4 

practical application. Int J Hydrogen Energy 29:173-185. 5 

[3] Hallenbeck PC (2009) Fermentative hydrogen production: Principles, progress, and 6 

prognosis. Int J Hydrogen Energy 34:7379-7389 7 

[4] McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a 8 

biofuel. Curr Opin Biotechnol 21:244-251. 9 

[5] Morra S, Valetti F, Sadeghi SJ, King PW, Meyer T, Gilardi G (2011) Direct 10 

electrochemistry of an [FeFe]-hydrogenase on a TiO2 Electrode. Chem Commun 11 

47:10566-10568. 12 

[6] Woolerton TW, Sheard S, Chaudhary YS, Armstrong FA (2012) Enzymes and bio-13 

inspired electrocatalysts in solar fuel devices. Energy Environ Sci 5:7470-7490. 14 

[7] King PW (2013) Designing interfaces of hydrogenase–nanomaterial hybrids for efficient 15 

solar conversion. Biochim Biophys Acta 1827:949-957. 16 

[8] King PW, Posewitz MC, Ghirardi ML, Seibert M (2006) Functional studies of [FeFe] 17 

hydrogenase maturation in an Escherichia coli biosynthetic system. J Bacteriol 18 

188:2163-2172. 19 

[9] von Abendroth G, Stripp S, Silakov A, Croux C, Soucaille P, Girbal L, Happe T (2008) 20 

Optimized overexpression of [FeFe] hydrogenases with high specific activity in 21 

Clostridium acetobutylicum. Int J Hydrogen Energy 33:6076-6081. 22 

[10] Yacoby I, Tegler LT, Pochekailov S, Zhang S, King PW (2012) Optimised expression 23 

and purification for high-activity preparations of algal [FeFe]-hydrogenase. PloS ONE 24 

7:e35886. 25 



 10 

[11] Lautier T, Ezanno P, Baffert C, Fourmond V, Cournac L, Fontecilla-Camps JC, 1 

Soucaille P, Bertrand P, Meynial-Salles I, Léger C (2011) The quest for a functional 2 

substrate access tunnel in FeFe hydrogenase. Faraday Discuss 148:385-407. 3 

[12] Knörzer P, Silakov A, Foster CE, Armstrong FA, Lubitz W, Happe T (2012) Importance 4 

of the Protein Framework for Catalytic Activity of [FeFe]-Hydrogenases. J Biol Chem 5 

286:38341-38347. 6 

[13] Cornish J, Gärtner K, Yang H, Peters JW, Hegg WL (2011) Mechanism of Proton 7 

Transfer in [FeFe]-Hydrogenase from Clostridium pasteurianum. J Biol Chem 8 

286:38341-38347. 9 

[14] Mulder DW, Ratzloff MW, Bruschi M, Greco C, Koonce E, Peters JW, King PW (2014) 10 

Investigations on the Role of Proton-Coupled Electron Transfer in Hydrogen Activation 11 

by [FeFe]-Hydrogenase. J Am Chem Soc 136:15394-15402. 12 

[15] Nagy LE, Meuser JE, Plummer S, Seibert M, Ghirardi ML, King PW, Ahmann D, 13 

Posewitz MC (2007) Application of gene-shuffling for the rapid generation of novel 14 

[FeFe]-hydrogenase libraries. Biotechnol Lett 29:421-430. 15 

[16] Stapleton JA, Swartz JR (2010) A Cell-Free Microtiter Plate Screen for Improved 16 

[FeFe] Hydrogenases. PLoS ONE 5:e10554. 17 

[17] Stapleton JA, Swartz JR (2010) Development of an In Vitro Compartmentalization 18 

Screen for High-Throughput Directed Evolution of [FeFe] Hydrogenases. PLoS ONE 19 

5:e15275. 20 

[18] Morra S, Giraudo A, Di Nardo G, King PW, Gilardi G, Valetti F (2012) Site Saturation 21 

Mutagenesis Demonstrates a Central Role for Cysteine 298 as Proton Donor to the 22 

Catalytic Site in CaHydA [FeFe]-Hydrogenase. PLoS ONE 7:e48400. 23 

[19] Bingham S, Smith PR, Swartz JR (2012) Evolution of an [FeFe] hydrogenase with 24 

decreased oxygen sensitivity. Int J Hydrogen Energy 37:2965-2976. 25 



 11 

[20] Kuchenreuther JM, Grady-Smith CS, Bingham AS, Gorge SJ, Cramer SP, Swartz JR 1 

(2010) High-Yield Expression of Heterologous [FeFe] Hydrogenases in Escherichia 2 

coli. PloS ONE 5:e15491. 3 

[21] Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW 4 

(2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of 5 

HydAΔEFG. Nature 465:248-251. 6 

[22] Mulder DW, Ratzloff MW, Shepard EM, Byer AS, Noone SM, Peters JW, Broderick 7 

JB, King PW (2013) EPR and FTIR Analysis on the Mechanism of H2 Activation by 8 

[FeFe]-Hydrogenase HydA1 from Chlamydomonas reinhardtii. J Am Chem Soc 9 

135:6921-6929. 10 

[23] Myers WK, Stich TA, Suess DLM, Kuchenreuther JM, Swartz JR, Britt RD (2014) The 11 

Cyanide Ligands of [FeFe] Hydrogenase: Pulse EPR Studies of 13C and 15N-Labeled H-12 

Cluster. J Am Chem Soc 136:12237-12240. 13 

[24] Adamska A, Silakov A, Lambertz C, Rüdiger O, Happe T, Reijerse E, Lubitz W (2012) 14 

Identification and Characterization of the “Super-Reduced” State of the H-Cluster in 15 

[FeFe] Hydrogenase: A New Building Block for the Catalytic Cycle? Angew Chem Int 16 

Ed 51:11458-11462. 17 

[25] Kim S, Lu D, Park S, Wang G (2012) Production of hydrogenases as biocatalysts. Int J 18 

Hydrogen Energy 37:15833-15840. 19 

[26] Posewitz MC, King PW, Smolinski SL, Zhang Z, Seibert M, Ghirardi ML (2004) 20 

Discovery of two novel radical S-adenosylmethionine proteins required for the assembly 21 

of an active [Fe] hydrogenase. J Biol Chem 279:25711–25720. 22 

[27] Kuchenreuther JM, George SJ, Grady-Smith CS, Cramer SP, Swartz JR (2011) Cell-free 23 

H-cluster Synthesis and [FeFe] Hydrogenase Activation: All Five CO and CN- Ligands 24 

Derive from Tyrosine. PloS ONE 6:e20346. 25 



 12 

[28] Cendron L, Berto P, D’Adamo S, Vallese F, Covoni C, Posewitz MC, Giacometti GM, 1 

Costantini P, Zanotti G (2011) Crystal Structure of HydF Scaffold Protein Provides 2 

Insights into [FeFe]-Hydrogenase Maturation. J Biol Chem 286:43944-43950. 3 

[29] Shepard EM, Mus F, Betz JN, Byer AS, Duffus BR, Peters JW, Broderick JB (2014) 4 

[FeFe]-Hydrogenase Maturation. Biochemistry 53:4090-4104. 5 

[30] Girbal L, von Abendroth G, Winkler M, Benton PMC, Meynial-Salles I, Croux C, 6 

Peters JW, Happe T, Soucaille P (2005) Homologous and Heterologous Overexpression 7 

in Clostridium acetobutylicum and Characterization of Purified Clostridial and Algal Fe-8 

Only Hydrogenases with High Specific Activities. Appl Environ Microbiol 71:2777-9 

2781. 10 

[31] Sybirna K, Antoine T, Lindberg P, Fourmond V, Rousset M, Mèjean V, Bottin H (2008) 11 

Shewanella oneidensis: a new and efficient system for expression and maturation of 12 

heterologous [Fe-Fe] hydrogenase from Chlamydomonas reinhardtii. BMC Biotechnol 13 

8:73. 14 

[32] McGlynn SE, Ruebush SS, Naumov A, Nagy LE, Dubini A, King PW, Broderick JB, 15 

Posewitz MC, Peters JW (2007) In vitro activation of [FeFe] hydrogenase: new insights 16 

into hydrogenase maturation. J Biol Inorg Chem 12:443-447. 17 

[33] Boyer ME, Stapleton JA, Kuchenreuther JM, Wang CW, Swartz JR (2008) Cell-Free 18 

Synthesis and Maturation of [FeFe] Hydrogenases. Biotechnol Bioeng 99:59-67. 19 

[34] Kuchenreuther JM, Stapleton JA, Swartz JR (2009) Tyrosine, cysteine and S-Adenosyl 20 

methionine stimulate in vitro [FeFe] hydrogenase activation. PloS ONE 4:e7565. 21 

[35] Kuchenreuther JM, Britt RD, Swartz JR (2012) New insights into [FeFe] hydrogenase 22 

activation and maturase function. PloS ONE 7:e45850. 23 



 13 

[36] Berggren G, Adamska A, Lambertz C, Simmons TR, Esselborn J, Atta M, Gambarelli S, 1 

Mouesca JM, Reijerse E, Lubitz W, Happe T, Artero V, Fontecave M (2013) 2 

Biomimetic assembly and activation of [FeFe]-hydrogenases. Nature 499:66-70. 3 

[37] Esselborn J, Lambertz C, Adamska-Venkatesh A, Simmons T, Berggren G, Noth J, 4 

Siebel J, Hemschemeier A, Artero V, Reijerse E, Fontecave M, Lubitz W, Happe T 5 

(2013) Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site 6 

mimic. Nat Chem Biol 9 :607-609. 7 

[38] Sørensen HP, Mortensen KK (2005) Soluble expression of recombinant proteins in the 8 

cytoplasm of Escherichia coli. Microb Cell Fact 4:1. 9 

[39] Tolia NH, Joshua-Tor L (2006) Soluble expression of recombinant proteins in the 10 

cytoplasm of Escherichia coli. Nat Methods 3:55-64. 11 

[40] Bandyopadhyay S, Chandramouli K, Johnson MK (2010) Iron-Sulphur Cluster 12 

Biosynthesis. Biochem Soc Trans 36:1112-1119. 13 

[41] Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F (2013) Iron/sulfur proteins 14 

biogenesis in prokaryotes: Formation, regulation and diversity. Biochim Biophys Acta 15 

1827:455-469. 16 

[42] Markley JL, Kim JH, Dai Z, Bothe JR, Cai K, Frederick RO, Tonelli M (2013) 17 

Metamorphic protein IscU alternates conformations in the course of its role as the 18 

scaffold protein for iron–sulfur cluster biosynthesis and delivery. FEBS Letters 19 

587:1172-1179. 20 

[43] Chen JS, Mortenson LE (1974) Purification and properties of hydrogenase from 21 

Clostridium pasteurianum W5. Biochim Biophys Acta 371:283-298. 22 

[44] Adams MWW (1990) The structure and mechanism of iron-hydrogenases. Biochim 23 

Biophys Acta 1020:115-145. 24 



 14 

[45] Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC (1998) X-ray Crystal Structure of 1 

the Fe-Only Hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom 2 

Resolution. Science 282:1853-1858. 3 

4 



 15 

Table and Caption. 1 

Type Host Maturases Enzyme 

Specific activity 

(µmol H2/min/mg) 

Yield 

(mg/L) 

Ref. 

Cell- 

Hosted 

E. coli 

Rosetta2(DE3) 

Ca CaHydA 

1880±108 

GC 10 mM MV pH 8.0 

1.2 This work 

E. coli 

Rosetta2(DE3) 

Ca Fd-CrHydA1 

1000 

GC 10 mM MV pH 8.0 

5 [10] 

E. coli 

BL21(DE3) ΔiscR 

So CrHydA1 

641±88 

GC 5 mM MV pH 6.8 

30±11 [20] 

S. oneidensis endog. CrHydA1 

740±56 

Electrode 5 mM MV pH 6.7 

0.5 [31] 

C. acetobutylicum 

endog. CaHydA 

1750* 

GC MV pH 6.8 

0.8 

[9] 

endog. CrHydA1 

625* 

GC MV pH 6.8 

1 

E. coli BL21(DE3) 

Ca CaHydA 

75.2 

GC 5 mM MV pH 7-8 

NR 

[8] 

Ca CrHydA1 

150 

GC 5 mM MV pH 7-8 

0.8-1.0 

Cell- 

Free 

- - CpI 

2037±616 

GC 10 mM MV pH 6.8 

NR [37] 

- Ca CrHydA1 

700-800 

GC 10 mM MV pH 6.8 

NR [36] 

- So CpI 

~700** 

Spect. MV 

NR [35] 

- Ca CsHydA 

~2.5 

GC 10 mM MV pH 7.5 

NR [32] 

 2 
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Table I. Comparison of the specific activity and yield of CaHydA with other recombinant 1 

[FeFe]-hydrogenases. Ca) Clostridium acetobutylicum. Cr) Chlamydomonas reinhardtii. So) 2 

Shewanella oneidensis. Cs) Clostridium saccharobutylicum. endog.) endogenous maturases. 3 

Fd) ferredoxin. Without other specification, specific activity is reported as H2 evolution rate. 4 

*) Vmax. **) H2 oxidation rate. The methodology used is also indicated: GC) Gas 5 

chromatography. Spect.) Spectrophotometric assay. MV) methyl viologen as artificial redox 6 

partner. The pH of the assay is also specified. Protein yield is reported as mg pure protein 7 

obtained per litre of culture. NR) not reported. 8 

9 
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Figure Caption 1 

 2 

Figure 1. (2-column fitting) 3 

Effect of the post-induction temperature on the recombinant expression of CaHydA. A) 4 

Coomassie stained SDS-PAGE of whole cells lisates; bands at the molecular weight of 5 

CaHydF (46 kDa) and CaHydG (53 kDa) are marked. NI = Not induced. B) Western blot 6 

against Strep-tagII; a band at the molecular weight of CaHydA (65 kDa) can be identified. C) 7 

Total hydrogenase activity of whole cells. D) Specific activity of purified CaHydA 8 

(continuous line, filled squares) and yield of pure protein (dashed line, open squares). 9 
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